bert.py 32.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py

# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py

import logging
Tri Dao's avatar
Tri Dao committed
9
import re
Tri Dao's avatar
Tri Dao committed
10
from collections import OrderedDict
Tri Dao's avatar
Tri Dao committed
11
12
from collections.abc import Sequence
from functools import partial
Kevin Hu's avatar
Kevin Hu committed
13
from typing import Any, Mapping
Tri Dao's avatar
Tri Dao committed
14
15
16
17
18

import torch
import torch.nn as nn
import torch.nn.functional as F
from einops import rearrange
Kevin Hu's avatar
Kevin Hu committed
19
from transformers import BertConfig, PretrainedConfig
Tri Dao's avatar
Tri Dao committed
20
from transformers.models.bert.modeling_bert import (
Kevin Hu's avatar
Kevin Hu committed
21
22
23
24
25
    BaseModelOutputWithPoolingAndCrossAttentions, BertForPreTrainingOutput)

from flash_attn.bert_padding import (index_first_axis,
                                     index_first_axis_residual, pad_input,
                                     unpad_input)
Tri Dao's avatar
Tri Dao committed
26
27
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import BertEmbeddings
Tri Dao's avatar
Tri Dao committed
28
29
from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import FusedMLP, Mlp
30
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
31
32

try:
Tri Dao's avatar
Tri Dao committed
33
    from flash_attn.ops.fused_dense import FusedDense
Tri Dao's avatar
Tri Dao committed
34
except ImportError:
Tri Dao's avatar
Tri Dao committed
35
    FusedDense = None
Tri Dao's avatar
Tri Dao committed
36
37
38
39
40
41
42

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm
except ImportError:
    dropout_add_layer_norm, layer_norm = None, None

try:
43
    from flash_attn.losses.cross_entropy import CrossEntropyLoss
Tri Dao's avatar
Tri Dao committed
44
except ImportError:
45
    CrossEntropyLoss = None
Tri Dao's avatar
Tri Dao committed
46
47
48
49
50


logger = logging.getLogger(__name__)


51
def create_mixer_cls(config, cross_attn=False, return_residual=False):
Tri Dao's avatar
Tri Dao committed
52
53
    use_flash_attn = getattr(config, "use_flash_attn", False)
    fused_bias_fc = getattr(config, "fused_bias_fc", False)
54
55
56
57
58
59
    rotary_kwargs = {}
    if config.position_embedding_type == "rotary":
        rotary_kwargs["rotary_emb_dim"] = getattr(config, "rotary_emb_dim", config.hidden_size)
        rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
        rotary_kwargs["rotary_emb_scale_base"] = getattr(config, "rotary_emb_scale_base", None)
        rotary_kwargs["rotary_emb_interleaved"] = getattr(config, "rotary_emb_interleaved", False)
Tri Dao's avatar
Tri Dao committed
60
61
62
63
64
65
66
67
68
69
70
    mixer_cls = partial(
        MHA,
        num_heads=config.num_attention_heads,
        cross_attn=cross_attn,
        dropout=config.attention_probs_dropout_prob,
        causal=False,
        fused_bias_fc=fused_bias_fc,
        use_flash_attn=use_flash_attn,
        return_residual=return_residual,
        **rotary_kwargs,
    )
Tri Dao's avatar
Tri Dao committed
71
72
73
    return mixer_cls


