flash_bwd_kernel.h 84.1 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
/***************************************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>
#include <cute/algorithm/gemm.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>
#include <cutlass/numeric_conversion.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"
#include "philox.cuh"

namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    // This gives the correct layout, idk why.
    // auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
    //                           Stride<Stride<_1, _64>, _8> >{},
    // auto t = make_tile(Layout<Shape<_8, _2, _2>,
    //                           Stride<_1, _64, _8> >{},
    auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{},       // (1, 64, 8) or (1, 32, 8)
                       make_layout(size<2>(TileShape_MNK{})));
    // if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    auto t = make_tile(make_layout(size<0>(TileShape_MNK{})),
                       Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{});       // (1, 64, 8) or (1, 32, 8)
    // if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int THREADS_PER_ROW, typename Engine0, typename Layout0,
          typename Engine1, typename Layout1, typename Engine2, typename Layout2>
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
                                Tensor<Engine1, Layout1> &dP_sum, Tensor<Engine2, Layout2> &sdPsum,
                                const int gdP_col_stride, const float scale) {
    static_assert(Layout0::rank == 3, "Only support 3D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
    // Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
    // The last coordinate is the "page".
    Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
                                                             make_layout(get<0>(do_.layout()),
                                                                         get<2>(do_.layout()))));
    Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
    Tensor do_fp32 = flash::convert_type<float>(do_reshaped);
    Tensor o_fp32 = flash::convert_type<float>(o_reshaped);
    #pragma unroll
    for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
        float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
        #pragma unroll
        for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
            dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
        }
        flash::SumOp<float> sum_op;
        dP_sum_cur = flash::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
        if (threadIdx.x % THREADS_PER_ROW == 0) {
            dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
            // recast<float>(sdPsum)(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum;
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
inline __device__ void compute_dot_do_o(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_dq_accum = ((bidb * params.h + bidh) * params.seqlen_q_rounded + m_block * kBlockM) * params.d_rounded;
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded + m_block * kBlockM;

    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
144
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
    Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

    auto gmem_thr_copy_dO = typename Kernel_traits::GmemTiledCopydO{}.get_thread_slice(tidx);
    // TODO: careful, we're zeroing out dQaccum with type float4, but when
    // we do atomicAdds, we use type float. The layouts are different. Check this.
    auto gmem_thr_copy_dQ_accum = typename Kernel_traits::GmemTiledCopydQaccum{}.get_thread_slice(tidx);

    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tdQgdQaccum = gmem_thr_copy_dQ_accum.partition_D(gdQaccum);

    Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);

    // Allocate predicate tensors for k
    Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
    // Set predicates for k bounds
    #pragma unroll
    for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
    );
    // By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
    // results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
    // so that (dP - dP_sum) is on the same scale.
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum, dP_sum,
                                                Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    if (Clear_dQaccum) {
        Tensor zero = make_fragment_like(tdQgdQaccum);
        clear(zero);
        copy(gmem_thr_copy_dQ_accum, zero, tdQgdQaccum);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, typename Params>
inline __device__ void clear_dKVaccum(const Params &params) {
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;

    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});

    auto gmem_thr_copy_dKV_accum = typename Kernel_traits::GmemTiledCopydQaccum{}.get_thread_slice(tidx);
    Tensor tdKgdKaccum = gmem_thr_copy_dKV_accum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKV_accum.partition_D(gdVaccum);
    Tensor zero = make_fragment_like(tdKgdKaccum);
    clear(zero);
    copy(gmem_thr_copy_dKV_accum, zero, tdKgdKaccum);
    copy(gmem_thr_copy_dKV_accum, zero, tdVgdVaccum);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dQ from dQaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dQ(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
    const index_t row_offset_dq_accum = ((bidb * params.h + bidh) * params.seqlen_q_rounded
                                         + m_block * kBlockM) * params.d_rounded;

    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});

    Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdQ{});

    auto gmem_thr_copy_dQ = typename Kernel_traits::GmemTiledCopydQ{}.get_thread_slice(tidx);
    auto gmem_thr_copy_dQ_accum = typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd{}.get_thread_slice(tidx);

