gpt.py 37.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
Tri Dao's avatar
Tri Dao committed
2

3
import logging
Tri Dao's avatar
Tri Dao committed
4
import math
5
import re
Tri Dao's avatar
Tri Dao committed
6
7
from functools import partial

8
from collections import namedtuple, OrderedDict
Tri Dao's avatar
Tri Dao committed
9
10
11
12
13
14
from collections.abc import Sequence

import torch
import torch.nn as nn
import torch.nn.functional as F

Tri Dao's avatar
Tri Dao committed
15
from transformers import GPT2Config
Tri Dao's avatar
Tri Dao committed
16

17
18
from einops import rearrange

Tri Dao's avatar
Tri Dao committed
19
from flash_attn.ops.activations import sqrelu_fwd
20
from flash_attn.modules.mha import MHA, ParallelMHA
Tri Dao's avatar
Tri Dao committed
21
from flash_attn.modules.mlp import Mlp, GatedMlp, ParallelMLP, FusedMLP, ParallelFusedMLP
Tri Dao's avatar
Tri Dao committed
22
from flash_attn.modules.block import Block, ParallelBlock
23
from flash_attn.modules.embedding import GPT2Embeddings, ParallelGPT2Embeddings
24
from flash_attn.utils.distributed import sync_shared_params, all_gather_raw
25
from flash_attn.utils.pretrained import state_dict_from_pretrained
Tri Dao's avatar
Tri Dao committed
26
from flash_attn.utils.generation import GenerationMixin
Tri Dao's avatar
Tri Dao committed
27
28
from flash_attn.models.opt import remap_state_dict_hf_opt
from flash_attn.models.gptj import remap_state_dict_hf_gptj
Tri Dao's avatar
Tri Dao committed
29
from flash_attn.models.gpt_neox import remap_state_dict_hf_gpt_neox
30
31
32
33
34

try:
    from flash_attn.ops.fused_dense import ColumnParallelLinear
except ImportError:
    ColumnParallelLinear = None
Tri Dao's avatar
Tri Dao committed
35
36
37
38
39
40

try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm
except ImportError:
    dropout_add_layer_norm = None

41
42
43
44
45
try:
    from flash_attn.ops.layer_norm import dropout_add_layer_norm_parallel_residual
except ImportError:
    dropout_add_layer_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
46
47
48
try:
    from flash_attn.ops.rms_norm import RMSNorm, dropout_add_rms_norm
except ImportError:
49
    RMSNorm, dropout_add_rms_norm = None, None
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55

try:
    from flash_attn.ops.rms_norm import dropout_add_rms_norm_parallel_residual
except ImportError:
    dropout_add_rms_norm_parallel_residual = None

Tri Dao's avatar
Tri Dao committed
56
try:
Tri Dao's avatar
Tri Dao committed
57
    from flash_attn.ops.triton.mlp import FusedDenseSqreluDense
Tri Dao's avatar
Tri Dao committed
58
59
60
61
except ImportError:
    FusedDenseSqreluDense = None


62
63
64
logger = logging.getLogger(__name__)


65
66
def create_mixer_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
67
68
69
70
71
72
    head_dim = getattr(config, 'head_dim', config.hidden_size // config.num_attention_heads)
    softmax_scale = 1.0 if not config.scale_attn_weights else head_dim ** (-0.5)
    if config.scale_attn_by_inverse_layer_idx:
        assert layer_idx is not None
        softmax_scale /= float(layer_idx + 1)
    dwconv = getattr(config, 'attn_dwconv', False)
73
74
    if dwconv:
        assert process_group is None, 'TensorParallel MHA does not support dwconv yet'
Tri Dao's avatar
Tri Dao committed
75
76
    qkv_proj_bias = getattr(config, 'qkv_proj_bias', True)
    out_proj_bias = getattr(config, 'out_proj_bias', True)
Tri Dao's avatar
Tri Dao committed
77
    rotary_emb_dim = int(getattr(config, 'rotary_emb_fraction', 0.0) * head_dim)
78
    rotary_emb_base = getattr(config, 'rotary_emb_base', 10000.0)
Tri Dao's avatar
Tri Dao committed
79
80
    rotary_emb_scale_base = getattr(config, 'rotary_emb_scale_base', None)
    rotary_emb_interleaved = getattr(config, 'rotary_emb_interleaved', False)
Tri Dao's avatar
Tri Dao committed
81
82
    use_flash_attn = getattr(config, 'use_flash_attn', False)
    fused_bias_fc = getattr(config, 'fused_bias_fc', False)
83
84
85
86
87
    if not fused_bias_fc:
        assert process_group is None, 'TensorParallel MHA requires fused_bias_fc'
    mha_cls = MHA if process_group is None else ParallelMHA
    serial_kwargs = ({'fused_bias_fc': fused_bias_fc, 'dwconv': dwconv}
                     if process_group is None else {})
88
89
90
    parallel_kwargs = ({'process_group': process_group,
                        'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                       if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
91
92
93
    mixer_cls = partial(mha_cls, num_heads=config.num_attention_heads,
                        qkv_proj_bias=qkv_proj_bias, out_proj_bias=out_proj_bias,
                        dropout=config.attn_pdrop,
Tri Dao's avatar
Tri Dao committed
94
                        softmax_scale=softmax_scale, causal=True, layer_idx=layer_idx,
95
96
                        rotary_emb_dim=rotary_emb_dim, rotary_emb_base=rotary_emb_base,
                        rotary_emb_scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
97
                        rotary_emb_interleaved=rotary_emb_interleaved,
98
99
                        use_flash_attn=use_flash_attn,
                        **serial_kwargs, **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
100
101
102
    return mixer_cls


103
104
def create_mlp_cls(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
Tri Dao's avatar
Tri Dao committed
105
106
    mlp_fc1_bias = getattr(config, 'mlp_fc1_bias', True)
    mlp_fc2_bias = getattr(config, 'mlp_fc2_bias', True)
107
108
    fused_mlp = getattr(config, 'fused_mlp', False)
    if fused_mlp:
109
        assert config.activation_function in ['gelu_new', 'gelu_fast', 'gelu_approx', 'relu', 'sqrelu']
Tri Dao's avatar
Tri Dao committed
110
    fused_dense_sqrelu_dense = getattr(config, 'fused_dense_sqrelu_dense', False)
111
112
113
    if fused_dense_sqrelu_dense:
        assert config.activation_function == 'sqrelu', ('fused_dense_sqrelu_dense only '
                                               'supports approximate activation_function sqrelu')
114
115
    assert not (fused_dense_sqrelu_dense and fused_mlp)
    if not fused_mlp and not fused_dense_sqrelu_dense:
Tri Dao's avatar
Tri Dao committed
116
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx', 'relu',
Tri Dao's avatar
Tri Dao committed
117
118
119
120
121
122
                                              'sqrelu', 'glu', 'swiglu', 'geglu']
        if config.activation_function in ['glu', 'swiglu', 'geglu']:
            activation = (F.sigmoid if config.activation_function == 'glu'
                          else (F.silu if config.activation_function == 'swiglu'
                                else F.gelu))
            mlp_cls = partial(GatedMlp, hidden_features=config.n_inner, activation=activation,
Tri Dao's avatar
Tri Dao committed
123
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
124
        else:
Tri Dao's avatar
Tri Dao committed
125
126
127
128
129
130
131
132
            if config.activation_function == 'relu':
                activation = partial(F.relu, inplace=True)
            elif config.activation_function == 'sqrelu':
                activation = sqrelu_fwd
            else:
                approximate = ('tanh' if config.activation_function
                            in ['gelu_new', 'gelu_fast', 'gelu_approx'] else 'none')
                activation=partial(F.gelu, approximate=approximate)
Tri Dao's avatar
Tri Dao committed
133
134
135
136
137
138
139
            mlp_cls = Mlp if process_group is None else ParallelMLP
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
            mlp_cls = partial(mlp_cls, hidden_features=config.n_inner, activation=activation,
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias,
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
140
141
142
143
144
145
    else:
        mlp_checkpoint_lvl = getattr(config, 'mlp_checkpoint_lvl', 0)
        # mlp_checkpoint_lvl could be a list, which contains the checkpoint_lvl for each layer
        if isinstance(mlp_checkpoint_lvl, Sequence):
            assert layer_idx is not None
            mlp_checkpoint_lvl = mlp_checkpoint_lvl[layer_idx]
146
147
        if fused_mlp:
            if FusedMLP is None:
Tri Dao's avatar
Tri Dao committed
148
                raise ImportError('fused_dense is not installed')
149
            activation = ('gelu_approx' if config.activation_function
150
                          in ['gelu_new', 'gelu_fast', 'gelu_approx'] else config.activation_function)
151
            mlp_cls = FusedMLP if process_group is None else ParallelFusedMLP
152
153
154
            parallel_kwargs = ({'process_group': process_group,
                                'sequence_parallel': getattr(config, 'sequence_parallel', True)}
                               if process_group is not None else {})
Tri Dao's avatar
Tri Dao committed
155
            mlp_cls = partial(mlp_cls, hidden_features=config.n_inner, activation=activation,
156
                              checkpoint_lvl=mlp_checkpoint_lvl,
Tri Dao's avatar
Tri Dao committed
157
                              bias1=mlp_fc1_bias, bias2=mlp_fc2_bias,
158
                              **parallel_kwargs, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
159
160
        elif fused_dense_sqrelu_dense:
            assert FusedDenseSqreluDense is not None
Tri Dao's avatar
Tri Dao committed
161
            mlp_cls = partial(FusedDenseSqreluDense, hidden_features=config.n_inner,
162
                              checkpoint_lvl=mlp_checkpoint_lvl, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
        else:
            raise RuntimeError('MLP type not supported')
    return mlp_cls


168
169
def create_block(config, layer_idx=None, process_group=None, device=None, dtype=None):
    factory_kwargs = {'device': device, 'dtype': dtype}
170
    sequence_parallel = getattr(config, 'sequence_parallel', True)
171
172
    mixer_cls = create_mixer_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
    mlp_cls = create_mlp_cls(config, layer_idx, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
173
174
175
    use_rms_norm = getattr(config, 'rms_norm', False)
    norm_cls = partial(nn.LayerNorm if not use_rms_norm else RMSNorm,
                       eps=config.layer_norm_epsilon, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
176
177
178
179
    # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
    residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
    resid_dropout1 = config.resid_pdrop if layer_idx is None or layer_idx > 0 else config.embd_pdrop
    prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
    parallel_block = getattr(config, 'parallel_block', False)
    if not parallel_block:
        block = Block(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            prenorm=prenorm, resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
    else:
        assert prenorm
        block = ParallelBlock(
            config.hidden_size, mixer_cls, mlp_cls, norm_cls=norm_cls,
            resid_dropout1=resid_dropout1, resid_dropout2=config.resid_pdrop,
            tied_norm=getattr(config, 'parallel_block_tied_norm', False),
            fused_dropout_add_ln=getattr(config, 'fused_dropout_add_ln', False),
            residual_in_fp32=residual_in_fp32,
            sequence_parallel=sequence_parallel and process_group is not None,
            mark_shared_params=process_group is not None
        )
Tri Dao's avatar
Tri Dao committed
201
202
203
204
    block.layer_idx = layer_idx
    return block


205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
class GPTPreTrainedModel(nn.Module):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    def __init__(self, config, *inputs, **kwargs):
        super().__init__()
        if not isinstance(config, GPT2Config):
            raise ValueError(
                "Parameter config in `{}(config)` should be an instance of class `GPT2Config`. "
                "To create a model from a Google pretrained model use "
                "`model = {}.from_pretrained(PRETRAINED_MODEL_NAME)`".format(
                    self.__class__.__name__, self.__class__.__name__
                ))
        self.config = config

    @classmethod
221
222
    def from_pretrained(cls, model_name, config, *args, strict=True, device=None, dtype=None,
                        world_size=1, rank=0, **kwargs):
223
224
225
226
227
        """
        Instantiate a GPTPreTrainedModel from a pre-trained model file or a pytorch state dict.
        Download and cache the pre-trained model file if needed.
        """
        # Instantiate model.
228
        model = cls(config, *args, device=device, dtype=dtype, **kwargs)
229
230
        # Load state_dict in cpu because we already initialized the model in GPU, and we don't
        # want extra stuff taking up more GPU memory
Tri Dao's avatar
Tri Dao committed
231
        state_dict = state_dict_from_pretrained(
232
            model_name, device='cpu', dtype=dtype
233
        )
Tri Dao's avatar
Tri Dao committed
234
        if model_name.startswith('gpt2'):
Tri Dao's avatar
Tri Dao committed
235
            state_dict = remap_state_dict_hf_gpt2(state_dict, config)
Tri Dao's avatar
Tri Dao committed
236
        elif model_name.startswith('facebook/opt'):
Tri Dao's avatar
Tri Dao committed
237
238
239
240
            state_dict = remap_state_dict_hf_opt(state_dict, config)
        elif model_name.startswith('EleutherAI/gpt-j-'):
            state_dict = remap_state_dict_hf_gptj(state_dict, config)
            strict = False  # We have rotary_emb.inf_freq buffers not in the GPT-J checkpoint
Tri Dao's avatar
Tri Dao committed
241
242
        elif model_name.startswith('EleutherAI/gpt-neox-'):
            state_dict = remap_state_dict_hf_gpt_neox(state_dict, config)
Tri Dao's avatar
Tri Dao committed
243
244
        else:
            raise NotImplementedError(f'Model {model_name} not supported')
245
246
247
        if world_size > 1:
            state_dict = shard_state_dict_tp(state_dict, config, world_size, rank)
        load_return = model.load_state_dict(state_dict, strict=strict)
248
249
250
        logger.info(load_return)
        return model

Tri Dao's avatar
Tri Dao committed
251

Tri Dao's avatar
Tri Dao committed
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
# https://github.com/huggingface/transformers/blob/c28d04e9e252a1a099944e325685f14d242ecdcd/src/transformers/models/gpt2/modeling_gpt2.py#L454
def _init_weights(module, n_layer, initializer_range=0.02, rescale_prenorm_residual=True):
    if isinstance(module, nn.Linear):
        nn.init.normal_(module.weight, std=initializer_range)
        if module.bias is not None:
            nn.init.zeros_(module.bias)
    elif isinstance(module, nn.Embedding):
        nn.init.normal_(module.weight, std=initializer_range)

    if rescale_prenorm_residual:
        # Reinitialize selected weights subject to the OpenAI GPT-2 Paper Scheme:
        #   > A modified initialization which accounts for the accumulation on the residual path with model depth. Scale
        #   > the weights of residual layers at initialization by a factor of 1/√N where N is the # of residual layers.
        #   >   -- GPT-2 :: https://openai.com/blog/better-language-models/
        #
        # Reference (Megatron-LM): https://github.com/NVIDIA/Megatron-LM/blob/main/megatron/model/gpt_model.py
        for name, p in module.named_parameters():
            if name in ["out_proj.weight", "fc2.weight"]:
                # Special Scaled Initialization --> There are 2 Layer Norms per Transformer Block
                nn.init.normal_(p, mean=0.0, std=initializer_range / math.sqrt(2 * n_layer))


274
class GPTModel(GPTPreTrainedModel):
Tri Dao's avatar
Tri Dao committed
275

276
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
277
        super().__init__(config)
278
279
        factory_kwargs = {'device': device, 'dtype': dtype}
        self.process_group = process_group
280
        self.sequence_parallel = getattr(config, 'sequence_parallel', True)
281
        assert config.activation_function in ['gelu', 'gelu_new', 'gelu_fast', 'gelu_approx',
Tri Dao's avatar
Tri Dao committed
282
                                              'relu', 'sqrelu', 'glu', 'swiglu', 'geglu']
283
284
285
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
286
287
288
289
        # TD [2022-07-30]: Force residual in fp32, seems to make fp16 training more stable
        self.residual_in_fp32 = getattr(config, 'residual_in_fp32', False)
        # These 2 options are for OPT-350m
        self.prenorm = getattr(config, 'prenorm', True)
Tri Dao's avatar
Tri Dao committed
290
        use_rms_norm = getattr(config, 'rms_norm', False)
Tri Dao's avatar
Tri Dao committed
291
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
Tri Dao's avatar
Tri Dao committed
292
293
        # For GPT-J, GPT-NeoX
        self.parallel_block = getattr(config, 'parallel_block', False)
Tri Dao's avatar
Tri Dao committed
294

295
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
296
297
298
299
            self.embeddings = GPT2Embeddings(
                config.hidden_size, vocab_size, config.max_position_embeddings,
                word_embed_proj_dim=word_embed_proj_dim, **factory_kwargs
            )
300
301
        else:
            self.embeddings = ParallelGPT2Embeddings(
302
                config.hidden_size, vocab_size, config.max_position_embeddings,
303
304
                process_group=process_group, sequence_parallel=self.sequence_parallel,
                **factory_kwargs
305
            )
Tri Dao's avatar
Tri Dao committed
306

Tri Dao's avatar
Tri Dao committed
307
        # We change the order of dropout, residual and layer norm:
Tri Dao's avatar
Tri Dao committed
308
        # Instead of LN -> Attn / MLP -> Dropout -> Add, we do:
Tri Dao's avatar
Tri Dao committed
309
310
311
        # Dropout -> Add -> LN -> Attn / MLP, returning both the residual branch (output of Add) and
        # the main branch (output of MLP). The model definition is unchanged, but the mapping of the
        # nn.Dropout probabilities are changed.
Tri Dao's avatar
Tri Dao committed
312
        # This is for performance reason: we can fuse dropout + add + layer_norm.
Tri Dao's avatar
Tri Dao committed
313
314
315
316
        self.layers = nn.ModuleList([create_block(config, layer_idx=i, process_group=process_group,
                                                  **factory_kwargs)
                                     for i in range(config.num_hidden_layers)])

Tri Dao's avatar
Tri Dao committed
317
        self.fused_dropout_add_ln = getattr(config, 'fused_dropout_add_ln', False)
318
319
320
321
        if self.fused_dropout_add_ln:
            if ((not self.parallel_block and dropout_add_layer_norm is None)
                or (self.parallel_block and dropout_add_layer_norm_parallel_residual is None)):
                raise ImportError('dropout_layer_norm is not installed')
Tri Dao's avatar
Tri Dao committed
322
323
        if self.prenorm:
            self.drop_f = nn.Dropout(config.resid_pdrop)
Tri Dao's avatar
Tri Dao committed
324
325
326
            norm_cls = nn.LayerNorm if not use_rms_norm else RMSNorm
            self.ln_f = norm_cls(config.hidden_size, eps=config.layer_norm_epsilon,
                                 **factory_kwargs)
327
        if process_group is not None:
Tri Dao's avatar
Tri Dao committed
328
            for p in self.ln_f.parameters():
329
330
331
332
333
                # Mark the norm parameters as "shared_params" so that we sync their values at init.
                p._shared_params = True
                # Mark the norm params as "sequence_parallel" so we run all-reduce on their grads.
                if self.sequence_parallel:
                    p._sequence_parallel = True
334

Tri Dao's avatar
Tri Dao committed
335
336
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
337
338
339
        self.tie_weights()

    def tie_weights(self):
340
        if self.process_group is not None:
341
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
342

343
344
345
346
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return {i: layer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype, **kwargs)
                for i, layer in enumerate(self.layers)}

Tri Dao's avatar
Tri Dao committed
347
    def forward(self, input_ids, position_ids=None, inference_params=None):
348
349
350
351
        # If using Tensor Parallel with sequence parallel, we combine the batch and the seqlen
        # dimensions so that we can split on it easily, in case of small batch size.
        # Only the attention layers need to know the seqlen.
        embedding_kwargs = ({'combine_batch_seqlen_dim': True}
352
                            if self.process_group is not None and self.sequence_parallel else {})
353
        hidden_states = self.embeddings(input_ids, position_ids=position_ids, **embedding_kwargs)
Tri Dao's avatar
Tri Dao committed
354
355
        if self.parallel_block:
            hidden_states2 = None
Tri Dao's avatar
Tri Dao committed
356
        residual = None
357
358
        mixer_kwargs = ({'seqlen': input_ids.shape[1]}
                        if self.process_group is not None and self.sequence_parallel else {})
Tri Dao's avatar
Tri Dao committed
359
360
        if inference_params is not None:
            mixer_kwargs['inference_params'] = inference_params
Tri Dao's avatar
Tri Dao committed
361
        for layer in self.layers:
Tri Dao's avatar
Tri Dao committed
362
            if self.prenorm:
Tri Dao's avatar
Tri Dao committed
363
364
365
366
367
368
369
                if not self.parallel_block:
                    hidden_states, residual = layer(hidden_states, residual,
                                                    mixer_kwargs=mixer_kwargs)
                else:
                    hidden_states, hidden_states2, residual = layer(
                        hidden_states, hidden_states2, residual, mixer_kwargs=mixer_kwargs
                    )
Tri Dao's avatar
Tri Dao committed
370
371
372
373
374
            else:
                hidden_states = layer(hidden_states, mixer_kwargs=mixer_kwargs)
        if self.prenorm:
            if not self.fused_dropout_add_ln:
                dropped = self.drop_f(hidden_states)
Tri Dao's avatar
Tri Dao committed
375
376
377
378
379
380
                if not self.parallel_block:
                    residual = (dropped + residual) if residual is not None else dropped
                else:
                    dropped2 = self.drop_f(hidden_states2)
                    residual = ((residual + dropped + dropped2)
                                if residual is not None else dropped + dropped2)
Tri Dao's avatar
Tri Dao committed
381
382
                hidden_states = self.ln_f(residual.to(dtype=self.ln_f.weight.dtype))
            else:
Tri Dao's avatar
Tri Dao committed
383
                # Set prenorm=False here since we don't need the residual
384
                if not self.parallel_block:
385
386
387
                    fused_add_norm_fn = (dropout_add_rms_norm if isinstance(self.ln_f, RMSNorm)
                                         else dropout_add_layer_norm)
                    hidden_states = fused_add_norm_fn(
388
389
390
391
392
                        hidden_states, residual, self.ln_f.weight, self.ln_f.bias,
                        self.drop_f.p if self.training else 0.0, self.ln_f.eps, prenorm=False,
                        residual_in_fp32=self.residual_in_fp32
                    )
                else:
393
394
395
396
                    fused_add_norm_fn = (dropout_add_rms_norm_parallel_residual
                                         if isinstance(self.ln_f, RMSNorm)
                                         else dropout_add_layer_norm_parallel_residual)
                    hidden_states, _ = fused_add_norm_fn(
397
398
399
400
                        hidden_states, hidden_states2, residual, self.ln_f.weight, self.ln_f.bias,
                        None, None, self.drop_f.p if self.training else 0.0, self.ln_f.eps,
                        prenorm=False, residual_in_fp32=self.residual_in_fp32
                    )
Tri Dao's avatar
Tri Dao committed
401
402
403
        return hidden_states


Tri Dao's avatar
Tri Dao committed
404
class GPTLMHeadModel(GPTPreTrainedModel, GenerationMixin):
Tri Dao's avatar
Tri Dao committed
405

406
407
    def __init__(self, config: GPT2Config, process_group=None, device=None, dtype=None):
        factory_kwargs = {'device': device, 'dtype': dtype}
408
        super().__init__(config)
409
410
        self.process_group = process_group
        self.transformer = GPTModel(config, process_group=process_group, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
411
        self.tie_word_embeddings = getattr(config, 'tie_word_embeddings', True)
Tri Dao's avatar
Tri Dao committed
412
        lm_head_bias = getattr(config, 'lm_head_bias', False)
413
414
415
        pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
        vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple)
                      * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
416
417
418
419
420
421
422
        # This option is for OPT-350m
        word_embed_proj_dim = getattr(config, 'word_embed_proj_dim', None)
        embed_dim = config.n_embd if word_embed_proj_dim is None else word_embed_proj_dim
        if word_embed_proj_dim is not None:
            self.project_out = nn.Linear(config.n_embd, embed_dim, bias=False, **factory_kwargs)
        else:
            self.project_out = None
423
        if process_group is None:
Tri Dao's avatar
Tri Dao committed
424
            self.lm_head = nn.Linear(embed_dim, vocab_size, bias=lm_head_bias, **factory_kwargs)
425
426
427
        else:
            if ColumnParallelLinear is None:
                raise ImportError('fused_dense_lib is not installed')
428
            self.lm_head = ColumnParallelLinear(
Tri Dao's avatar
Tri Dao committed
429
                embed_dim, vocab_size, process_group, bias=lm_head_bias,
430
431
                sequence_parallel=getattr(config, 'sequence_parallel', True), **factory_kwargs
            )
Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
        # Initialize weights and apply final processing
        self.apply(partial(_init_weights, n_layer=config.num_hidden_layers,
                           initializer_range=config.initializer_range))
        self.tie_weights()

    def tie_weights(self):
Tri Dao's avatar
Tri Dao committed
438
439
        if self.tie_word_embeddings:
            self.lm_head.weight = self.transformer.embeddings.word_embeddings.weight
440
        if self.process_group is not None:
441
            sync_shared_params(self, self.process_group)
Tri Dao's avatar
Tri Dao committed
442

443
444
445
446
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, **kwargs):
        return self.transformer.allocate_inference_cache(batch_size, max_seqlen, dtype=dtype,
                                                         **kwargs)

447
    def forward(self, input_ids, position_ids=None, inference_params=None, last_token_only=False):
Tri Dao's avatar
Tri Dao committed
448
449
450
        """
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
451
452
            last_token_only: whether to return the logit for the last token only,
                of shape (batch_size, vocab_size)
Tri Dao's avatar
Tri Dao committed
453
454
455
        """
        hidden_states = self.transformer(input_ids, position_ids=position_ids,
                                         inference_params=inference_params)
456
457
        if last_token_only:
            hidden_states = hidden_states[:, -1]
Tri Dao's avatar
Tri Dao committed
458
459
        if self.project_out is not None:
            hidden_states = self.project_out(hidden_states)
Tri Dao's avatar
Tri Dao committed
460
        lm_logits = self.lm_head(hidden_states)
461
462
463
        # During inference, we want the full logit for sampling
        if isinstance(self.lm_head, ColumnParallelLinear) and inference_params is not None:
            lm_logits, _ = all_gather_raw(lm_logits, self.lm_head.process_group)
464
            lm_logits = rearrange(lm_logits, '(n b) ... d -> b ... (n d)', b=hidden_states.shape[0])
Tri Dao's avatar
Tri Dao committed
465
466
        CausalLMOutput = namedtuple('CausalLMOutput', ['logits'])
        return CausalLMOutput(logits=lm_logits)
467

Tri Dao's avatar
Tri Dao committed
468
469
470
471
472
    def load_state_dict(self, state_dict, strict=True):
        # Remapping from our checkpoints that used a different ordering of layers in the block
        # Previous: Attn / MLP -> Dropout -> Add -> LN
        # Current: Dropout -> Add -> LN -> Attn / MLP
        if 'transformer.ln_0.weight' in state_dict:
Tri Dao's avatar
Tri Dao committed
473
            n_layers = len(self.transformer.layers)
Tri Dao's avatar
Tri Dao committed
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
            ln_weight = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.weight')
            ln_bias = state_dict.pop(f'transformer.layers.{n_layers - 1}.norm2.bias')
            state_dict['transformer.ln_f.weight'] = ln_weight
            state_dict['transformer.ln_f.bias'] = ln_bias
            for l in reversed(range(n_layers)):
                ln_weight = state_dict.pop(f'transformer.layers.{l}.norm1.weight')
                ln_bias = state_dict.pop(f'transformer.layers.{l}.norm1.bias')
                state_dict[f'transformer.layers.{l}.norm2.weight'] = ln_weight
                state_dict[f'transformer.layers.{l}.norm2.bias'] = ln_bias
                if l > 0:
                    ln_weight = state_dict.pop(f'transformer.layers.{l - 1}.norm2.weight')
                    ln_bias = state_dict.pop(f'transformer.layers.{l - 1}.norm2.bias')
                    state_dict[f'transformer.layers.{l}.norm1.weight'] = ln_weight
                    state_dict[f'transformer.layers.{l}.norm1.bias'] = ln_bias
            ln_weight = state_dict.pop('transformer.ln_0.weight')
            ln_bias = state_dict.pop('transformer.ln_0.bias')
            state_dict[f'transformer.layers.0.norm1.weight'] = ln_weight
            state_dict[f'transformer.layers.0.norm1.bias'] = ln_bias
        return super().load_state_dict(state_dict, strict=strict)

494

Tri Dao's avatar
Tri Dao committed
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
def shard_state_dict_tp(state_dict, config, world_size, rank):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

    def shard_first_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[0] // world_size
        state_dict[key] = x[rank * dim:(rank + 1) * dim]

    def shard_last_dim(state_dict, key):
        x = state_dict[key]
        dim = x.shape[-1] // world_size
        state_dict[key] = x[..., rank * dim:(rank + 1) * dim]

    def shard_qkv_headdim(state_dict, key):
        x = rearrange(state_dict[key], '(three d) ... -> three d ...', three=3)
        dim = x.shape[1] // world_size
        state_dict[key] = rearrange(x[:, rank * dim:(rank + 1) * dim],
                                    'three d ... -> (three d) ...')