74
def create_mlp_cls(config, layer_idx=None, return_residual=False):
Tri Dao's avatar
Tri Dao committed
75
    inner_dim = config.intermediate_size
Tri Dao's avatar
Tri Dao committed
76
    fused_mlp = getattr(config, "fused_mlp", False)
77
    if fused_mlp:
Tri Dao's avatar
Tri Dao committed
78
79
80
        assert config.hidden_act in ["gelu_new", "gelu_fast"], (
            "fused_mlp only " "supports approximate gelu"
        )
81
    if not fused_mlp:
Tri Dao's avatar
Tri Dao committed
82
83
84
85
86
87
88
        approximate = "tanh" if config.hidden_act in ["gelu_new", "gelu_fast"] else "none"
        mlp_cls = partial(
            Mlp,
            hidden_features=inner_dim,
            activation=partial(F.gelu, approximate=approximate),
            return_residual=return_residual,
        )
Tri Dao's avatar
Tri Dao committed
89
    else:
90
        if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
91
92
            raise ImportError("fused_dense is not installed")
        mlp_checkpoint_lvl = getattr(config, "mlp_checkpoint_lvl", 0)
Tri Dao's avatar
Tri Dao committed
93
94
95
96
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
Tri Dao's avatar
Tri Dao committed
97
98
99
100
101
102
        mlp_cls = partial(
            FusedMLP,
            hidden_features=inner_dim,
            checkpoint_lvl=mlp_checkpoint_lvl,
            return_residual=return_residual,
        )
Tri Dao's avatar
Tri Dao committed
103
104
105
106
    return mlp_cls


def create_block(config, layer_idx=None):
Tri Dao's avatar
Tri Dao committed
107
108
    last_layer_subset = getattr(config, "last_layer_subset", False)
    cross_attn = last_layer_subset and layer_idx == config.num_hidden_layers - 1
109
110
111
112
113
114
    # TD [2022-12-19]: For cross attention (last layer), we actually want to return the
    # residual x_kv, not residual x. But it's annoying to change the API (and it only affects
    # one layer) so we just choose not to return residual in this case.
    return_residual = not cross_attn
    mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
    mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
115
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
Tri Dao's avatar
Tri Dao committed
116
117
118
119
120
121
122
123
124
125
126
    block = Block(
        config.hidden_size,
        mixer_cls,
        mlp_cls,
        norm_cls=norm_cls,
        prenorm=False,
        resid_dropout1=config.hidden_dropout_prob,
        resid_dropout2=config.hidden_dropout_prob,
        fused_dropout_add_ln=getattr(config, "fused_dropout_add_ln", False),
        return_residual=return_residual,
    )
Tri Dao's avatar
Tri Dao committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    return block


# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.padding_idx is not None:
            nn.init.zeros_(module.weight[module.padding_idx])


class BertEncoder(nn.Module):
    def __init__(self, config: BertConfig):
        super().__init__()
Tri Dao's avatar
Tri Dao committed
145
146
147
148
        self.use_flash_attn = getattr(config, "use_flash_attn", False)
        self.layers = nn.ModuleList(
            [create_block(config, layer_idx=i) for i in range(config.num_hidden_layers)]
        )
Tri Dao's avatar
Tri Dao committed
149

150
151
152
153
154
    def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
        """If subset_mask is not None, we only want output for the subset of the sequence.
        This means that we only compute the last layer output for these tokens.
        subset_mask: (batch, seqlen), dtype=torch.bool
        """
Tri Dao's avatar
Tri Dao committed
155
        if key_padding_mask is None or not self.use_flash_attn:
Tri Dao's avatar
Tri Dao committed
156
157
158
            mixer_kwargs = (
                {"key_padding_mask": key_padding_mask} if key_padding_mask is not None else None
            )
Tri Dao's avatar
Tri Dao committed
159
160
            for layer in self.layers:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
161
162
            if subset_mask is not None:
                hidden_states = hidden_states[subset_mask]
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
        else:
            batch, seqlen = hidden_states.shape[:2]
            hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
                hidden_states, key_padding_mask
            )
Tri Dao's avatar
Tri Dao committed
168
            mixer_kwargs = {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen_in_batch}
169
170
171
172
173
174
175
176
            if subset_mask is None:
                for layer in self.layers:
                    hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
                hidden_states = pad_input(hidden_states, indices, batch, seqlen)
            else:
                for layer in self.layers[:-1]:
                    hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
                if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
177
178
179
                    subset_idx = torch.nonzero(
                        subset_mask[key_padding_mask], as_tuple=False
                    ).flatten()
180
                    subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
181
182
183
                    subset_cu_seqlens = F.pad(
                        torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
                    )
184
185
186
                else:
                    subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
                    subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
187
188
189
                    subset_cu_seqlens = F.pad(
                        torch.cumsum(subset_seqlens, dim=0, dtype=torch.torch.int32), (1, 0)
                    )
190
191
192
193
                hidden_states_subset, hidden_states = index_first_axis_residual(
                    hidden_states, subset_idx
                )
                # It's ok to set max_seqlen_q to be much larger
Tri Dao's avatar
Tri Dao committed
194
195
196
197
198
199
200
                mixer_kwargs = {
                    "x_kv": hidden_states,
                    "cu_seqlens": subset_cu_seqlens,
                    "max_seqlen": max_seqlen_in_batch,
                    "cu_seqlens_k": cu_seqlens,
                    "max_seqlen_k": max_seqlen_in_batch,
                }
201
                hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
Tri Dao's avatar
Tri Dao committed
202
203
204
205
206
207
        return hidden_states