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto smem_thr_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
    Tensor tdQgdQaccum = gmem_thr_copy_dQ_accum.partition_S(gdQaccum);

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));

    Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
    copy(gmem_thr_copy_dQ_accum, tdQgdQaccum, tdQrdQaccum);
    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) {
        acc_dq(i) = tdQrdQaccum(i) * params.scale_softmax_rp_dropout;
    }
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
    copy(smem_thr_copy_dQ, taccdQrdQ, taccdQsdQ);
    __syncthreads();
    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
    copy(gmem_thr_copy_dQ, tdQsdQ, tdQrdQ);

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    #pragma unroll
    for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_thr_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_q.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dKV(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
        + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
        + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
                                          + n_block * kBlockN) * params.d_rounded;

    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});

    Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdKV{});
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

    auto gmem_thr_copy_dKV = typename Kernel_traits::GmemTiledCopydQ{}.get_thread_slice(tidx);
    auto gmem_thr_copy_dKV_accum = typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd{}.get_thread_slice(tidx);

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto smem_thr_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv).get_thread_slice(tidx);
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);  // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
    Tensor tdKgdKaccum = gmem_thr_copy_dKV_accum.partition_S(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKV_accum.partition_S(gdVaccum);

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
    CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));

    Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
    Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
    copy(gmem_thr_copy_dKV_accum, tdKgdKaccum, tdKrdKaccum);
    copy(gmem_thr_copy_dKV_accum, tdVgdVaccum, tdVrdVaccum);
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) {
        acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dv); ++i) {
        acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
    }
    // Convert acc_dk from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);  // ((Atom,AtomNum), MMA_N, MMA_N)
    copy(smem_thr_copy_dKV, taccdKrdK, taccdKsdK);
    copy(smem_thr_copy_dKV, taccdVrdV, taccdVsdV);
    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
    copy(gmem_thr_copy_dKV, tdKsdK, tdKrdK);
    copy(gmem_thr_copy_dKV, tdVsdV, tdVrdV);

    Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_thr_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_thr_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

418
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
Tri Dao's avatar
Tri Dao committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
    constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;

439
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
Tri Dao's avatar
Tri Dao committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
    if (n_block * kBlockN >= binfo.actual_seqlen_k || binfo.actual_seqlen_q == 0) return;

    int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
    const index_t row_offset_dq_accum = ((bidb * params.h + bidh) * params.seqlen_q_rounded
                                         + (m_block_max - 1) * kBlockM) * params.d_rounded;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q
        + (m_block_max - 1) * kBlockM;
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded
        + (m_block_max - 1) * kBlockM;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
477
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
    Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    // Double buffer for sQ
    Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
                             typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    // sP and sdQ share the same memory so be careful
    Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});
    Tensor sdPsum = make_tensor(make_smem_ptr(reinterpret_cast<float2 *>((sP.data() + cute::max(size(sP), size(sdQ))).get())),
                                Shape<Int<Kernel_traits::kSmemdPsumCount / 2>>{});

    auto gmem_thr_copy_QKV = typename Kernel_traits::GmemTiledCopyQKV{}.get_thread_slice(tidx);
    using GmemTiledCopydO = std::conditional_t<
        Is_first,
        typename Kernel_traits::GmemTiledCopydO,
        typename Kernel_traits::GmemTiledCopyQKV
    >;
    auto gmem_thr_copy_dO = GmemTiledCopydO{}.get_thread_slice(tidx);
    auto gmem_thr_copy_dQ = typename Kernel_traits::GmemTiledCopydQ{}.get_thread_slice(tidx);
    using GmemLayoutAtomdQaccum = std::conditional_t<
        !Seq_parallel,
        typename Kernel_traits::GmemTiledCopydQaccum,
        typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
    >;
    auto gmem_thr_copy_dQ_accum = GmemLayoutAtomdQaccum{}.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
    Tensor tdQgdQaccum = gmem_thr_copy_dQ_accum.partition_D(gdQaccum);
    // if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
    // __syncthreads();
    // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
    //     printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
    // }

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_thr_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

    // auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
    auto smem_thr_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    // if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
    // auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
    auto smem_thr_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    // if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
    // if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
    //     printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
    // }
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

    auto smem_thr_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv).get_thread_slice(tidx);
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

    auto smem_thr_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv).get_thread_slice(tidx);
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

    auto smem_thr_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

    auto smem_thr_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

    auto smem_thr_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    //
    // PREDICATES
    //

    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We'll advance gdQ and gdQaccum before the 1st read/write.
    tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
    tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.d_rounded;

    int m_block = m_block_max - 1;
    int m_block_min = !Is_causal ? 0 : (n_block * kBlockN) / kBlockM;

    // We might need to exit early and write 0 to dK and dV.
    // Otherwise we get wrong result for the case where we don't enter the for loop.
    // And we might read OOB elements from gQ and gdO.
    // TODO: what if we're not parallelizing, do we need to compute dot_do_o?
    if (Is_causal && m_block < m_block_min) {
        const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
          + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
        const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
          + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
        Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dk_row_stride, _1{}));
        Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dv_row_stride, _1{}));
        auto gmem_thr_copy_dKV = typename Kernel_traits::GmemTiledCopydKV{}.get_thread_slice(tidx);
        Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
        Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
        Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
        Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
        clear(tdKrdK);
        clear(tdVrdV);
        Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
        Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
        #pragma unroll
        for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
671
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
672
673
            gmem_thr_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
674
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
            gmem_thr_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        return;
    }

    if (Double_buffer && m_block % 2 == 1) {  // Double buffer for sQ
        tQsQ.data() = tQsQ.data() + size(sQ);
        tSsQ.data() = tSsQ.data() + size(sQ);
        tdKsQt.data() = tdKsQt.data() + size(sQ);
    }

    if (!Is_first && !Seq_parallel) { __syncthreads(); }

    if (Kernel_traits::Is_V_in_regs) {
        // Clear the smem tiles to account for predicated off loads
690
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
691
692
693
694
695
696
697
698
699
            gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        flash::cp_async_fence();
    }

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    if (!Is_first) {
        // Clear the smem tiles to account for predicated off loads
700
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
701
702
703
            gmem_thr_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
        );
    } else {
704
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
705
706
            gmem_thr_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
        );
707
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
708
709
710
            gmem_thr_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
        );
    }
711
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
712
713
714
715
716
717
718
719
720
721
722
723
724
        gmem_thr_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        // Using uint32_t row makes it 10us slower on d=128, not sure why.
        const int row = get<0>(taccScS_row(mi));
725
        lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : 0;
Tri Dao's avatar
Tri Dao committed
726
727
728
729
730
731
732
    }

    // Tensor tKrK = make_fragment_like(tKsK);
    // // copy(gmem_thr_copy_QKV, tKgK(_, _, _, 0), tKrK);
    // copy(gmem_thr_copy_QKV, tKgK, tKrK);
    // // if (cute::thread(1, 0)) { print(tKrK); }

733
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
734
735
736
        gmem_thr_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
    if (!Kernel_traits::Is_V_in_regs) {
737
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
            gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
    }
    flash::cp_async_fence();

    // if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
    if (Is_first) {
        copy(tdOrdO, tdOsdO);
        dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum, sdPsum,
                                                    Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    }

    if (Kernel_traits::Is_V_in_regs) {
        cute::cp_async_wait<1>();
        __syncthreads();
        Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
        CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view));            // M
        copy(smem_thr_copy_KV, tdPsV, tdPrV_copy_view);
    }

758
759
    auto seed = params.rng_state[0];
    auto offset = params.rng_state[1] + (bidb * params.h + bidh) * 32 + tidx % 32;
Tri Dao's avatar
Tri Dao committed
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785

    clear(acc_dv);
    clear(acc_dk);

    for (; m_block >= m_block_min; --m_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        clear(acc_s);
        cute::cp_async_wait<0>();
        __syncthreads();

        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }

        // if (cute::thread0()) { print(sK); }
        // Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
        // #pragma unroll
        // for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
        //     copy(smem_thr_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
        // }
        // if (cute::thread0()) { print(tSrK); }
        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp, smem_thr_copy_QdO, smem_thr_copy_KV);

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread(32, 0)) { print(scores); }
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
        // TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
        // actual_seqlen_k, because acc_s would be some finite value for those indices.
        // In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
        // so the result would still be correct.
        // However, it's possible that the values in acc_s are so large that they overflow
        // when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
        // So we need to mask out the elements beyond actual_seqlen_k.
        if (!Is_causal) {
            if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
                flash::apply_mask(scores, binfo.actual_seqlen_k,
                                  n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
            }
        } else {
            // Putting this causal masking right after acc_s is *much* slower for some reason.
            if (m_block * kBlockM < (n_block + 1) * kBlockN) {
                flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                         binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                         // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
                                         AtomLayoutMS * 16);
            }
Tri Dao's avatar
Tri Dao committed
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
        }
        // if (cute::thread(32, 0)) { print(scores); }
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
            uint32_t warp_id = tidx / 32;
            uint32_t block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
            uint32_t block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
            Tensor scores_dropped = make_tensor(scores.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(scores.layout()));
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores_dropped, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
        copy(smem_thr_copy_PdS, tPaP, tPsP);
        // if (cute::thread0()) { print(tPaP); }
        // __syncthreads();
        // if (cute::thread0()) { print(sP); }

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
        // Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout()));
        // #pragma unroll
        // for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
        //     #pragma unroll
        //     for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
        //         acc_dp_reshaped(mi, ni) = -dP_sum(mi);
        //     }
        // }

        // if (cute::thread0()) { print(dP_sum); }

        flash::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
            acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp, smem_thr_copy_QdO, smem_thr_copy_KV
        );

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }
        // if (cute::thread0()) { print(dS); }

        Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.d_rounded));
        if (Is_first || Seq_parallel) {
            clear(acc_dq);
        } else {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            copy(gmem_thr_copy_dQ_accum, tdQgdQaccum, acc_dq_reshaped);
        }

        if (Double_buffer && m_block > m_block_min) {
            // Double buffer for sQ
            const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
            tQsQ.data() = tQsQ.data() + sQ_offset;
            tSsQ.data() = tSsQ.data() + sQ_offset;
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
            flash::cp_async_fence();
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        // if (cute::thread0()) { print(tPrP); }
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
        copy(smem_thr_copy_PdS, tdSadS, tdSsdS);
        __syncthreads();

        // Layout p_l = tPrP.layout();
        // Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
        // flash::gemm_A_in_regs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
        // Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
        // flash::gemm_A_in_regs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
        // if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
        // if (cute::thread0()) { print(acc_dv); }

        __syncthreads(); // Need syncthreads since we're writing to the same sdO location

        if (m_block > m_block_min) {
            // Advance gdO
            tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
            if (Is_first) {
                tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
            } else {
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
                flash::cp_async_fence();
            }
        }

        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq, smem_thr_copy_dS, smem_thr_copy_Kt);
        // if (cute::thread0()) { print(acc_dq); }

        if (m_block > m_block_min) {
            gLSE.data() = gLSE.data() + (-int(kBlockM));
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
            gdPsum.data() = gdPsum.data() + (-int(kBlockM));
            // if (!Is_first && tidx < kBlockM / 2) {
            //     sdPsum(tidx) = recast<float2>(gdPsum)(tidx);
            // if (!Is_first && tidx < kBlockM) {
            //     recast<float>(sdPsum)(tidx) = gdPsum(tidx);
            // }
        }

        if (!Is_last) {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            if (!Seq_parallel) {
                copy(gmem_thr_copy_dQ_accum, acc_dq_reshaped, tdQgdQaccum);
            } else {
                // if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
                CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
                #pragma unroll
                for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
            }
        } else {
            #pragma unroll
            for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
            // Convert acc_dq from fp32 to fp16
            Tensor rdQ = flash::convert_type<Element>(acc_dq);
            Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
            copy(smem_thr_copy_dQ, taccdQrdQ, taccdQsdQ);
        }

        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
        // if (cute::thread0()) { print(acc_dk); }
        if (Double_buffer) {  // Double buffer for sQ
            tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
        }
        if (!Double_buffer && m_block > m_block_min) {
            __syncthreads();
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
            flash::cp_async_fence();
        }

        if (Is_first && m_block > m_block_min) {
            copy(tdOrdO, tdOsdO);
            dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum, sdPsum,
                                                        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
        }

        if (Is_last) {
            __syncthreads();
            Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
            copy(gmem_thr_copy_dQ, tdQsdQ, tdQrdQ);
            tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
            Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
            Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
            #pragma unroll
            for (int m = 0; m < size<1>(tdQgdQ); ++m) {
992
                if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
Tri Dao's avatar
Tri Dao committed
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
                    copy(gmem_thr_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
                }
            }
        }

    }

    // Epilogue

    if (Is_dropout) {
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }

    // Convert acc_dv from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);

    Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{});  // (SMEM_N, SMEM_K)
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

    // Partition sdV and sdK to match the accumulator partitioning
    auto smem_thr_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv).get_thread_slice(tidx);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);   // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);    // ((Atom,AtomNum),PIPE_M,PIPE_N)

    // If we don't need syncthreads here since we're writing to the same location as sK and sV.
    // Unless Is_V_in_regs. If Is_last, there's already a __syncthreads() at the end of the loop.
    if (Kernel_traits::Is_V_in_regs && !Is_last) { __syncthreads(); }

    copy(smem_thr_copy_dKV, taccdKrdK, taccdKsdK);
    copy(smem_thr_copy_dKV, taccdVrdV, taccdVsdV);

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
       + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
       + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));

    auto gmem_thr_copy_dKV = typename Kernel_traits::GmemTiledCopydKV{}.get_thread_slice(tidx);
    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);

    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
    copy(gmem_thr_copy_dKV, tdKsdK, tdKrdK);
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
    copy(gmem_thr_copy_dKV, tdVsdV, tdVrdV);
    Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
1058
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1059
1060
        gmem_thr_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
1061
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
        gmem_thr_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
    );

}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;

    const BlockInfo</*Varlen=*/!Is_even_N> binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q || binfo.actual_seqlen_k == 0) return;

    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
    if (Is_causal) {
        n_block_max = std::min(n_block_max, cute::ceil_div((m_block + 1) * kBlockM, kBlockN));
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
1111
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
    // We'll advance gdKaccum and gdVaccum before the first write.
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + (bidh / params.h_h_k_ratio)) * params.seqlen_k_rounded
                                          + n_block_max * kBlockN) * params.d_rounded;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

    // We assume that params.d == kHeadDim for now
    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
1132
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sdO = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    // Double buffer for sK
    Tensor sV = make_tensor(sK.data() + 2 * size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(sV.data() + size(sV), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sdPsum = make_tensor(make_smem_ptr(reinterpret_cast<ElementAccum *>(sdS.data().get())),
                                Shape<Int<kBlockM>>{});

    auto gmem_thr_copy_QKV = typename Kernel_traits::GmemTiledCopyQKV{}.get_thread_slice(tidx);
    auto gmem_thr_copy_dO = typename Kernel_traits::GmemTiledCopydO{}.get_thread_slice(tidx);
    auto gmem_thr_copy_dKV_accum = typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd{}.get_thread_slice(tidx);

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tdKgdKaccum = gmem_thr_copy_dKV_accum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKV_accum.partition_D(gdVaccum);

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt  = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M_SdP, MMA_K

    //
    // Copy Atom retiling
    //

    auto smem_thr_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

    auto smem_thr_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
    auto smem_thr_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

    auto smem_thr_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv).get_thread_slice(tidx);
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

    auto smem_thr_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv).get_thread_slice(tidx);
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

    auto smem_thr_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

    auto smem_thr_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

    //
    // PREDICATES
    //

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);

    // TODO: Might need to exit early and write 0 to gdQ.

    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
    );
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
    );

    Tensor tQrQ = make_fragment_like(tQgQ);
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
    );

    int n_block = n_block_max - 1;
    if (n_block % 2 == 1) {
        tKsK.data() = tKsK.data() + size(sK);
        tSsK.data() = tSsK.data() + size(sK);
        tdQsKt.data() = tdQsKt.data() + size(sK);
    }

    flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
    );
    flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
        gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        // Using uint32_t row makes it 10us slower on d=128, not sure why.
        const int row = get<0>(taccScS_row(mi));
        lse(mi) = row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : 0;
    }

    cute::cp_async_fence();

    Tensor dP_sum = make_fragment_like(lse);
    copy(tdOrdO, tdOsdO);
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(
        tdOrdO, tdOrO, sdPsum, sdPsum,
        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout
    );
    __syncthreads();
    #pragma unroll
    for (int mi = 0; mi < size(dP_sum); ++mi) { dP_sum(mi) = sdPsum(get<0>(taccScS_row(mi))); }

1314
1315
    auto seed = params.rng_state[0];
    auto offset = params.rng_state[1] + (bidb * params.h + bidh) * 32 + tidx % 32;
Tri Dao's avatar
Tri Dao committed
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500

    clear(acc_dq);

    for (; n_block >= 0; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M_SdP, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp, smem_thr_copy_QdO, smem_thr_copy_KV);

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // We don't need to mask out the elements beyond actual_seqlen_k, because acc_s would
        // be some finite value for those indices. In the end when we multiply with K to get dQ,
        // the corresponding values of K would be 0, so the result would still be correct.
        if (Is_causal && m_block * kBlockM < (n_block + 1) * kBlockN) {
            flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                     binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                     // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
                                     AtomLayoutMS * 16);
        }
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
            uint32_t warp_id = tidx / 32;
            uint32_t block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
            uint32_t block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
            Tensor scores_dropped = make_tensor(scores.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(scores.layout()));
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores_dropped, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
        copy(smem_thr_copy_PdS, tPaP, tPsP);

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
        flash::gemm(acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp, smem_thr_copy_QdO, smem_thr_copy_KV);

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
        copy(smem_thr_copy_PdS, tdSadS, tdSsdS);
        __syncthreads();

        if (n_block > 0) {
            // Double buffer for sK
            const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
            tKsK.data() = tKsK.data() + sK_offset;
            tSsK.data() = tSsK.data() + sK_offset;
            // Advance gK, gV
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_thr_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        clear(acc_dv);
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(acc_dv); }
        tdVgdVaccum.data() = tdVgdVaccum.data() + (-int(kBlockN * params.d_rounded));
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { atomicAdd(&tdVgdVaccum(i), acc_dv(i)); }

        __syncthreads();
        Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        clear(acc_dk);
        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
        tdKgdKaccum.data() = tdKgdKaccum.data() + (-int(kBlockN * params.d_rounded));
        #pragma unroll
        for (int i = 0; i < size(acc_dk); ++i) { atomicAdd(&tdKgdKaccum(i), acc_dk(i)); }

        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq, smem_thr_copy_dS, smem_thr_copy_Kt);
        // Double buffer for sK
        tdQsKt.data() = tdQsKt.data() + (n_block % 2 == 0 ? size(sK) : -size(sK));

    }

    // Epilogue

    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);

    Tensor sdQ = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutdQ{});

    // Partition sdV and sdK to match the accumulator partitioning
    auto smem_thr_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq).get_thread_slice(tidx);
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    __syncthreads();
    copy(smem_thr_copy_dQ, taccdQrdQ, taccdQsdQ);

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));

    auto gmem_thr_copy_dQ = typename Kernel_traits::GmemTiledCopydQ{}.get_thread_slice(tidx);
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);

    __syncthreads();

    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
    copy(gmem_thr_copy_dQ, tdQsdQ, tdQrdQ);

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
        gmem_thr_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_M, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.x;
    // const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.y;
    // const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    if (n_block_max == 1) {
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
    } else {
        // Iterating backward from n_block_max - 1 to 0 might save 1 register
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
        for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
            compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
        }
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1501
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_MN, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1502
1503
1504
1505
1506
1507
1508
1509
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

1510
    compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
Tri Dao's avatar
Tri Dao committed
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_even_N, bool Is_even_K, typename Params>
inline __device__ void compute_dq_dk_dv_seqq_parallel(const Params &params) {

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

    compute_dq_dk_dv_1rowblock<Kernel_traits, Is_dropout, Is_causal, Is_even_N, Is_even_K>(params, bidb, bidh, m_block);
}

////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash