bert.py 26.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
# Copyright (c) 2022, Tri Dao.
# This BERT implementation is based on our MLPerf 2.0 and MLPerf 2.1 BERT implementation.
# https://github.com/mlcommons/training_results_v2.0/blob/main/HazyResearch/benchmarks/bert/implementations/pytorch/modeling.py
# https://github.com/mlcommons/training_results_v2.1/blob/main/Azure-HazyResearch/benchmarks/bert/implementations/ND96amsr_A100_v4/modeling.py

# Inspired by https://github.com/huggingface/transformers/blob/main/src/transformers/models/bert/modeling_bert.py

import re
import logging
from functools import partial

from collections.abc import Sequence
from collections import OrderedDict

import torch
import torch.nn as nn
import torch.nn.functional as F

from transformers import BertConfig
20
21
from transformers.models.bert.modeling_bert import BaseModelOutputWithPoolingAndCrossAttentions
from transformers.models.bert.modeling_bert import BertForPreTrainingOutput
Tri Dao's avatar
Tri Dao committed
22
23
24
25

from einops import rearrange

from flash_attn.modules.mha import MHA
26
from flash_attn.modules.mlp import Mlp, FusedMLP
Tri Dao's avatar
Tri Dao committed
27
28
from flash_attn.modules.block import Block
from flash_attn.modules.embedding import BertEmbeddings
29
30
from flash_attn.bert_padding import unpad_input, pad_input
from flash_attn.bert_padding import index_first_axis, index_first_axis_residual
31
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
32
33

try:
Tri Dao's avatar
Tri Dao committed
34
    from flash_attn.ops.fused_dense import FusedDense
Tri Dao's avatar
Tri Dao committed
35
except ImportError:
Tri Dao's avatar
Tri Dao committed
36
    FusedDense = None
Tri Dao's avatar
Tri Dao committed
37
38
39
40
41
42
43

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm, layer_norm
except ImportError:
    dropout_add_layer_norm, layer_norm = None, None

try:
44
    from flash_attn.losses.cross_entropy import CrossEntropyLoss
Tri Dao's avatar
Tri Dao committed
45
except ImportError:
46
    CrossEntropyLoss = None
Tri Dao's avatar
Tri Dao committed
47
48
49
50
51


logger = logging.getLogger(__name__)


52
def create_mixer_cls(config, cross_attn=False, return_residual=False):
Tri Dao's avatar
Tri Dao committed
53
54
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
55
56
57
58
59
60
    rotary_kwargs = {}
    if config.position_embedding_type == "rotary":
        rotary_kwargs["rotary_emb_dim"] = getattr(config, "rotary_emb_dim", config.hidden_size)
        rotary_kwargs["rotary_emb_base"] = getattr(config, "rotary_emb_base", 10000.0)
        rotary_kwargs["rotary_emb_scale_base"] = getattr(config, "rotary_emb_scale_base", None)
        rotary_kwargs["rotary_emb_interleaved"] = getattr(config, "rotary_emb_interleaved", False)
61
    mixer_cls = partial(MHA, num_heads=config.num_attention_heads, cross_attn=cross_attn,
Tri Dao's avatar
Tri Dao committed
62
                        dropout=config.attention_probs_dropout_prob, causal=False,
63
                        fused_bias_fc=fused_bias_fc, use_flash_attn=use_flash_attn,
64
                        return_residual=return_residual, **rotary_kwargs)
Tri Dao's avatar
Tri Dao committed
65
66
67
    return mixer_cls


68
def create_mlp_cls(config, layer_idx=None, return_residual=False):
Tri Dao's avatar
Tri Dao committed
69
    inner_dim = config.intermediate_size
70
71
72
    fused_mlp = getattr(config, 'fused_mlp', False)
    if fused_mlp:
        assert config.hidden_act in ['gelu_new', 'gelu_fast'], ('fused_mlp only '
73
                                                                'supports approximate gelu')
74
    if not fused_mlp:
75
        approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none'
Tri Dao's avatar
Tri Dao committed
76
        mlp_cls = partial(Mlp, hidden_features=inner_dim,
77
78
                          activation=partial(F.gelu, approximate=approximate),
                          return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
79
    else:
80
        if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
81
            raise ImportError('fused_dense is not installed')
Tri Dao's avatar
Tri Dao committed
82
83
84
85
86
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
87
        mlp_cls = partial(FusedMLP, hidden_features=inner_dim,
88
                          checkpoint_lvl=mlp_checkpoint_lvl, return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
89
90
91
92
    return mlp_cls


def create_block(config, layer_idx=None):
93
94
95
96
97
98
99
100
    last_layer_subset = getattr(config, 'last_layer_subset', False)
    cross_attn=last_layer_subset and layer_idx == config.num_hidden_layers - 1
    # TD [2022-12-19]: For cross attention (last layer), we actually want to return the
    # residual x_kv, not residual x. But it's annoying to change the API (and it only affects
    # one layer) so we just choose not to return residual in this case.
    return_residual = not cross_attn
    mixer_cls = create_mixer_cls(config, cross_attn, return_residual=return_residual)
    mlp_cls = create_mlp_cls(config, layer_idx, return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
101
102
    norm_cls = partial(nn.LayerNorm, eps=config.layer_norm_eps)
    block = Block(config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
Tri Dao's avatar
Tri Dao committed
103
104
                  prenorm=False, resid_dropout1=config.hidden_dropout_prob,
                  resid_dropout2=config.hidden_dropout_prob,
105
106
                  fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
                  return_residual=return_residual)
Tri Dao's avatar
Tri Dao committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
    return block


# https://github.com/huggingface/transformers/blob/7032e0203262ebb2ebf55da8d2e01f873973e835/src/transformers/models/bert/modeling_bert.py#L748
def _init_weights(module, initializer_range=0.02):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.padding_idx is not None:
            nn.init.zeros_(module.weight[module.padding_idx])


class BertEncoder(nn.Module):

    def __init__(self, config: BertConfig):
        super().__init__()
        self.use_flash_attn = getattr(config, 'use_flash_attn', False)
        self.layers = nn.ModuleList([create_block(config, layer_idx=i)
                                     for i in range(config.num_hidden_layers)])

130
131
132
133
134
    def forward(self, hidden_states, key_padding_mask=None, subset_mask=None):
        """If subset_mask is not None, we only want output for the subset of the sequence.
        This means that we only compute the last layer output for these tokens.
        subset_mask: (batch, seqlen), dtype=torch.bool
        """
Tri Dao's avatar
Tri Dao committed
135
136
137
138
139
        if key_padding_mask is None or not self.use_flash_attn:
            mixer_kwargs = ({'key_padding_mask': key_padding_mask}
                            if key_padding_mask is not None else None)
            for layer in self.layers:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
140
141
            if subset_mask is not None:
                hidden_states = hidden_states[subset_mask]
Tri Dao's avatar
Tri Dao committed
142
143
144
145
146
147
        else:
            batch, seqlen = hidden_states.shape[:2]
            hidden_states, indices, cu_seqlens, max_seqlen_in_batch = unpad_input(
                hidden_states, key_padding_mask
            )
            mixer_kwargs = {'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen_in_batch}
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
            if subset_mask is None:
                for layer in self.layers:
                    hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
                hidden_states = pad_input(hidden_states, indices, batch, seqlen)
            else:
                for layer in self.layers[:-1]:
                    hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
                if key_padding_mask is not None:
                    subset_idx = torch.nonzero(subset_mask[key_padding_mask], as_tuple=False).flatten()
                    subset_seqlens = (subset_mask & key_padding_mask).sum(dim=-1, dtype=torch.int32)
                    subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0,
                                                           dtype=torch.torch.int32), (1, 0))
                else:
                    subset_idx = torch.nonzero(subset_mask, as_tuple=False).flatten()
                    subset_seqlens = subset_mask.sum(dim=-1, dtype=torch.int32)
                    subset_cu_seqlens = F.pad(torch.cumsum(subset_seqlens, dim=0,
                                                           dtype=torch.torch.int32), (1, 0))
                hidden_states_subset, hidden_states = index_first_axis_residual(
                    hidden_states, subset_idx
                )
                # It's ok to set max_seqlen_q to be much larger
                mixer_kwargs = {'x_kv': hidden_states,
                                'cu_seqlens': subset_cu_seqlens, 'max_seqlen': max_seqlen_in_batch,
                                'cu_seqlens_k': cu_seqlens, 'max_seqlen_k': max_seqlen_in_batch}
                hidden_states = self.layers[-1](hidden_states_subset, mixer_kwargs=mixer_kwargs)
Tri Dao's avatar
Tri Dao committed
173
174
175
176
177
178
179
180
        return hidden_states


class BertPooler(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
Tri Dao's avatar
Tri Dao committed
181
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
182
            raise ImportError('fused_dense is not installed')
Tri Dao's avatar
Tri Dao committed
183
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states, pool=True):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0] if pool else hidden_states
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
Tri Dao's avatar
Tri Dao committed
201
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
202
203
204
205
            raise ImportError('fused_dense is not installed')
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
        if self.fused_dropout_add_ln and layer_norm is None:
            raise ImportError('dropout_add_layer_norm is not installed')
Tri Dao's avatar
Tri Dao committed
206
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
207
        self.dense = linear_cls(config.hidden_size, config.hidden_size)
208
209
        approximate = 'tanh' if config.hidden_act in ['gelu_new', 'gelu_fast'] else 'none'
        self.transform_act_fn = nn.GELU(approximate=approximate)
Tri Dao's avatar
Tri Dao committed
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
        self.layer_norm = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)

    def forward(self, hidden_states: torch.Tensor) -> torch.Tensor:
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        if not self.fused_dropout_add_ln:
            hidden_states = self.layer_norm(hidden_states)
        else:
            hidden_states = layer_norm(hidden_states, self.layer_norm.weight, self.layer_norm.bias,
                                       self.layer_norm.eps)
        return hidden_states


class BertLMPredictionHead(nn.Module):

    def __init__(self, config):
        super().__init__()
        fused_bias_fc = getattr(config, 'fused_bias_fc', False)
Tri Dao's avatar
Tri Dao committed
228
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
229
            raise ImportError('fused_dense is not installed')
Tri Dao's avatar
Tri Dao committed
230
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
        self.decoder = linear_cls(config.hidden_size, config.vocab_size, bias=True)

    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
        hidden_states = self.decoder(hidden_states)
        return hidden_states


class BertPreTrainingHeads(nn.Module):
    def __init__(self, config):
        super().__init__()
        self.predictions = BertLMPredictionHead(config)
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


class BertPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, BertConfig):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `BertConfig`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
    def from_pretrained(cls, model_name, config, *inputs, **kwargs):
        """
        Instantiate a BertPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.

        Params:
            pretrained_model_name_or_path: either:
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `pytorch_model.bin` a PyTorch dump of a BertForPretraining instance
                - a path or url to a pretrained model archive containing:
                    . `bert_config.json` a configuration file for the model
                    . `model.chkpt` a TensorFlow checkpoint
            *inputs, **kwargs: additional input for the specific Bert class
                (ex: num_labels for BertForSequenceClassification)
        """
        # Instantiate model.
        model = cls(config, *inputs, **kwargs)
        load_return = model.load_state_dict(remap_state_dict(state_dict_from_pretrained(model_name),
                                                             config), strict=False)
        logger.info(load_return)
        return model


class BertModel(BertPreTrainedModel):

    def __init__(self, config: BertConfig, add_pooling_layer=True):
        super().__init__(config)
        self.pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        if config.vocab_size % self.pad_vocab_size_multiple != 0:
            config.vocab_size += (self.pad_vocab_size_multiple
                                  - (config.vocab_size % self.pad_vocab_size_multiple))
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
305
        if self.fused_dropout_add_ln and layer_norm is None:
Tri Dao's avatar
Tri Dao committed
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
            raise ImportError('dropout_add_layer_norm is not installed')
        assert config.hidden_act in ['gelu', 'gelu_new', 'gelu_fast']

        self.embeddings = BertEmbeddings(config.hidden_size, config.vocab_size,
                                         config.max_position_embeddings, config.type_vocab_size,
                                         padding_idx=config.pad_token_id)
        self.emb_drop = nn.Dropout(config.hidden_dropout_prob)
        self.emb_ln = nn.LayerNorm(config.hidden_size, eps=config.layer_norm_eps)
        self.encoder = BertEncoder(config)
        self.pooler = BertPooler(config) if add_pooling_layer else None

        self.apply(partial(_init_weights, initializer_range=config.initializer_range))

    def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
                masked_tokens_mask=None):
321
322
323
324
325
        """If masked_tokens_mask is not None (i.e. last_layer_subset == True in BertForPreTraining),
        we only want the output for the masked tokens. This means that we only compute the last
        layer output for these tokens.
        masked_tokens_mask: (batch, seqlen), dtype=torch.bool
        """
Tri Dao's avatar
Tri Dao committed
326
327
328
        hidden_states = self.embeddings(input_ids, position_ids=position_ids,
                                        token_type_ids=token_type_ids)
        # TD [2022-12:18]: Don't need to force residual in fp32
329
        # BERT puts embedding LayerNorm before embedding dropout.
Tri Dao's avatar
Tri Dao committed
330
331
332
        if not self.fused_dropout_add_ln:
            hidden_states = self.emb_ln(hidden_states)
        else:
333
334
335
            hidden_states = layer_norm(hidden_states, self.emb_ln.weight, self.emb_ln.bias,
                                       self.emb_ln.eps)
        hidden_states = self.emb_drop(hidden_states)
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367

        if masked_tokens_mask is not None:
            batch_size, seqlen = input_ids.shape[:2]
            # We also need the first column for the CLS token
            first_col_mask = torch.zeros(batch_size, seqlen, dtype=torch.bool,
                                         device=input_ids.device)
            first_col_mask[:, 0] = True
            subset_mask = masked_tokens_mask | first_col_mask
        else:
            subset_mask = None

        sequence_output = self.encoder(hidden_states, key_padding_mask=attention_mask,
                                       subset_mask=subset_mask)

        if masked_tokens_mask is None:
            pooled_output = self.pooler(sequence_output) if self.pooler is not None else None
        else:
            # TD [2022-03-01]: the indexing here is very tricky.
            if attention_mask is not None:
                subset_idx = subset_mask[attention_mask]
                pool_input = sequence_output[first_col_mask[attention_mask][subset_idx]]
                sequence_output = sequence_output[masked_tokens_mask[attention_mask][subset_idx]]
            else:
                pool_input = sequence_output[first_col_mask[subset_mask]]
                sequence_output = sequence_output[masked_tokens_mask[subset_mask]]
            pooled_output = (self.pooler(pool_input, pool=False)
                             if self.pooler is not None else None)

        return BaseModelOutputWithPoolingAndCrossAttentions(
            last_hidden_state=sequence_output,
            pooler_output=pooled_output,
        )
Tri Dao's avatar
Tri Dao committed
368
369
370
371
372
373
374
375
376
377
378
379


class BertForPreTraining(BertPreTrainedModel):

    def __init__(self, config: BertConfig):
        super().__init__(config)
        # If dense_seq_output, we only need to pass the hidden states for the masked out tokens
        # (around 15%) to the classifier heads.
        self.dense_seq_output = getattr(config, 'dense_seq_output', False)
        # If last_layer_subset, we only need the compute the last layer for a subset of tokens
        # (e.g., the tokens we need to compute the masked LM loss and the next-sentence prediction).
        self.last_layer_subset = getattr(config, 'last_layer_subset', False)
380
381
        if self.last_layer_subset:
            assert self.dense_seq_output, 'last_layer_subset requires dense_seq_output'
Tri Dao's avatar
Tri Dao committed
382
        use_xentropy = getattr(config, 'use_xentropy', False)
383
        if use_xentropy and CrossEntropyLoss is None:
Tri Dao's avatar
Tri Dao committed
384
            raise ImportError('xentropy_cuda is not installed')
385
        loss_cls = (nn.CrossEntropyLoss if not use_xentropy
386
                    else partial(CrossEntropyLoss, inplace_backward=True))
Tri Dao's avatar
Tri Dao committed
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402

        self.bert = BertModel(config)
        self.cls = BertPreTrainingHeads(config)
        self.mlm_loss = loss_cls(ignore_index=0)
        self.nsp_loss = loss_cls(ignore_index=-1)

        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
        self.cls.predictions.decoder.weight = self.bert.embeddings.word_embeddings.weight

    def forward(self, input_ids, position_ids=None, token_type_ids=None, attention_mask=None,
                labels=None, next_sentence_label=None):
        """
403
404
        If labels are provided, they must be 0 for masked out tokens (as specified in the attention
        mask).
Tri Dao's avatar
Tri Dao committed
405
406
407
408
409
410
411
412
413
414
415
        Outputs:
            if `labels` and `next_sentence_label` are not `None`:
                Outputs the total_loss which is the sum of the masked language modeling loss and the next
                sentence classification loss.
            if `labels` or `next_sentence_label` is `None`:
                Outputs a tuple comprising
                - the masked language modeling logits of shape [batch_size, sequence_length, vocab_size], and
                - the next sentence classification logits of shape [batch_size, 2].

        """
        masked_tokens_mask = labels > 0 if (self.last_layer_subset and labels is not None) else None
416
        outputs = self.bert(
Tri Dao's avatar
Tri Dao committed
417
            input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
418
419
            attention_mask=attention_mask.bool() if attention_mask is not None else None,
            masked_tokens_mask=masked_tokens_mask
Tri Dao's avatar
Tri Dao committed
420
        )
421
        sequence_output, pooled_output = outputs.last_hidden_state, outputs.pooler_output
Tri Dao's avatar
Tri Dao committed
422
423
424
425
426
427
428
        if self.dense_seq_output and labels is not None:
            masked_token_idx = torch.nonzero(labels.flatten() > 0, as_tuple=False).flatten()
            if not self.last_layer_subset:
                sequence_output = index_first_axis(rearrange(sequence_output, 'b s d -> (b s) d'),
                                                   masked_token_idx)
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

429
        total_loss = None
Tri Dao's avatar
Tri Dao committed
430
        if labels is not None and next_sentence_label is not None:
431
            if self.dense_seq_output and labels is not None:  # prediction_scores are already flattened
Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
438
                masked_lm_loss = self.mlm_loss(prediction_scores,
                                               labels.flatten()[masked_token_idx])
            else:
                masked_lm_loss = self.mlm_loss(rearrange(prediction_scores, '... v -> (...) v'),
                                               rearrange(labels, '... -> (...)'))
            next_sentence_loss = self.nsp_loss(rearrange(seq_relationship_score, '... t -> (...) t'),
                                               rearrange(next_sentence_label, '... -> (...)'))
439
            total_loss = masked_lm_loss.float() + next_sentence_loss.float()
Tri Dao's avatar
Tri Dao committed
440

441
442
443
444
445
        return BertForPreTrainingOutput(
            loss=total_loss,
            prediction_logits=prediction_scores,
            seq_relationship_logits=seq_relationship_score,
        )
Tri Dao's avatar
Tri Dao committed
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482


def remap_state_dict(state_dict, config):
    # LayerNorm
    def key_mapping_ln_gamma_beta(key):
        key = re.sub(r'LayerNorm.gamma$', 'LayerNorm.weight', key)
        key = re.sub(r'LayerNorm.beta$', 'LayerNorm.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_ln_gamma_beta(k), v) for k, v in state_dict.items())

    # Layers
    def key_mapping_layers(key):
        return re.sub(r'^bert.encoder.layer.', 'bert.encoder.layers.', key)
    state_dict = OrderedDict((key_mapping_layers(k), v) for k, v in state_dict.items())

    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^bert.embeddings.LayerNorm.', 'bert.emb_ln.', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).attention.output.LayerNorm.(weight|bias)',
                     r'bert.encoder.layers.\1.norm1.\2', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).output.LayerNorm.(weight|bias)',
                     r'bert.encoder.layers.\1.norm2.\2', key)
        key = re.sub(r'^cls.predictions.transform.LayerNorm.(weight|bias)',
                     r'cls.predictions.transform.layer_norm.\1', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())

    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^bert.encoder.layers.(\d+).intermediate.dense.(weight|bias)',
                     r'bert.encoder.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^bert.encoder.layers.(\d+).output.dense.(weight|bias)',
                     r'bert.encoder.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
483
    last_layer_subset = getattr(config, 'last_layer_subset', False)
Tri Dao's avatar
Tri Dao committed
484
485
486
487
488
489
490
    for d in range(config.num_hidden_layers):
        Wq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.weight')
        Wk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.weight')
        Wv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.weight')
        bq = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.query.bias')
        bk = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.key.bias')
        bv = state_dict.pop(f'bert.encoder.layers.{d}.attention.self.value.bias')
491
492
493
494
        if not (last_layer_subset and d == config.num_hidden_layers - 1):
            state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.weight'] = torch.cat(
                [Wq, Wk, Wv], dim=0
            )
Tri Dao's avatar
Tri Dao committed
495
            state_dict[f'bert.encoder.layers.{d}.mixer.Wqkv.bias'] = torch.cat([bq, bk, bv], dim=0)
496
497
498
499
500
501
        else:
            state_dict[f'bert.encoder.layers.{d}.mixer.Wq.weight'] = Wq
            state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.weight'] = torch.cat(
                [Wk, Wv], dim=0
            )
            state_dict[f'bert.encoder.layers.{d}.mixer.Wq.bias'] = bq
Tri Dao's avatar
Tri Dao committed
502
            state_dict[f'bert.encoder.layers.{d}.mixer.Wkv.bias'] = torch.cat([bk, bv], dim=0)
Tri Dao's avatar
Tri Dao committed
503
504
505
506
507
508
509
510
511
    def key_mapping_attn(key):
        return re.sub(r'^bert.encoder.layers.(\d+).attention.output.dense.(weight|bias)',
                      r'bert.encoder.layers.\1.mixer.out_proj.\2', key)
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    def key_mapping_decoder_bias(key):
        return re.sub(r'^cls.predictions.bias', 'cls.predictions.decoder.bias', key)
    state_dict = OrderedDict((key_mapping_decoder_bias(k), v) for k, v in state_dict.items())

512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
    # Word embedding
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    if pad_vocab_size_multiple > 1:
        word_embeddings = state_dict['bert.embeddings.word_embeddings.weight']
        state_dict['bert.embeddings.word_embeddings.weight'] = F.pad(
            word_embeddings, (0, 0, 0, config.vocab_size - word_embeddings.shape[0])
        )
        decoder_weight = state_dict['cls.predictions.decoder.weight']
        state_dict['cls.predictions.decoder.weight'] = F.pad(
            decoder_weight, (0, 0, 0, config.vocab_size - decoder_weight.shape[0])
        )
        # If the vocab was padded, we want to set the decoder bias for those padded indices to be
        # strongly negative (i.e. the decoder shouldn't predict those indices).
        # TD [2022-05-09]: I don't think it affects the MLPerf training.
        decoder_bias = state_dict['cls.predictions.decoder.bias']
        state_dict['cls.predictions.decoder.bias'] = F.pad(
            decoder_bias, (0, config.vocab_size - decoder_bias.shape[0]), value=-100.0
        )

Tri Dao's avatar
Tri Dao committed
531
    return state_dict