class BertPooler(nn.Module):
    def __init__(self, config):
        super().__init__()
Tri Dao's avatar
Tri Dao committed
208
        fused_bias_fc = getattr(config, "fused_bias_fc", False)
Tri Dao's avatar
Tri Dao committed
209
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
210
            raise ImportError("fused_dense is not installed")
Tri Dao's avatar
Tri Dao committed
211
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states, pool=True):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
        super().__init__()
Tri Dao's avatar
Tri Dao committed
227
        fused_bias_fc = getattr(config, "fused_bias_fc", False)
Tri Dao's avatar
Tri Dao committed
228
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
229
230
            raise ImportError("fused_dense is not installed")
        self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
Tri Dao's avatar
Tri Dao committed
231
        if self.fused_dropout_add_ln and layer_norm is None:
Tri Dao's avatar
Tri Dao committed
232
            raise ImportError("dropout_add_layer_norm is not installed")
Tri Dao's avatar
Tri Dao committed
233
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
234
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
Tri Dao's avatar
Tri Dao committed
235
        approximate = "tanh" if config.hidden_act in ["gelu_new", "gelu_fast"] else "none"
236
        self.transform_act_fn = nn.GELU(approximate=approximate)
Tri Dao's avatar
Tri Dao committed
237
238
239
240
241
242
243
244
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        if not self.fused_dropout_add_ln:
            hidden_states = self.layer_norm(hidden_states)
        else:
Tri Dao's avatar
Tri Dao committed
245
246
247
            hidden_states = layer_norm(
                hidden_states, self.layer_norm.weight, self.layer_norm.bias, self.layer_norm.eps
            )
Tri Dao's avatar
Tri Dao committed
248
249
250
251
252
253
        return hidden_states


class BertLMPredictionHead(nn.Module):
    def __init__(self, config):
        super().__init__()
Tri Dao's avatar
Tri Dao committed
254
        fused_bias_fc = getattr(config, "fused_bias_fc", False)
Tri Dao's avatar
Tri Dao committed
255
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
256
            raise ImportError("fused_dense is not installed")
Tri Dao's avatar
Tri Dao committed
257
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class BertPreTrainedModel(nn.Module):
Tri Dao's avatar
Tri Dao committed
284
285
    """An abstract class to handle weights initialization and
    a simple interface for dowloading and loading pretrained models.
Tri Dao's avatar
Tri Dao committed
286
    """
Tri Dao's avatar
Tri Dao committed
287

Tri Dao's avatar
Tri Dao committed
288
289
290
291
292
293
294
295
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
Tri Dao's avatar
Tri Dao committed
296
297
                )
            )
Tri Dao's avatar
Tri Dao committed
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config, *inputs, **kwargs):
        """
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
Tri Dao's avatar
Tri Dao committed
319
320
321
        load_return = model.load_state_dict(
            remap_state_dict(state_dict_from_pretrained(model_name), config), strict=False
        )
Tri Dao's avatar
Tri Dao committed
322
323
324
325
326
327
328
        logger.info(load_return)
        return model


class BertModel(BertPreTrainedModel):
    def __init__(self, config: BertConfig, add_pooling_layer=True):
        super().__init__(config)
Tri Dao's avatar
Tri Dao committed
329
        self.pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
Tri Dao's avatar
Tri Dao committed
330
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
Tri Dao's avatar
Tri Dao committed
331
332
333
334
            config.vocab_size += self.pad_vocab_size_multiple - (
                config.vocab_size % self.pad_vocab_size_multiple
            )
        self.fused_dropout_add_ln = getattr(config, "fused_dropout_add_ln", False)
335
        if self.fused_dropout_add_ln and layer_norm is None:
Tri Dao's avatar
Tri Dao committed
336
337
338
339
340
341
342
343
344
345
            raise ImportError("dropout_add_layer_norm is not installed")
        assert config.hidden_act in ["gelu", "gelu_new", "gelu_fast"]

        self.embeddings = BertEmbeddings(
            config.hidden_size,
            config.vocab_size,
            config.max_position_embeddings,
            config.type_vocab_size,
            padding_idx=config.pad_token_id,
        )
Tri Dao's avatar
Tri Dao committed
346
347
348
349
350
351
352
        self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
        self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

Tri Dao's avatar
Tri Dao committed
353
354
355
356
357
358
359
360
    def forward(
        self,
        input_ids,
        position_ids=None,
        token_type_ids=None,
        attention_mask=None,
        masked_tokens_mask=None,
    ):
361
362
363
364
365
        """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
        we only want the output for the masked tokens. This means that we only compute the last
        layer output for these tokens.
        masked_tokens_mask: (batch, seqlen), dtype=torch.bool
        """
Tri Dao's avatar
Tri Dao committed
366
367
368
        hidden_states = self.embeddings(
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids
        )
Tri Dao's avatar
Tri Dao committed
369
        # TD [2022-12:18]: Don't need to force residual in fp32
370
        # BERT puts embedding LayerNorm before embedding dropout.
Tri Dao's avatar
Tri Dao committed
371
372
373
        if not self.fused_dropout_add_ln:
            hidden_states = self.emb_ln(hidden_states)
        else:
Tri Dao's avatar
Tri Dao committed
374
375
376
            hidden_states = layer_norm(
                hidden_states, self.emb_ln.weight, self.emb_ln.bias, self.emb_ln.eps
            )
377
        hidden_states = self.emb_drop(hidden_states)
378
379
380
381

        if masked_tokens_mask is not None:
            batch_size, seqlen = input_ids.shape[:2]
            # We also need the first column for the CLS token
Tri Dao's avatar
Tri Dao committed
382
383
384
            first_col_mask = torch.zeros(
                batch_size, seqlen, dtype=torch.bool, device=input_ids.device
            )
385
386
387
388
389
            first_col_mask[:, 0] = True
            subset_mask = masked_tokens_mask | first_col_mask
        else:
            subset_mask = None

Tri Dao's avatar
Tri Dao committed
390
391
392
        sequence_output = self.encoder(
            hidden_states, key_padding_mask=attention_mask, subset_mask=subset_mask
        )
393
394
395
396
397
398
399
400
401
402
403
404

        if masked_tokens_mask is None:
            pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
        else:
            # TD [2022-03-01]: the indexing here is very tricky.
            if attention_mask is not None:
                subset_idx = subset_mask[attention_mask]
                pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
                sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
            else:
                pool_input = sequence_output[first_col_mask[subset_mask]]
                sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
Tri Dao's avatar
Tri Dao committed
405
            pooled_output = self.pooler(pool_input, pool=False) if self.pooler is not None else None
406
407
408
409
410

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
        )
Tri Dao's avatar
Tri Dao committed
411
412
413
414
415
416
417


class BertForPreTraining(BertPreTrainedModel):
    def __init__(self, config: BertConfig):
        super().__init__(config)
        # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
        # (around 15%) to the classifier heads.
Tri Dao's avatar
Tri Dao committed
418
        self.dense_seq_output = getattr(config, "dense_seq_output", False)
Tri Dao's avatar
Tri Dao committed
419
420
        # If last_layer_subset, we only need the compute the last layer for a subset of tokens
        # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
Tri Dao's avatar
Tri Dao committed
421
        self.last_layer_subset = getattr(config, "last_layer_subset", False)
422
        if self.last_layer_subset:
Tri Dao's avatar
Tri Dao committed
423
424
            assert self.dense_seq_output, "last_layer_subset requires dense_seq_output"
        use_xentropy = getattr(config, "use_xentropy", False)
425
        if use_xentropy and CrossEntropyLoss is None:
Tri Dao's avatar
Tri Dao committed
426
427
428
429
430
431
            raise ImportError("xentropy_cuda is not installed")
        loss_cls = (
            nn.CrossEntropyLoss
            if not use_xentropy
            else partial(CrossEntropyLoss, inplace_backward=True)
        )
Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
438
439
440
441
442
443
444

        self.bert = BertModel(config)
        self.cls = BertPreTrainingHeads(config)
        self.mlm_loss = loss_cls(ignore_index=0)
        self.nsp_loss = loss_cls(ignore_index=-1)

        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
        self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight

Tri Dao's avatar
Tri Dao committed
445
446
447
448
449
450
451
452
453
    def forward(
        self,
        input_ids,
        position_ids=None,
        token_type_ids=None,
        attention_mask=None,
        labels=None,
        next_sentence_label=None,
    ):
Tri Dao's avatar
Tri Dao committed
454
        """
455
456
        If labels are provided, they must be 0 for masked out tokens (as specified in the attention
        mask).
Tri Dao's avatar
Tri Dao committed
457
458
459
460
461
462
463
464
465
466
467
        Outputs:
            if `labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        """
        masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
468
        outputs = self.bert(
Tri Dao's avatar
Tri Dao committed
469
470
471
            input_ids,
            position_ids=position_ids,
            token_type_ids=token_type_ids,
472
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
Tri Dao's avatar
Tri Dao committed
473
            masked_tokens_mask=masked_tokens_mask,
Tri Dao's avatar
Tri Dao committed
474
        )
475
        sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
Tri Dao's avatar
Tri Dao committed
476
477
478
        if self.dense_seq_output and labels is not None:
            masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
            if not self.last_layer_subset:
Tri Dao's avatar
Tri Dao committed
479
480
481
                sequence_output = index_first_axis(
                    rearrange(sequence_output, "b s d -> (b s) d"), masked_token_idx
                )
Tri Dao's avatar
Tri Dao committed
482
483
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

484
        total_loss = None
Tri Dao's avatar
Tri Dao committed
485
        if labels is not None and next_sentence_label is not None:
Tri Dao's avatar
Tri Dao committed
486
487
488
489
490
491
            if (
                self.dense_seq_output and labels is not None
            ):  # prediction_scores are already flattened
                masked_lm_loss = self.mlm_loss(
                    prediction_scores, labels.flatten()[masked_token_idx]
                )
Tri Dao's avatar
Tri Dao committed
492
            else:
Tri Dao's avatar
Tri Dao committed
493
494
495
496
497
498
499
500
                masked_lm_loss = self.mlm_loss(
                    rearrange(prediction_scores, "... v -> (...) v"),
                    rearrange(labels, "... -> (...)"),
                )
            next_sentence_loss = self.nsp_loss(
                rearrange(seq_relationship_score, "... t -> (...) t"),
                rearrange(next_sentence_label, "... -> (...)"),
            )
501
            total_loss = masked_lm_loss.float() + next_sentence_loss.float()
Tri Dao's avatar
Tri Dao committed
502

503
504
505
506
507
        return BertForPreTrainingOutput(
            loss=total_loss,
            prediction_logits=prediction_scores,
            seq_relationship_logits=seq_relationship_score,
        )
Tri Dao's avatar
Tri Dao committed
508
509


Kevin Hu's avatar
Kevin Hu committed
510
511
512
513
514
def remap_state_dict(state_dict, config: PretrainedConfig):
    """
    Map the state_dict of a Huggingface BERT model to be flash_attn compatible.
    """

Tri Dao's avatar
Tri Dao committed
515
516
    # LayerNorm
    def key_mapping_ln_gamma_beta(key):
Tri Dao's avatar
Tri Dao committed
517
518
        key = re.sub(r"LayerNorm.gamma$", "LayerNorm.weight", key)
        key = re.sub(r"LayerNorm.beta$", "LayerNorm.bias", key)
Tri Dao's avatar
Tri Dao committed
519
        return key
Tri Dao's avatar
Tri Dao committed
520

Tri Dao's avatar
Tri Dao committed
521
522
523
524
    state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())

    # Layers
    def key_mapping_layers(key):
Tri Dao's avatar
Tri Dao committed
525
526
        return re.sub(r"^bert.encoder.layer.", "bert.encoder.layers.", key)

Tri Dao's avatar
Tri Dao committed
527
528
529
530
    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
Tri Dao's avatar
Tri Dao committed
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
        key = re.sub(r"^bert.embeddings.LayerNorm.", "bert.emb_ln.", key)
        key = re.sub(
            r"^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)",
            r"bert.encoder.layers.\1.norm1.\2",
            key,
        )
        key = re.sub(
            r"^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)",
            r"bert.encoder.layers.\1.norm2.\2",
            key,
        )
        key = re.sub(
            r"^cls.predictions.transform.LayerNorm.(weight|bias)",
            r"cls.predictions.transform.layer_norm.\1",
            key,
        )
Tri Dao's avatar
Tri Dao committed
547
        return key
Tri Dao's avatar
Tri Dao committed
548

Tri Dao's avatar
Tri Dao committed
549
550
551
552
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
Tri Dao's avatar
Tri Dao committed
553
554
555
556
557
558
559
560
561
562
        key = re.sub(
            r"^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mlp.fc1.\2",
            key,
        )
        key = re.sub(
            r"^bert.encoder.layers.(\d+).output.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mlp.fc2.\2",
            key,
        )
Tri Dao's avatar
Tri Dao committed
563
        return key
Tri Dao's avatar
Tri Dao committed
564

Tri Dao's avatar
Tri Dao committed
565
566
567
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
Tri Dao's avatar
Tri Dao committed
568
    last_layer_subset = getattr(config, "last_layer_subset", False)
Tri Dao's avatar
Tri Dao committed
569
    for d in range(config.num_hidden_layers):
Tri Dao's avatar
Tri Dao committed
570
571
572
573
574
575
        Wq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.weight")
        Wk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.weight")
        Wv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.weight")
        bq = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.query.bias")
        bk = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.key.bias")
        bv = state_dict.pop(f"bert.encoder.layers.{d}.attention.self.value.bias")
576
        if not (last_layer_subset and d == config.num_hidden_layers - 1):
Tri Dao's avatar
Tri Dao committed
577
            state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.weight"] = torch.cat(
578
579
                [Wq, Wk, Wv], dim=0
            )
Tri Dao's avatar
Tri Dao committed
580
            state_dict[f"bert.encoder.layers.{d}.mixer.Wqkv.bias"] = torch.cat([bq, bk, bv], dim=0)
581
        else:
Tri Dao's avatar
Tri Dao committed
582
583
584
585
586
            state_dict[f"bert.encoder.layers.{d}.mixer.Wq.weight"] = Wq
            state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.weight"] = torch.cat([Wk, Wv], dim=0)
            state_dict[f"bert.encoder.layers.{d}.mixer.Wq.bias"] = bq
            state_dict[f"bert.encoder.layers.{d}.mixer.Wkv.bias"] = torch.cat([bk, bv], dim=0)

Tri Dao's avatar
Tri Dao committed
587
    def key_mapping_attn(key):
Tri Dao's avatar
Tri Dao committed
588
589
590
591
592
593
        return re.sub(
            r"^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)",
            r"bert.encoder.layers.\1.mixer.out_proj.\2",
            key,
        )

Tri Dao's avatar
Tri Dao committed
594
595
596
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    def key_mapping_decoder_bias(key):
Tri Dao's avatar
Tri Dao committed
597
598
        return re.sub(r"^cls.predictions.bias", "cls.predictions.decoder.bias", key)

Tri Dao's avatar
Tri Dao committed
599
600
    state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())

601
    # Word embedding
Tri Dao's avatar
Tri Dao committed
602
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
603
    if pad_vocab_size_multiple > 1:
Tri Dao's avatar
Tri Dao committed
604
605
        word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
        state_dict["bert.embeddings.word_embeddings.weight"] = F.pad(
606
607
            word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
        )
Tri Dao's avatar
Tri Dao committed
608
609
        decoder_weight = state_dict["cls.predictions.decoder.weight"]
        state_dict["cls.predictions.decoder.weight"] = F.pad(
610
611
612
613
614
            decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
        )
        # If the vocab was padded, we want to set the decoder bias for those padded indices to be
        # strongly negative (i.e. the decoder shouldn't predict those indices).
        # TD [2022-05-09]: I don't think it affects the MLPerf training.
Tri Dao's avatar
Tri Dao committed
615
616
        decoder_bias = state_dict["cls.predictions.decoder.bias"]
        state_dict["cls.predictions.decoder.bias"] = F.pad(
617
618
619
            decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
        )

Tri Dao's avatar
Tri Dao committed
620
    return state_dict
Kevin Hu's avatar
Kevin Hu committed
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750


def inv_remap_state_dict(state_dict, config: PretrainedConfig):
    """
    Map the state_dict of a flash_attn model to be Huggingface BERT compatible.

    This function is meant to be the inverse of remap_state_dict.
    """
    # Word embedding
    pad_vocab_size_multiple = getattr(config, "pad_vocab_size_multiple", 1)
    if pad_vocab_size_multiple > 1:
        word_embeddings = state_dict["bert.embeddings.word_embeddings.weight"]
        decoder_weight = state_dict["cls.predictions.decoder.weight"]
        decoder_bias = state_dict["cls.predictions.decoder.bias"]
        # unpad embeddings
        state_dict["bert.embeddings.word_embeddings.weight"] = word_embeddings[
            : config.orig_vocab_size, :
        ]
        state_dict["cls.predictions.decoder.weight"] = decoder_weight[: config.orig_vocab_size, :]
        state_dict["cls.predictions.decoder.bias"] = decoder_bias[: config.orig_vocab_size]

    for d in range(config.num_hidden_layers):
        last_layer_subset = getattr(config, "last_layer_subset", False)
        if not last_layer_subset or d != (config.num_hidden_layers - 1):
            Wqkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.weight")
            Wqkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wqkv.bias")
            state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wqkv_weights[
                : Wqkv_weights.shape[0] // 3, :
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wqkv_weights[
                Wqkv_weights.shape[0] // 3 : 2 * Wqkv_weights.shape[0] // 3, :
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wqkv_weights[
                2 * Wqkv_weights.shape[0] // 3 :, :
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wqkv_biases[
                : Wqkv_biases.shape[0] // 3
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wqkv_biases[
                Wqkv_biases.shape[0] // 3 : 2 * Wqkv_biases.shape[0] // 3
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wqkv_biases[
                2 * Wqkv_biases.shape[0] // 3 :
            ]
        else:
            Wq_weight = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.weight")
            Wkv_weights = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.weight")
            Wq_bias = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wq.bias")
            Wkv_biases = state_dict.pop(f"bert.encoder.layers.{d}.mixer.Wkv.bias")
            state_dict[f"bert.encoder.layers.{d}.attention.self.query.weight"] = Wq_weight
            state_dict[f"bert.encoder.layers.{d}.attention.self.key.weight"] = Wkv_weights[
                : Wkv_weights.shape[0] // 2, :
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.value.weight"] = Wkv_weights[
                Wkv_weights.shape[0] // 2 :, :
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.query.bias"] = Wq_bias
            state_dict[f"bert.encoder.layers.{d}.attention.self.key.bias"] = Wkv_biases[
                : Wkv_biases.shape[0] // 2
            ]
            state_dict[f"bert.encoder.layers.{d}.attention.self.value.bias"] = Wkv_biases[
                Wkv_biases.shape[0] // 2 :
            ]

    def inv_key_mapping_ln(key):
        key = re.sub(r"bert.emb_ln.", "bert.embeddings.LayerNorm.", key)
        key = re.sub(
            r"bert.encoder.layers.(\d+).norm1.(weight|bias)",
            r"bert.encoder.layers.\1.attention.output.LayerNorm.\2",
            key,
        )
        key = re.sub(
            r"bert.encoder.layers.(\d+).norm2.(weight|bias)",
            r"bert.encoder.layers.\1.output.LayerNorm.\2",
            key,
        )
        key = re.sub(
            r"cls.predictions.transform.layer_norm.(weight|bias)",
            r"cls.predictions.transform.LayerNorm.\1",
            key,
        )
        return key

    def inv_key_mapping_ln_gamma_beta(key):
        key = re.sub(r"LayerNorm.weight$", "LayerNorm.gamma", key)
        key = re.sub(r"LayerNorm.bias$", "LayerNorm.beta", key)
        return key

    def inv_key_mapping_layers(key):
        return re.sub(r"bert.encoder.layers.", "bert.encoder.layer.", key)

    def inv_key_mapping_mlp(key):
        key = re.sub(
            r"bert.encoder.layer.(\d+).mlp.fc1.(weight|bias)",
            r"bert.encoder.layer.\1.intermediate.dense.\2",
            key,
        )
        key = re.sub(
            r"bert.encoder.layer.(\d+).mlp.fc2.(weight|bias)",
            r"bert.encoder.layer.\1.output.dense.\2",
            key,
        )
        return key

    def inv_key_mapping_attn(key):
        return re.sub(
            r"bert.encoder.layer.(\d+).mixer.out_proj.(weight|bias)",
            r"bert.encoder.layer.\1.attention.output.dense.\2",
            key,
        )

    def inv_key_mapping_decoder_bias(key):
        return re.sub(r"cls.predictions.decoder.bias", "cls.predictions.bias", key)

    state_dict = OrderedDict((inv_key_mapping_ln(key), value) for key, value in state_dict.items())
    state_dict = OrderedDict(
        (inv_key_mapping_ln_gamma_beta(key), value) for key, value in state_dict.items()
    )
    state_dict = OrderedDict(
        (inv_key_mapping_layers(key), value) for key, value in state_dict.items()
    )
    state_dict = OrderedDict((inv_key_mapping_mlp(key), value) for key, value in state_dict.items())
    state_dict = OrderedDict(
        (inv_key_mapping_attn(key), value) for key, value in state_dict.items()
    )
    state_dict = OrderedDict(
        (inv_key_mapping_decoder_bias(key), value) for key, value in state_dict.items()
    )

    return state_dict