flash_bwd_kernel.h 65.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
/***************************************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
17
#include "dropout.h"
Tri Dao's avatar
Tri Dao committed
18

19
20
#include "alibi.h"

Tri Dao's avatar
Tri Dao committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    // This gives the correct layout, idk why.
    // auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
    //                           Stride<Stride<_1, _64>, _8> >{},
    // auto t = make_tile(Layout<Shape<_8, _2, _2>,
    //                           Stride<_1, _64, _8> >{},
    auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{},       // (1, 64, 8) or (1, 32, 8)
                       make_layout(size<2>(TileShape_MNK{})));
    // if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    auto t = make_tile(make_layout(size<0>(TileShape_MNK{})),
                       Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{});       // (1, 64, 8) or (1, 32, 8)
    // if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

76
template <int THREADS_PER_ROW, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
Tri Dao's avatar
Tri Dao committed
77
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
78
                                Tensor<Engine1, Layout1> &dP_sum, const int gdP_col_stride, const float scale) {
Tri Dao's avatar
Tri Dao committed
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
    static_assert(Layout0::rank == 3, "Only support 3D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
    // Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
    // The last coordinate is the "page".
    Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
                                                             make_layout(get<0>(do_.layout()),
                                                                         get<2>(do_.layout()))));
    Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
    Tensor do_fp32 = flash::convert_type<float>(do_reshaped);
    Tensor o_fp32 = flash::convert_type<float>(o_reshaped);
    #pragma unroll
    for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
        float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
        #pragma unroll
        for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
            dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
        }
        flash::SumOp<float> sum_op;
        dP_sum_cur = flash::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
        if (threadIdx.x % THREADS_PER_ROW == 0) {
            dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
inline __device__ void compute_dot_do_o(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
133
134
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
140
141
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded + m_block * kBlockM;

    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
142
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
143
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
144
145
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
146
147
148
    Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
149
150
    typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
151
152
    // TODO: careful, we're zeroing out dQaccum with type float4, but when
    // we do atomicAdds, we use type float. The layouts are different. Check this.
Tri Dao's avatar
Tri Dao committed
153
154
    typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
155
156
157

    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tri Dao's avatar
Tri Dao committed
158
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tri Dao's avatar
Tri Dao committed
159
160
161
162
163
164
165
166
167
168
169
170
171

    Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);

    // Allocate predicate tensors for k
    Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
    // Set predicates for k bounds
    #pragma unroll
    for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
172
        gmem_tiled_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
173
174
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
175
        gmem_tiled_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
176
177
178
179
    );
    // By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
    // results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
    // so that (dP - dP_sum) is on the same scale.
180
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum,
Tri Dao's avatar
Tri Dao committed
181
182
                                                Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    if (Clear_dQaccum) {
183
184
        // We're actually not zero'ing out all of dQaccum, but only the part that we're going to
        // do atomicAdds on.
Tri Dao's avatar
Tri Dao committed
185
186
        Tensor zero = make_fragment_like(tdQgdQaccum);
        clear(zero);
Tri Dao's avatar
Tri Dao committed
187
        cute::copy(gmem_tiled_copy_dQaccum, zero, tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, typename Params>
inline __device__ void clear_dKVaccum(const Params &params) {
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;

    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});

Tri Dao's avatar
Tri Dao committed
219
220
221
222
    typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tri Dao's avatar
Tri Dao committed
223
224
    Tensor zero = make_fragment_like(tdKgdKaccum);
    clear(zero);
Tri Dao's avatar
Tri Dao committed
225
226
    cute::copy(gmem_tiled_copy_dKVaccum, zero, tdKgdKaccum);
    cute::copy(gmem_tiled_copy_dKVaccum, zero, tdVgdVaccum);
Tri Dao's avatar
Tri Dao committed
227
228
229
230
231
232
233
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dQ from dQaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<typename Kernel_traits, typename Params>
234
inline __device__ void convert_dQ(const Params &params, const int nsplits) {
Tri Dao's avatar
Tri Dao committed
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
258
259
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
260
261
262
263
264
265

    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
266
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
267
268
269
270

    Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdQ{});

Tri Dao's avatar
Tri Dao committed
271
272
273
274
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
275
276

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
Tri Dao's avatar
Tri Dao committed
277
278
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
279
280
281
282
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tri Dao's avatar
Tri Dao committed
283
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_S(gdQaccum);
Tri Dao's avatar
Tri Dao committed
284
285
286
287
288

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));

    Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
289
290
291
292
293
294
    clear(acc_dq);
    for (int s = 0; s < nsplits; ++s) {
        cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, tdQrdQaccum);
        #pragma unroll
        for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) += tdQrdQaccum(i); }
        tdQgdQaccum.data() = tdQgdQaccum.data() + params.dq_accum_split_stride;
Tri Dao's avatar
Tri Dao committed
295
    }
296
297
    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
Tri Dao's avatar
Tri Dao committed
298
299
300
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
301
    cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
302
303
    __syncthreads();
    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
304
    cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
305
306
307
308
309
310
311
312

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    #pragma unroll
    for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
313
        gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_q.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dKV(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
        + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
        + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
                                          + n_block * kBlockN) * params.d_rounded;

    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});

    Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdKV{});
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

Tri Dao's avatar
Tri Dao committed
368
369
370
371
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
372
373

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
Tri Dao's avatar
Tri Dao committed
374
375
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
376
377
378
379
380
381
382
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);  // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tri Dao's avatar
Tri Dao committed
383
384
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_S(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_S(gdVaccum);
Tri Dao's avatar
Tri Dao committed
385
386
387
388
389
390
391
392

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
    CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));

    Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
    Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
Tri Dao's avatar
Tri Dao committed
393
394
    cute::copy(gmem_tiled_copy_dKVaccum, tdKgdKaccum, tdKrdKaccum);
    cute::copy(gmem_tiled_copy_dKVaccum, tdVgdVaccum, tdVrdVaccum);
Tri Dao's avatar
Tri Dao committed
395
396
397
398
399
400
401
402
403
404
405
406
407
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) {
        acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dv); ++i) {
        acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
    }
    // Convert acc_dk from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
408
409
    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
Tri Dao's avatar
Tri Dao committed
410
411
412
    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
Tri Dao's avatar
Tri Dao committed
413
414
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tri Dao's avatar
Tri Dao committed
415
416
417
418
419
420
421
422

    Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
423
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
424
425
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
426
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
427
428
429
430
431
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

432
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
Tri Dao's avatar
Tri Dao committed
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
    constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;

453
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
454
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
Tri Dao's avatar
Tri Dao committed
455
456

    int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
Tri Dao's avatar
Tri Dao committed
457
458
459
    if (Is_local) {
        m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
    }
Tri Dao's avatar
Tri Dao committed
460
461
462
463
464
465
466
467
468
469
470
471
472

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
473
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
474
475
476
        + ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded
        // If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
        + (!params.deterministic ? 0 : blockIdx.x * params.dq_accum_split_stride);
Tri Dao's avatar
Tri Dao committed
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q
        + (m_block_max - 1) * kBlockM;
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded
        + (m_block_max - 1) * kBlockM;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
496
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
497
498
499
500
501
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
502
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
    Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    // Double buffer for sQ
    Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
                             typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    // sP and sdQ share the same memory so be careful
    Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});

Tri Dao's avatar
Tri Dao committed
531
532
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
533
534
535
536
537
    using GmemTiledCopydO = std::conditional_t<
        Is_first,
        typename Kernel_traits::GmemTiledCopydO,
        typename Kernel_traits::GmemTiledCopyQKV
    >;
Tri Dao's avatar
Tri Dao committed
538
539
540
541
    GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
542
543
544
545
546
    using GmemLayoutAtomdQaccum = std::conditional_t<
        !Seq_parallel,
        typename Kernel_traits::GmemTiledCopydQaccum,
        typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
    >;
Tri Dao's avatar
Tri Dao committed
547
548
    GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
549
550
551
552
553
554
555
556
557
558
559
560

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tri Dao's avatar
Tri Dao committed
561
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tri Dao's avatar
Tri Dao committed
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
    // if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
    // __syncthreads();
    // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
    //     printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
    // }

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
594
595
    auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
596
597
598
599
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

    // auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
600
601
    auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
602
603
604
605
606
607
608
609
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    // if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
    // auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
610
611
    auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
612
613
614
615
616
617
618
619
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    // if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
    // if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
    //     printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
    // }
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
620
621
    auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
622
623
624
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

Tri Dao's avatar
Tri Dao committed
625
626
    auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
627
628
629
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

Tri Dao's avatar
Tri Dao committed
630
631
    auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
    auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
632
633
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

Tri Dao's avatar
Tri Dao committed
634
635
    auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
    auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
636
637
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

Tri Dao's avatar
Tri Dao committed
638
639
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    //
    // PREDICATES
    //

    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We'll advance gdQ and gdQaccum before the 1st read/write.
    tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
667
    tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
668
669

    int m_block = m_block_max - 1;
Tri Dao's avatar
Tri Dao committed
670
671
672
673
    int m_block_min = (!Is_causal && !Is_local)
        ? 0
        : std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
    // If not local, we're guaranteed that m_block_min <= m_block:
674
675
676
677
678
679
    // We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
    // n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
    // So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
    // Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
    // So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
    // We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
Tri Dao's avatar
Tri Dao committed
680
681
682
683
    // However, if local, then this possible to have some blocks of K & V not attending to any query.
    // We might need to exit early and write 0 to dK and dV for those blocks.
    // Otherwise we get wrong result for the case where we don't enter the for loop.
    // And we might read OOB elements from gQ and gdO.
684
685
    // This also covers the case where actual_seqlen_q == 0
    if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
Tri Dao's avatar
Tri Dao committed
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
        const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
          + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
        const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
          + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
        Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dk_row_stride, _1{}));
        Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dv_row_stride, _1{}));
        typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
        auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
        Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
        Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
        Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
        Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
        clear(tdKrdK);
        clear(tdVrdV);
        Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
        Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
        #pragma unroll
        for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        return;
    }
Tri Dao's avatar
Tri Dao committed
718
719
720
721
722
723
724

    if (Double_buffer && m_block % 2 == 1) {  // Double buffer for sQ
        tQsQ.data() = tQsQ.data() + size(sQ);
        tSsQ.data() = tSsQ.data() + size(sQ);
        tdKsQt.data() = tdKsQt.data() + size(sQ);
    }

725
    if ((!Is_first && !Seq_parallel) || params.deterministic) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
726
727
728

    if (Kernel_traits::Is_V_in_regs) {
        // Clear the smem tiles to account for predicated off loads
729
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
730
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
731
732
733
734
735
736
737
738
        );
        flash::cp_async_fence();
    }

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    if (!Is_first) {
        // Clear the smem tiles to account for predicated off loads
739
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
740
            gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
741
742
        );
    } else {
743
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
744
            gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
745
        );
746
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
747
            gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
748
749
        );
    }
750
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
751
        gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
752
753
754
755
756
757
758
759
760
761
762
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        const int row = get<0>(taccScS_row(mi));
763
        lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
Tri Dao's avatar
Tri Dao committed
764
    }
765
766
767
768
    // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
    // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
    // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
    // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.
Tri Dao's avatar
Tri Dao committed
769
770

    // Tensor tKrK = make_fragment_like(tKsK);
Tri Dao's avatar
Tri Dao committed
771
772
    // // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
    // cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
Tri Dao's avatar
Tri Dao committed
773
774
    // // if (cute::thread(1, 0)) { print(tKrK); }

775
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
776
        gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
777
778
    );
    if (!Kernel_traits::Is_V_in_regs) {
779
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
780
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
781
782
783
784
785
786
        );
    }
    flash::cp_async_fence();

    // if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
    if (Is_first) {
Tri Dao's avatar
Tri Dao committed
787
        cute::copy(tdOrdO, tdOsdO);
788
        dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Tri Dao's avatar
Tri Dao committed
789
790
791
792
793
794
795
796
                                                    Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    }

    if (Kernel_traits::Is_V_in_regs) {
        cute::cp_async_wait<1>();
        __syncthreads();
        Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
        CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
797
        cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
Tri Dao's avatar
Tri Dao committed
798
799
    }

800
801
    flash::Dropout dropout(params.rng_state[0], params.rng_state[1], params.p_dropout_in_uint8_t,
                           bidb, bidh, tidx, params.h);
Tri Dao's avatar
Tri Dao committed
802
803
804
805

    clear(acc_dv);
    clear(acc_dk);

806
    float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
807

Tri Dao's avatar
Tri Dao committed
808
809
810
811
812
813
814
815
816
817
818
819
820
821
    for (; m_block >= m_block_min; --m_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        clear(acc_s);
        cute::cp_async_wait<0>();
        __syncthreads();

        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }

        // if (cute::thread0()) { print(sK); }
        // Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
        // #pragma unroll
        // for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
Tri Dao's avatar
Tri Dao committed
822
        //     cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
Tri Dao's avatar
Tri Dao committed
823
824
        // }
        // if (cute::thread0()) { print(tSrK); }
Tri Dao's avatar
Tri Dao committed
825
826
        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
827
828
829
830

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread(32, 0)) { print(scores); }
831
832

        if (Has_alibi) {
833
            flash::apply_alibi<Is_causal>(
834
835
836
837
838
839
840
841
842
                scores, 
                n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                binfo.actual_seqlen_k, 
                m_block * kBlockM + get<0>(taccScS_row(0)),
                binfo.actual_seqlen_q, 
                AtomLayoutMS * 16,
                alibi_slope
            );
        }
843

844
845
846
847
848
849
850
        // TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
        // actual_seqlen_k, because acc_s would be some finite value for those indices.
        // In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
        // so the result would still be correct.
        // However, it's possible that the values in acc_s are so large that they overflow
        // when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
        // So we need to mask out the elements beyond actual_seqlen_k.
Tri Dao's avatar
Tri Dao committed
851
        if (!Is_causal && !Is_local) {
852
853
854
855
            if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
                flash::apply_mask(scores, binfo.actual_seqlen_k,
                                  n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
            }
Tri Dao's avatar
Tri Dao committed
856
        } else if (Is_causal) {
857
            // Putting this causal masking right after acc_s is *much* slower for some reason.
858
859
            // TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
            // (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
860
            // But we still want to mask out elements beyond actual_seqlen_k.
861
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
862
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
863
                flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
864
865
                                         binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                         binfo.actual_seqlen_q,
866
867
868
                                         // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
                                         AtomLayoutMS * 16);
            }
Tri Dao's avatar
Tri Dao committed
869
870
871
872
873
874
875
876
877
878
        } else if (Is_local) {
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
                || (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
                flash::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                        binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                        binfo.actual_seqlen_q, AtomLayoutMS * 16,
                                        params.window_size_left, params.window_size_right);
            }

Tri Dao's avatar
Tri Dao committed
879
        }
880

Tri Dao's avatar
Tri Dao committed
881
882
883
884
        // if (cute::thread(32, 0)) { print(scores); }
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
885
886
            int warp_id = tidx / 32;
            int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
Tri Dao's avatar
Tri Dao committed
887
888
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
889
            int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
890
891
            dropout.template apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores, block_row_idx, block_col_idx, AtomLayoutMS
Tri Dao's avatar
Tri Dao committed
892
893
894
895
896
897
898
899
900
901
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
902
        cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
Tri Dao's avatar
Tri Dao committed
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
        // if (cute::thread0()) { print(tPaP); }
        // __syncthreads();
        // if (cute::thread0()) { print(sP); }

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
        // Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout()));
        // #pragma unroll
        // for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
        //     #pragma unroll
        //     for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
        //         acc_dp_reshaped(mi, ni) = -dP_sum(mi);
        //     }
        // }

        // if (cute::thread0()) { print(dP_sum); }

        flash::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
Tri Dao's avatar
Tri Dao committed
925
926
            acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
            smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
Tri Dao's avatar
Tri Dao committed
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
        );

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }
        // if (cute::thread0()) { print(dS); }

        Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
944
        tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
Tri Dao's avatar
Tri Dao committed
945
946
947
948
949
950
951
952
        if (Is_first || Seq_parallel) {
            clear(acc_dq);
        } else {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
Tri Dao's avatar
Tri Dao committed
953
            cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
959
960
961
962
        }

        if (Double_buffer && m_block > m_block_min) {
            // Double buffer for sQ
            const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
            tQsQ.data() = tQsQ.data() + sQ_offset;
            tSsQ.data() = tSsQ.data() + sQ_offset;
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
Tri Dao's avatar
Tri Dao committed
963
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
964
965
966
967
968
969
970
971
            flash::cp_async_fence();
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        // if (cute::thread0()) { print(tPrP); }
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
972
        cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
Tri Dao's avatar
Tri Dao committed
973
974
975
976
        __syncthreads();

        // Layout p_l = tPrP.layout();
        // Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
977
        // flash::gemm_rs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
978
        // Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
979
        // flash::gemm_rs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
980
981
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
982
983
984
985
986
987
988
989
990
991
        // if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
        // if (cute::thread0()) { print(acc_dv); }

        __syncthreads(); // Need syncthreads since we're writing to the same sdO location

        if (m_block > m_block_min) {
            // Advance gdO
            tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
            if (Is_first) {
                tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
Tri Dao's avatar
Tri Dao committed
992
993
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
994
            } else {
Tri Dao's avatar
Tri Dao committed
995
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
996
997
998
999
                flash::cp_async_fence();
            }
        }

Tri Dao's avatar
Tri Dao committed
1000
1001
        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
                    smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
Tri Dao's avatar
Tri Dao committed
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
        // if (cute::thread0()) { print(acc_dq); }

        if (m_block > m_block_min) {
            gLSE.data() = gLSE.data() + (-int(kBlockM));
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
            gdPsum.data() = gdPsum.data() + (-int(kBlockM));
        }

        if (!Is_last) {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            if (!Seq_parallel) {
Tri Dao's avatar
Tri Dao committed
1018
                cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
            } else {
                // if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
                CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
                #pragma unroll
                for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
            }
        } else {
            #pragma unroll
            for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
            // Convert acc_dq from fp32 to fp16
            Tensor rdQ = flash::convert_type<Element>(acc_dq);
            Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1031
            cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
1032
1033
        }

Tri Dao's avatar
Tri Dao committed
1034
1035
        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1036
1037
1038
1039
1040
1041
1042
1043
        // if (cute::thread0()) { print(acc_dk); }
        if (Double_buffer) {  // Double buffer for sQ
            tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
        }
        if (!Double_buffer && m_block > m_block_min) {
            __syncthreads();
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
Tri Dao's avatar
Tri Dao committed
1044
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
1045
1046
1047
1048
            flash::cp_async_fence();
        }

        if (Is_first && m_block > m_block_min) {
Tri Dao's avatar
Tri Dao committed
1049
            cute::copy(tdOrdO, tdOsdO);
1050
            dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Tri Dao's avatar
Tri Dao committed
1051
1052
1053
1054
1055
1056
                                                        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
        }

        if (Is_last) {
            __syncthreads();
            Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
1057
            cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
1058
1059
1060
1061
1062
            tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
            Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
            Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
            #pragma unroll
            for (int m = 0; m < size<1>(tdQgdQ); ++m) {
1063
                if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
Tri Dao's avatar
Tri Dao committed
1064
                    cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
Tri Dao's avatar
Tri Dao committed
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
                }
            }
        }

    }

    // Epilogue

    if (Is_dropout) {
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }

    // Convert acc_dv from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);

    Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{});  // (SMEM_N, SMEM_K)
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

    // Partition sdV and sdK to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1088
1089
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1090
1091
1092
1093
1094
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);   // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);    // ((Atom,AtomNum),PIPE_M,PIPE_N)

1095
1096
1097
1098
1099
    // We need syncthreads here since we're writing to the same location as sK and sV.
    // Without syncthreads, some thread might modify the location of sK while another thread
    // is reading it for dQ gemm, leading to a race condition.
    // If Is_last, there's already a __syncthreads() at the end of the loop.
    if (!Is_last) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1100

Tri Dao's avatar
Tri Dao committed
1101
1102
    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
Tri Dao's avatar
Tri Dao committed
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
       + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
       + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));

Tri Dao's avatar
Tri Dao committed
1115
1116
    typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1117
1118
1119
1120
1121
1122
1123
    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);

    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tri Dao's avatar
Tri Dao committed
1124
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
Tri Dao's avatar
Tri Dao committed
1125
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
Tri Dao's avatar
Tri Dao committed
1126
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tri Dao's avatar
Tri Dao committed
1127
1128
1129
1130
1131
1132
    Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
1133
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1134
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1135
    );
1136
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1137
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1138
1139
1140
1141
1142
1143
    );

}

////////////////////////////////////////////////////////////////////////////////////////////////////

1144
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
inline __device__ void compute_dq_dk_dv(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.x;
    // const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.y;
    // const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    if (n_block_max == 1) {
1158
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
Tri Dao's avatar
Tri Dao committed
1159
1160
    } else {
        // Iterating backward from n_block_max - 1 to 0 might save 1 register
1161
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
Tri Dao's avatar
Tri Dao committed
1162
        for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
1163
            compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
Tri Dao's avatar
Tri Dao committed
1164
        }
1165
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
Tri Dao's avatar
Tri Dao committed
1166
1167
1168
1169
1170
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1171
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1172
1173
1174
1175
1176
1177
1178
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

1179
1180
1181
1182
    // If deterministic, each thread block will do atomicAdd to a different dQ_accum buffer.
    for (int n_block = blockIdx.x; n_block < (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN; n_block += gridDim.x) {
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
    }
Tri Dao's avatar
Tri Dao committed
1183
1184
1185
1186
}

////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash