flash_bwd_kernel.h 88.7 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/***************************************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    // This gives the correct layout, idk why.
    // auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
    //                           Stride<Stride<_1, _64>, _8> >{},
    // auto t = make_tile(Layout<Shape<_8, _2, _2>,
    //                           Stride<_1, _64, _8> >{},
    auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{},       // (1, 64, 8) or (1, 32, 8)
                       make_layout(size<2>(TileShape_MNK{})));
    // if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    auto t = make_tile(make_layout(size<0>(TileShape_MNK{})),
                       Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{});       // (1, 64, 8) or (1, 32, 8)
    // if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

73
template <int THREADS_PER_ROW, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
Tri Dao's avatar
Tri Dao committed
74
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
75
                                Tensor<Engine1, Layout1> &dP_sum, const int gdP_col_stride, const float scale) {
Tri Dao's avatar
Tri Dao committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    static_assert(Layout0::rank == 3, "Only support 3D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
    // Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
    // The last coordinate is the "page".
    Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
                                                             make_layout(get<0>(do_.layout()),
                                                                         get<2>(do_.layout()))));
    Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
    Tensor do_fp32 = flash::convert_type<float>(do_reshaped);
    Tensor o_fp32 = flash::convert_type<float>(o_reshaped);
    #pragma unroll
    for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
        float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
        #pragma unroll
        for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
            dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
        }
        flash::SumOp<float> sum_op;
        dP_sum_cur = flash::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
        if (threadIdx.x % THREADS_PER_ROW == 0) {
            dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
inline __device__ void compute_dot_do_o(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
130
131
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
132
133
134
135
136
137
138
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded + m_block * kBlockM;

    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
139
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
140
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
141
142
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
143
144
145
    Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
146
147
    typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
148
149
    // TODO: careful, we're zeroing out dQaccum with type float4, but when
    // we do atomicAdds, we use type float. The layouts are different. Check this.
Tri Dao's avatar
Tri Dao committed
150
151
    typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
152
153
154

    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tri Dao's avatar
Tri Dao committed
155
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tri Dao's avatar
Tri Dao committed
156
157
158
159
160
161
162
163
164
165
166
167
168

    Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);

    // Allocate predicate tensors for k
    Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
    // Set predicates for k bounds
    #pragma unroll
    for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
169
        gmem_tiled_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
170
171
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
172
        gmem_tiled_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
173
174
175
176
    );
    // By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
    // results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
    // so that (dP - dP_sum) is on the same scale.
177
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum,
Tri Dao's avatar
Tri Dao committed
178
179
                                                Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    if (Clear_dQaccum) {
180
181
        // We're actually not zero'ing out all of dQaccum, but only the part that we're going to
        // do atomicAdds on.
Tri Dao's avatar
Tri Dao committed
182
183
        Tensor zero = make_fragment_like(tdQgdQaccum);
        clear(zero);
Tri Dao's avatar
Tri Dao committed
184
        cute::copy(gmem_tiled_copy_dQaccum, zero, tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, typename Params>
inline __device__ void clear_dKVaccum(const Params &params) {
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;

    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});

Tri Dao's avatar
Tri Dao committed
216
217
218
219
    typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tri Dao's avatar
Tri Dao committed
220
221
    Tensor zero = make_fragment_like(tdKgdKaccum);
    clear(zero);
Tri Dao's avatar
Tri Dao committed
222
223
    cute::copy(gmem_tiled_copy_dKVaccum, zero, tdKgdKaccum);
    cute::copy(gmem_tiled_copy_dKVaccum, zero, tdVgdVaccum);
Tri Dao's avatar
Tri Dao committed
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dQ from dQaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dQ(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
255
256
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
257
258
259
260
261
262

    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
263
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
264
265
266
267

    Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdQ{});

Tri Dao's avatar
Tri Dao committed
268
269
270
271
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
272
273

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
Tri Dao's avatar
Tri Dao committed
274
275
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
276
277
278
279
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tri Dao's avatar
Tri Dao committed
280
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_S(gdQaccum);
Tri Dao's avatar
Tri Dao committed
281
282
283
284
285

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));

    Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
286
    cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, tdQrdQaccum);
Tri Dao's avatar
Tri Dao committed
287
288
289
290
291
292
293
    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) {
        acc_dq(i) = tdQrdQaccum(i) * params.scale_softmax_rp_dropout;
    }
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
294
    cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
295
296
    __syncthreads();
    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
297
    cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
298
299
300
301
302
303
304
305

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    #pragma unroll
    for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
306
        gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_q.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dKV(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
        + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
        + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
                                          + n_block * kBlockN) * params.d_rounded;

    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});

    Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdKV{});
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

Tri Dao's avatar
Tri Dao committed
361
362
363
364
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
365
366

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
Tri Dao's avatar
Tri Dao committed
367
368
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
369
370
371
372
373
374
375
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);  // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tri Dao's avatar
Tri Dao committed
376
377
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_S(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_S(gdVaccum);
Tri Dao's avatar
Tri Dao committed
378
379
380
381
382
383
384
385

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
    CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));

    Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
    Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
Tri Dao's avatar
Tri Dao committed
386
387
    cute::copy(gmem_tiled_copy_dKVaccum, tdKgdKaccum, tdKrdKaccum);
    cute::copy(gmem_tiled_copy_dKVaccum, tdVgdVaccum, tdVrdVaccum);
Tri Dao's avatar
Tri Dao committed
388
389
390
391
392
393
394
395
396
397
398
399
400
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) {
        acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dv); ++i) {
        acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
    }
    // Convert acc_dk from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
401
402
    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
Tri Dao's avatar
Tri Dao committed
403
404
405
    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
Tri Dao's avatar
Tri Dao committed
406
407
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tri Dao's avatar
Tri Dao committed
408
409
410
411
412
413
414
415

    Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
416
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
417
418
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
419
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
420
421
422
423
424
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
425
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
Tri Dao's avatar
Tri Dao committed
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
    constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;

446
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
447
448
449
    if (n_block * kBlockN >= binfo.actual_seqlen_k || binfo.actual_seqlen_q == 0) return;

    int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
Tri Dao's avatar
Tri Dao committed
450
451
452
    if (Is_local) {
        m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
    }
Tri Dao's avatar
Tri Dao committed
453
454
455
456
457
458
459
460
461
462
463
464
465

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
466
467
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q
        + (m_block_max - 1) * kBlockM;
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded
        + (m_block_max - 1) * kBlockM;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
487
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
488
489
490
491
492
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
493
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
    Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    // Double buffer for sQ
    Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
                             typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    // sP and sdQ share the same memory so be careful
    Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});

Tri Dao's avatar
Tri Dao committed
522
523
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
524
525
526
527
528
    using GmemTiledCopydO = std::conditional_t<
        Is_first,
        typename Kernel_traits::GmemTiledCopydO,
        typename Kernel_traits::GmemTiledCopyQKV
    >;
Tri Dao's avatar
Tri Dao committed
529
530
531
532
    GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
533
534
535
536
537
    using GmemLayoutAtomdQaccum = std::conditional_t<
        !Seq_parallel,
        typename Kernel_traits::GmemTiledCopydQaccum,
        typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
    >;
Tri Dao's avatar
Tri Dao committed
538
539
    GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
540
541
542
543
544
545
546
547
548
549
550
551

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tri Dao's avatar
Tri Dao committed
552
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tri Dao's avatar
Tri Dao committed
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
    // if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
    // __syncthreads();
    // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
    //     printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
    // }

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
585
586
    auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
587
588
589
590
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

    // auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
591
592
    auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
593
594
595
596
597
598
599
600
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    // if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
    // auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
601
602
    auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
603
604
605
606
607
608
609
610
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    // if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
    // if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
    //     printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
    // }
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
611
612
    auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
613
614
615
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

Tri Dao's avatar
Tri Dao committed
616
617
    auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
618
619
620
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

Tri Dao's avatar
Tri Dao committed
621
622
    auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
    auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
623
624
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

Tri Dao's avatar
Tri Dao committed
625
626
    auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
    auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
627
628
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

Tri Dao's avatar
Tri Dao committed
629
630
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    //
    // PREDICATES
    //

    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We'll advance gdQ and gdQaccum before the 1st read/write.
    tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
658
    tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
659
660

    int m_block = m_block_max - 1;
Tri Dao's avatar
Tri Dao committed
661
662
663
664
    int m_block_min = (!Is_causal && !Is_local)
        ? 0
        : std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
    // If not local, we're guaranteed that m_block_min <= m_block:
665
666
667
668
669
670
    // We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
    // n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
    // So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
    // Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
    // So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
    // We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
Tri Dao's avatar
Tri Dao committed
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
    // However, if local, then this possible to have some blocks of K & V not attending to any query.
    // We might need to exit early and write 0 to dK and dV for those blocks.
    // Otherwise we get wrong result for the case where we don't enter the for loop.
    // And we might read OOB elements from gQ and gdO.
    if (Is_local && m_block < m_block_min) {
        const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
          + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
        const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
          + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
        Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dk_row_stride, _1{}));
        Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dv_row_stride, _1{}));
        typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
        auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
        Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
        Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
        Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
        Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
        clear(tdKrdK);
        clear(tdVrdV);
        Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
        Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
        #pragma unroll
        for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        return;
    }
Tri Dao's avatar
Tri Dao committed
708
709
710
711
712
713
714
715
716
717
718

    if (Double_buffer && m_block % 2 == 1) {  // Double buffer for sQ
        tQsQ.data() = tQsQ.data() + size(sQ);
        tSsQ.data() = tSsQ.data() + size(sQ);
        tdKsQt.data() = tdKsQt.data() + size(sQ);
    }

    if (!Is_first && !Seq_parallel) { __syncthreads(); }

    if (Kernel_traits::Is_V_in_regs) {
        // Clear the smem tiles to account for predicated off loads
719
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
720
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
721
722
723
724
725
726
727
728
        );
        flash::cp_async_fence();
    }

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    if (!Is_first) {
        // Clear the smem tiles to account for predicated off loads
729
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
730
            gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
731
732
        );
    } else {
733
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
734
            gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
735
        );
736
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
737
            gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
738
739
        );
    }
740
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
741
        gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
742
743
744
745
746
747
748
749
750
751
752
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        const int row = get<0>(taccScS_row(mi));
753
        lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : 0;
Tri Dao's avatar
Tri Dao committed
754
755
756
    }

    // Tensor tKrK = make_fragment_like(tKsK);
Tri Dao's avatar
Tri Dao committed
757
758
    // // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
    // cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
Tri Dao's avatar
Tri Dao committed
759
760
    // // if (cute::thread(1, 0)) { print(tKrK); }

761
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
762
        gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
763
764
    );
    if (!Kernel_traits::Is_V_in_regs) {
765
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
766
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
767
768
769
770
771
772
        );
    }
    flash::cp_async_fence();

    // if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
    if (Is_first) {
Tri Dao's avatar
Tri Dao committed
773
        cute::copy(tdOrdO, tdOsdO);
774
        dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Tri Dao's avatar
Tri Dao committed
775
776
777
778
779
780
781
782
                                                    Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    }

    if (Kernel_traits::Is_V_in_regs) {
        cute::cp_async_wait<1>();
        __syncthreads();
        Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
        CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
783
        cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
Tri Dao's avatar
Tri Dao committed
784
785
    }

786
787
    auto seed = params.rng_state[0];
    auto offset = params.rng_state[1] + (bidb * params.h + bidh) * 32 + tidx % 32;
Tri Dao's avatar
Tri Dao committed
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805

    clear(acc_dv);
    clear(acc_dk);

    for (; m_block >= m_block_min; --m_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        clear(acc_s);
        cute::cp_async_wait<0>();
        __syncthreads();

        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }

        // if (cute::thread0()) { print(sK); }
        // Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
        // #pragma unroll
        // for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
Tri Dao's avatar
Tri Dao committed
806
        //     cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
Tri Dao's avatar
Tri Dao committed
807
808
        // }
        // if (cute::thread0()) { print(tSrK); }
Tri Dao's avatar
Tri Dao committed
809
810
        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
811
812
813
814

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread(32, 0)) { print(scores); }
815
816
817
818
819
820
821
        // TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
        // actual_seqlen_k, because acc_s would be some finite value for those indices.
        // In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
        // so the result would still be correct.
        // However, it's possible that the values in acc_s are so large that they overflow
        // when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
        // So we need to mask out the elements beyond actual_seqlen_k.
Tri Dao's avatar
Tri Dao committed
822
        if (!Is_causal && !Is_local) {
823
824
825
826
            if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
                flash::apply_mask(scores, binfo.actual_seqlen_k,
                                  n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
            }
Tri Dao's avatar
Tri Dao committed
827
        } else if (Is_causal) {
828
            // Putting this causal masking right after acc_s is *much* slower for some reason.
829
830
            // TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
            // (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
831
            // But we still want to mask out elements beyond actual_seqlen_k.
832
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
833
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
834
                flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
835
836
                                         binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                         binfo.actual_seqlen_q,
837
838
839
                                         // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
                                         AtomLayoutMS * 16);
            }
Tri Dao's avatar
Tri Dao committed
840
841
842
843
844
845
846
847
848
849
        } else if (Is_local) {
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
                || (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
                flash::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                        binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                        binfo.actual_seqlen_q, AtomLayoutMS * 16,
                                        params.window_size_left, params.window_size_right);
            }

Tri Dao's avatar
Tri Dao committed
850
851
852
853
854
        }
        // if (cute::thread(32, 0)) { print(scores); }
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
855
856
            int warp_id = tidx / 32;
            int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
Tri Dao's avatar
Tri Dao committed
857
858
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
859
            int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
Tri Dao's avatar
Tri Dao committed
860
861
862
863
864
865
866
867
868
869
870
871
872
873
            Tensor scores_dropped = make_tensor(scores.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(scores.layout()));
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores_dropped, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
874
        cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
Tri Dao's avatar
Tri Dao committed
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
        // if (cute::thread0()) { print(tPaP); }
        // __syncthreads();
        // if (cute::thread0()) { print(sP); }

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
        // Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout()));
        // #pragma unroll
        // for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
        //     #pragma unroll
        //     for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
        //         acc_dp_reshaped(mi, ni) = -dP_sum(mi);
        //     }
        // }

        // if (cute::thread0()) { print(dP_sum); }

        flash::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
Tri Dao's avatar
Tri Dao committed
897
898
            acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
            smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
Tri Dao's avatar
Tri Dao committed
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
        );

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }
        // if (cute::thread0()) { print(dS); }

        Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
916
        tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
Tri Dao's avatar
Tri Dao committed
917
918
919
920
921
922
923
924
        if (Is_first || Seq_parallel) {
            clear(acc_dq);
        } else {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
Tri Dao's avatar
Tri Dao committed
925
            cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
Tri Dao's avatar
Tri Dao committed
926
927
928
929
930
931
932
933
934
        }

        if (Double_buffer && m_block > m_block_min) {
            // Double buffer for sQ
            const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
            tQsQ.data() = tQsQ.data() + sQ_offset;
            tSsQ.data() = tSsQ.data() + sQ_offset;
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
Tri Dao's avatar
Tri Dao committed
935
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
936
937
938
939
940
941
942
943
            flash::cp_async_fence();
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        // if (cute::thread0()) { print(tPrP); }
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
944
        cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
Tri Dao's avatar
Tri Dao committed
945
946
947
948
949
950
951
        __syncthreads();

        // Layout p_l = tPrP.layout();
        // Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
        // flash::gemm_A_in_regs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
        // Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
        // flash::gemm_A_in_regs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
952
953
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
954
955
956
957
958
959
960
961
962
963
        // if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
        // if (cute::thread0()) { print(acc_dv); }

        __syncthreads(); // Need syncthreads since we're writing to the same sdO location

        if (m_block > m_block_min) {
            // Advance gdO
            tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
            if (Is_first) {
                tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
Tri Dao's avatar
Tri Dao committed
964
965
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
966
            } else {
Tri Dao's avatar
Tri Dao committed
967
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
968
969
970
971
                flash::cp_async_fence();
            }
        }

Tri Dao's avatar
Tri Dao committed
972
973
        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
                    smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
Tri Dao's avatar
Tri Dao committed
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
        // if (cute::thread0()) { print(acc_dq); }

        if (m_block > m_block_min) {
            gLSE.data() = gLSE.data() + (-int(kBlockM));
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
            gdPsum.data() = gdPsum.data() + (-int(kBlockM));
        }

        if (!Is_last) {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            if (!Seq_parallel) {
Tri Dao's avatar
Tri Dao committed
990
                cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
991
992
993
994
995
996
997
998
999
1000
1001
1002
            } else {
                // if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
                CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
                #pragma unroll
                for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
            }
        } else {
            #pragma unroll
            for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
            // Convert acc_dq from fp32 to fp16
            Tensor rdQ = flash::convert_type<Element>(acc_dq);
            Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1003
            cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
1004
1005
        }

Tri Dao's avatar
Tri Dao committed
1006
1007
        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1008
1009
1010
1011
1012
1013
1014
1015
        // if (cute::thread0()) { print(acc_dk); }
        if (Double_buffer) {  // Double buffer for sQ
            tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
        }
        if (!Double_buffer && m_block > m_block_min) {
            __syncthreads();
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
Tri Dao's avatar
Tri Dao committed
1016
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
1017
1018
1019
1020
            flash::cp_async_fence();
        }

        if (Is_first && m_block > m_block_min) {
Tri Dao's avatar
Tri Dao committed
1021
            cute::copy(tdOrdO, tdOsdO);
1022
            dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Tri Dao's avatar
Tri Dao committed
1023
1024
1025
1026
1027
1028
                                                        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
        }

        if (Is_last) {
            __syncthreads();
            Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
1029
            cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
1030
1031
1032
1033
1034
            tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
            Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
            Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
            #pragma unroll
            for (int m = 0; m < size<1>(tdQgdQ); ++m) {
1035
                if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
Tri Dao's avatar
Tri Dao committed
1036
                    cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
Tri Dao's avatar
Tri Dao committed
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
                }
            }
        }

    }

    // Epilogue

    if (Is_dropout) {
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }

    // Convert acc_dv from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);

    Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{});  // (SMEM_N, SMEM_K)
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

    // Partition sdV and sdK to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1060
1061
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1062
1063
1064
1065
1066
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);   // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);    // ((Atom,AtomNum),PIPE_M,PIPE_N)

1067
1068
1069
1070
1071
    // We need syncthreads here since we're writing to the same location as sK and sV.
    // Without syncthreads, some thread might modify the location of sK while another thread
    // is reading it for dQ gemm, leading to a race condition.
    // If Is_last, there's already a __syncthreads() at the end of the loop.
    if (!Is_last) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1072

Tri Dao's avatar
Tri Dao committed
1073
1074
    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
Tri Dao's avatar
Tri Dao committed
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
       + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
       + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));

Tri Dao's avatar
Tri Dao committed
1087
1088
    typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1089
1090
1091
1092
1093
1094
1095
    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);

    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tri Dao's avatar
Tri Dao committed
1096
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
Tri Dao's avatar
Tri Dao committed
1097
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
Tri Dao's avatar
Tri Dao committed
1098
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tri Dao's avatar
Tri Dao committed
1099
1100
1101
1102
1103
1104
    Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
1105
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1106
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1107
    );
1108
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1109
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
    );

}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;

    const BlockInfo</*Varlen=*/!Is_even_N> binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q || binfo.actual_seqlen_k == 0) return;

    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
    if (Is_causal) {
        n_block_max = std::min(n_block_max, cute::ceil_div((m_block + 1) * kBlockM, kBlockN));
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
1158
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
    // We'll advance gdKaccum and gdVaccum before the first write.
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + (bidh / params.h_h_k_ratio)) * params.seqlen_k_rounded
                                          + n_block_max * kBlockN) * params.d_rounded;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

    // We assume that params.d == kHeadDim for now
    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
1179
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sdO = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    // Double buffer for sK
    Tensor sV = make_tensor(sK.data() + 2 * size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(sV.data() + size(sV), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sdPsum = make_tensor(make_smem_ptr(reinterpret_cast<ElementAccum *>(sdS.data().get())),
                                Shape<Int<kBlockM>>{});

Tri Dao's avatar
Tri Dao committed
1211
1212
1213
1214
1215
1216
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
Tri Dao's avatar
Tri Dao committed
1227
1228
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tri Dao's avatar
Tri Dao committed
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt  = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M_SdP, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
1255
1256
    auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1257
1258
1259
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

Tri Dao's avatar
Tri Dao committed
1260
1261
    auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1262
1263
1264
1265
1266
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
Tri Dao's avatar
Tri Dao committed
1267
1268
    auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1269
1270
1271
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
1272
1273
    auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1274
1275
1276
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

Tri Dao's avatar
Tri Dao committed
1277
1278
    auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1279
1280
1281
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

Tri Dao's avatar
Tri Dao committed
1282
1283
    auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
    auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1284
1285
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

Tri Dao's avatar
Tri Dao committed
1286
1287
    auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
    auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

    //
    // PREDICATES
    //

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);

    // TODO: Might need to exit early and write 0 to gdQ.

    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1321
        gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1322
1323
    );
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1324
        gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1325
1326
1327
1328
    );

    Tensor tQrQ = make_fragment_like(tQgQ);
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1329
        gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
    );

    int n_block = n_block_max - 1;
    if (n_block % 2 == 1) {
        tKsK.data() = tKsK.data() + size(sK);
        tSsK.data() = tSsK.data() + size(sK);
        tdQsKt.data() = tdQsKt.data() + size(sK);
    }

    flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1340
        gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1341
1342
    );
    flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1343
        gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        const int row = get<0>(taccScS_row(mi));
        lse(mi) = row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : 0;
    }

    cute::cp_async_fence();

    Tensor dP_sum = make_fragment_like(lse);
Tri Dao's avatar
Tri Dao committed
1361
    cute::copy(tdOrdO, tdOsdO);
Tri Dao's avatar
Tri Dao committed
1362
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(
1363
        tdOrdO, tdOrO, sdPsum,
Tri Dao's avatar
Tri Dao committed
1364
1365
1366
1367
1368
1369
        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout
    );
    __syncthreads();
    #pragma unroll
    for (int mi = 0; mi < size(dP_sum); ++mi) { dP_sum(mi) = sdPsum(get<0>(taccScS_row(mi))); }

1370
1371
    auto seed = params.rng_state[0];
    auto offset = params.rng_state[1] + (bidb * params.h + bidh) * 32 + tidx % 32;
Tri Dao's avatar
Tri Dao committed
1372
1373
1374
1375
1376
1377
1378
1379
1380

    clear(acc_dq);

    for (; n_block >= 0; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M_SdP, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

Tri Dao's avatar
Tri Dao committed
1381
1382
        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
1383
1384
1385
1386
1387
1388
1389
1390

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // We don't need to mask out the elements beyond actual_seqlen_k, because acc_s would
        // be some finite value for those indices. In the end when we multiply with K to get dQ,
        // the corresponding values of K would be 0, so the result would still be correct.
        if (Is_causal && m_block * kBlockM < (n_block + 1) * kBlockN) {
            flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
1391
                                     binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
Tri Dao's avatar
Tri Dao committed
1392
                                     // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
1393
                                     binfo.actual_seqlen_q,
Tri Dao's avatar
Tri Dao committed
1394
1395
1396
1397
1398
                                     AtomLayoutMS * 16);
        }
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
1399
1400
            int warp_id = tidx / 32;
            int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
Tri Dao's avatar
Tri Dao committed
1401
1402
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
1403
            int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
Tri Dao's avatar
Tri Dao committed
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
            Tensor scores_dropped = make_tensor(scores.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(scores.layout()));
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores_dropped, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1418
        cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
Tri Dao's avatar
Tri Dao committed
1419
1420
1421
1422
1423
1424
1425

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
Tri Dao's avatar
Tri Dao committed
1426
1427
        flash::gemm(acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1446
        cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
Tri Dao's avatar
Tri Dao committed
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
        __syncthreads();

        if (n_block > 0) {
            // Double buffer for sK
            const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
            tKsK.data() = tKsK.data() + sK_offset;
            tSsK.data() = tSsK.data() + sK_offset;
            // Advance gK, gV
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
1457
1458
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
1459
1460
1461
1462
1463
1464
1465
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        clear(acc_dv);
Tri Dao's avatar
Tri Dao committed
1466
1467
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1468
1469
1470
1471
1472
1473
1474
1475
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(acc_dv); }
        tdVgdVaccum.data() = tdVgdVaccum.data() + (-int(kBlockN * params.d_rounded));
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { atomicAdd(&tdVgdVaccum(i), acc_dv(i)); }

        __syncthreads();
        Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        clear(acc_dk);
Tri Dao's avatar
Tri Dao committed
1476
1477
        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1478
1479
1480
1481
        tdKgdKaccum.data() = tdKgdKaccum.data() + (-int(kBlockN * params.d_rounded));
        #pragma unroll
        for (int i = 0; i < size(acc_dk); ++i) { atomicAdd(&tdKgdKaccum(i), acc_dk(i)); }

Tri Dao's avatar
Tri Dao committed
1482
1483
        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
                    smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
Tri Dao's avatar
Tri Dao committed
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
        // Double buffer for sK
        tdQsKt.data() = tdQsKt.data() + (n_block % 2 == 0 ? size(sK) : -size(sK));

    }

    // Epilogue

    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);

    Tensor sdQ = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutdQ{});

    // Partition sdV and sdK to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1499
1500
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1501
1502
1503
1504
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    __syncthreads();
Tri Dao's avatar
Tri Dao committed
1505
    cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
1506
1507
1508
1509
1510
1511
1512

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));

Tri Dao's avatar
Tri Dao committed
1513
1514
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1515
1516
1517
1518
1519
1520
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);

    __syncthreads();

    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
1521
    cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1532
        gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_M, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.x;
    // const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.y;
    // const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    if (n_block_max == 1) {
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
    } else {
        // Iterating backward from n_block_max - 1 to 0 might save 1 register
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
        for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
            compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
        }
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

Tri Dao's avatar
Tri Dao committed
1565
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Is_even_MN, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1566
1567
1568
1569
1570
1571
1572
1573
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

Tri Dao's avatar
Tri Dao committed
1574
    compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
Tri Dao's avatar
Tri Dao committed
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_seqq_parallel(const Params &params) {

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    compute_dq_dk_dv_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_even_N, Is_even_K>(params, bidb, bidh, m_block);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash