bert.py 19.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py

# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py

import re
import logging
from functools import partial

from collections.abc import Sequence
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import BertConfig

from einops import rearrange

from flash_attn.modules.mha import MHA
from flash_attn.modules.mlp import Mlp, FusedDenseGeluDense
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import BertEmbeddings
from flash_attn.bert_padding import unpad_input, pad_input, index_first_axis

try:
    from flash_attn.ops.fused_dense import FusedDenseTD
except ImportError:
    FusedDenseTD = None

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm
except ImportError:
    dropout_add_layer_norm, layer_norm = None, None

try:
    from flash_attn.losses.cross_entropy_apex import CrossEntropyLossApex
except ImportError:
    CrossEntropyLossApex = None


logger = logging.getLogger(__name__)


def create_mixer_cls(config):
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
    mixer_cls = partial(MHA, num_heads=config.num_attention_heads,
                        dropout=config.attention_probs_dropout_prob, causal=False,
                        fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn)
    return mixer_cls


def create_mlp_cls(config, layer_idx=None):
    inner_dim = config.intermediate_size
    fused_dense_gelu_dense = getattr(config, 'fused_dense_gelu_dense', False)
    if not fused_dense_gelu_dense:
        mlp_cls = partial(Mlp, hidden_features=inner_dim,
                          activation=partial(F.gelu, approximate='tanh'))
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
        mlp_cls = partial(FusedDenseGeluDense, hidden_features=inner_dim,
                          checkpoint_lvl=mlp_checkpoint_lvl)
    return mlp_cls


def create_block(config, layer_idx=None):
    mixer_cls = create_mixer_cls(config)
    mlp_cls = create_mlp_cls(config, layer_idx)
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
    block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
                  prenorm=False, resid_dropout=config.hidden_dropout_prob,
                  fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False))
    return block


# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.padding_idx is not None:
            nn.init.zeros_(module.weight[module.padding_idx])


class BertEncoder(nn.Module):

    def __init__(self, config: BertConfig):
        super().__init__()
        self.use_flash_attn = getattr(config, 'use_flash_attn', False)
        self.layers = nn.ModuleList([create_block(config, layer_idx=i)
                                     for i in range(config.num_hidden_layers)])

    def forward(self, hidden_states, key_padding_mask=None):
        if key_padding_mask is None or not self.use_flash_attn:
            mixer_kwargs = ({'key_padding_mask': key_padding_mask}
                            if key_padding_mask is not None else None)
            for layer in self.layers:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        else:
            batch, seqlen = hidden_states.shape[:2]
            hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
                hidden_states, key_padding_mask
            )
            mixer_kwargs = {'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen_in_batch}
            for layer in self.layers:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
            hidden_states = pad_input(hidden_states, indices, batch, seqlen)
        return hidden_states


class BertPooler(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
        if fused_bias_fc and FusedDenseTD is None:
            raise ImportError('fused_dense is not installed')
        linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states, pool=True):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
        if fused_bias_fc and FusedDenseTD is None:
            raise ImportError('fused_dense is not installed')
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
        linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
        self.transform_act_fn = nn.GELU(approximate='tanh')
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        if not self.fused_dropout_add_ln:
            hidden_states = self.layer_norm(hidden_states)
        else:
            hidden_states = layer_norm(hidden_states, self.layer_norm.weight, self.layer_norm.bias,
                                       self.layer_norm.eps)
        return hidden_states


class BertLMPredictionHead(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
        if fused_bias_fc and FusedDenseTD is None:
            raise ImportError('fused_dense is not installed')
        linear_cls = nn.Linear if not fused_bias_fc else FusedDenseTD

        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class BertPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config, *inputs, **kwargs):
        """
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        load_return = model.load_state_dict(remap_state_dict(state_dict_from_pretrained(model_name),
                                                             config), strict=False)
        logger.info(load_return)
        return model


class BertModel(BertPreTrainedModel):

    def __init__(self, config: BertConfig, add_pooling_layer=True):
        super().__init__(config)
        self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
            config.vocab_size += (self.pad_vocab_size_multiple
                                  - (config.vocab_size % self.pad_vocab_size_multiple))
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and dropout_add_layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
        assert config.position_embedding_type == 'absolute'
        assert config.hidden_act in ['gelu', 'gelu_new', 'gelu_fast']

        self.embeddings = BertEmbeddings(config.hidden_size, config.vocab_size,
                                         config.max_position_embeddings, config.type_vocab_size,
                                         padding_idx=config.pad_token_id)
        self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
        self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

    def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
                masked_tokens_mask=None):
        hidden_states = self.embeddings(input_ids, position_ids=position_ids,
                                        token_type_ids=token_type_ids)
        # TD [2022-12:18]: Don't need to force residual in fp32
        if not self.fused_dropout_add_ln:
            hidden_states = self.emb_drop(hidden_states)
            hidden_states = self.emb_ln(hidden_states)
        else:
            hidden_states = dropout_add_layer_norm(
                hidden_states, None, self.emb_ln.weight, self.emb_ln.bias,
                self.emb_drop.p if self.training else 0.0, self.emb_ln.eps, prenorm=False,
            )
        sequence_output = self.encoder(hidden_states, key_padding_mask=attention_mask)
        pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
        return sequence_output, pooled_output


class BertForPreTraining(BertPreTrainedModel):

    def __init__(self, config: BertConfig):
        super().__init__(config)
        # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
        # (around 15%) to the classifier heads.
        self.dense_seq_output = getattr(config, 'dense_seq_output', False)
        # If last_layer_subset, we only need the compute the last layer for a subset of tokens
        # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
        self.last_layer_subset = getattr(config, 'last_layer_subset', False)
        assert not self.last_layer_subset, 'last_layer_subset is not implemented yet'
        use_xentropy = getattr(config, 'use_xentropy', False)
        if use_xentropy and CrossEntropyLossApex is None:
            raise ImportError('xentropy_cuda is not installed')
        loss_cls = nn.CrossEntropyLoss if not use_xentropy else CrossEntropyLossApex

        self.bert = BertModel(config)
        self.cls = BertPreTrainingHeads(config)
        self.mlm_loss = loss_cls(ignore_index=0)
        self.nsp_loss = loss_cls(ignore_index=-1)

        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
        self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight

    def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
                labels=None, next_sentence_label=None):
        """
        Outputs:
            if `labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        """
        masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
        sequence_output, pooled_output = self.bert(
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
            attention_mask=attention_mask.bool(), masked_tokens_mask=masked_tokens_mask
        )
        if self.dense_seq_output and labels is not None:
            masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
            if not self.last_layer_subset:
                sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'),
                                                   masked_token_idx)
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

        if labels is not None and next_sentence_label is not None:
            if masked_token_idx is not None:  # prediction_scores are already flattened
                masked_lm_loss = self.mlm_loss(prediction_scores,
                                               labels.flatten()[masked_token_idx])
            else:
                masked_lm_loss = self.mlm_loss(rearrange(prediction_scores, '... v -> (...) v'),
                                               rearrange(labels, '... -> (...)'))
            next_sentence_loss = self.nsp_loss(rearrange(seq_relationship_score, '... t -> (...) t'),
                                               rearrange(next_sentence_label, '... -> (...)'))
            total_loss = (masked_lm_loss + next_sentence_loss).float()

            # Masked Language Model Accuracy
            masked_lm_labels_flat = labels.view(-1)
            mlm_labels = masked_lm_labels_flat[masked_lm_labels_flat != 0]
            if not self.dense_seq_output:
                prediction_scores_flat = rearrange(prediction_scores, '... v -> (...) v')
                mlm_predictions_scores = prediction_scores_flat[masked_lm_labels_flat != 0]
                mlm_predictions = mlm_predictions_scores.argmax(dim=-1)
            else:
                mlm_predictions = prediction_scores.argmax(dim=-1)
            mlm_acc = (mlm_predictions == mlm_labels).sum(dtype=torch.float) / mlm_labels.numel()

            return total_loss, prediction_scores, seq_relationship_score, mlm_acc, mlm_labels.numel()
        else:
            return prediction_scores, seq_relationship_score


def state_dict_from_pretrained(model_name):
    from transformers.utils import WEIGHTS_NAME
    from transformers.utils.hub import cached_file
    return torch.load(cached_file(model_name, WEIGHTS_NAME))


def remap_state_dict(state_dict, config):
    # LayerNorm
    def key_mapping_ln_gamma_beta(key):
        key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key)
        key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())

    # Layers
    def key_mapping_layers(key):
        return re.sub(r'^bert.encoder.layer.', 'bert.encoder.layers.', key)
    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^bert.embeddings.LayerNorm.', 'bert.emb_ln.', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)',
                     r'bert.encoder.layers.\1.norm1.\2', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)',
                     r'bert.encoder.layers.\1.norm2.\2', key)
        key = re.sub(r'^cls.predictions.transform.LayerNorm.(weight|bias)',
                     r'cls.predictions.transform.layer_norm.\1', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)',
                     r'bert.encoder.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).output.dense.(weight|bias)',
                     r'bert.encoder.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        Wq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.weight')
        Wk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.weight')
        Wv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.weight')
        bq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.bias')
        bk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.bias')
        bv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.bias')
        state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.weight'] = torch.cat(
            [Wq, Wk, Wv], dim=0
        )
        state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.bias'] = torch.cat(
            [bq, bk, bv], dim=0
        )
    def key_mapping_attn(key):
        return re.sub(r'^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)',
                      r'bert.encoder.layers.\1.mixer.out_proj.\2', key)
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    def key_mapping_decoder_bias(key):
        return re.sub(r'^cls.predictions.bias', 'cls.predictions.decoder.bias', key)
    state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())

    return state_dict