    shard_first_dim(state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        shard_first_dim(state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        shard_last_dim(state_dict, 'transformer.embeddings.position_embeddings.weight')
    for i in range(config.num_hidden_layers):
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        shard_qkv_headdim(state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mixer.out_proj.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mixer.out_proj.bias')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
        shard_first_dim(state_dict, f'transformer.layers.{i}.mlp.fc1.bias')
        shard_last_dim(state_dict, f'transformer.layers.{i}.mlp.fc2.weight')
        if rank != 0:
            state_dict.pop(f'transformer.layers.{i}.mlp.fc2.bias')
    return state_dict


def combine_state_dicts_tp(state_dicts, config):
    """Convert the state_dict of a standard GPT model to the state_dict of a GPT model
    with tensor parallel.
    """
    world_size = len(state_dicts)
    keys = state_dicts[0].keys()
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
    assert vocab_size % world_size == 0
    assert config.hidden_size % world_size == 0
    inner_dim = config.n_inner if config.n_inner is not None else 4 * config.hidden_size
    assert inner_dim % world_size == 0

Tri Dao's avatar
Tri Dao committed
554
    # Sometimes the word embeddings are sharded on the 0th dim, sometimes on the 1st dim.
Tri Dao's avatar
Tri Dao committed
555
556
    # vocab_size // world_size coordinates are nonzero.
    def combine_word_embeddings(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
557
558
        dim = 0 if state_dicts[0][key].shape[0] == vocab_size // world_size else 1
        state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
559
560

    def combine_dim(state_dicts, state_dict, key, dim=-1):
Tri Dao's avatar
Tri Dao committed
561
562
        if key in state_dict:
            state_dict[key] = torch.cat([s[key] for s in state_dicts], dim=dim)
Tri Dao's avatar
Tri Dao committed
563
564

    def combine_qkv_headdim(state_dicts, state_dict, key):
Tri Dao's avatar
Tri Dao committed
565
566
567
568
569
570
571
572
        if key in state_dict:
            xs = [rearrange(s[key], '(three d) ... -> three d ...', three=3) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), 'three d ... -> (three d) ...')

    def combine_gated_mlp(state_dicts, state_dict, key):
        if key in state_dict:
            xs = [rearrange(s[key], '(two d) ... -> two d ...', two=2) for s in state_dicts]
            state_dict[key] = rearrange(torch.cat(xs, dim=1), 'two d ... -> (two d) ...')
Tri Dao's avatar
Tri Dao committed
573
574
575
576
577
578
579

    state_dict = state_dicts[0].copy()  # don't modify state_dict[0] inplace
    combine_word_embeddings(state_dicts, state_dict, 'transformer.embeddings.word_embeddings.weight')
    if 'lm_head.weight' in state_dict:
        combine_word_embeddings(state_dicts, state_dict, 'lm_head.weight')
    if 'transformer.embeddings.position_embeddings.weight' in state_dict:
        combine_dim(state_dicts, state_dict, 'transformer.embeddings.position_embeddings.weight', -1)
Tri Dao's avatar
Tri Dao committed
580
581
    mlp_combine_fn = (combine_gated_mlp if config.activation_function in ['glu', 'swiglu', 'geglu']
                      else partial(combine_dim, dim=0))
Tri Dao's avatar
Tri Dao committed
582
583
584
585
    for i in range(config.num_hidden_layers):
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.weight')
        combine_qkv_headdim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.Wqkv.bias')
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mixer.out_proj.weight', -1)
Tri Dao's avatar
Tri Dao committed
586
        mlp_combine_fn(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.weight')
Tri Dao's avatar
Tri Dao committed
587
588
589
590
591
592
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc1.bias', 0)
        combine_dim(state_dicts, state_dict, f'transformer.layers.{i}.mlp.fc2.weight', -1)
    return state_dict


def remap_state_dict_hf_gpt2(state_dict, config):
593
594
595
596
597
598
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('wte.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
599
600
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
    vocab_size = (math.ceil(config.vocab_size / pad_vocab_size_multiple) * pad_vocab_size_multiple)
601
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
602
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
603
604
605
606
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']

    # LayerNorm
Tri Dao's avatar
Tri Dao committed
607
608
609
610
611
    def key_mapping_ln(key):
        key = re.sub(r'^ln_f.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^h.(\d+).ln_(1|2).(weight|bias)', r'transformer.layers.\1.norm\2.\3', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638

    # MLP
    for d in range(config.num_hidden_layers):
        W1 = state_dict.pop(f'h.{d}.mlp.c_fc.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc1.weight'] = W1.t()
        W2 = state_dict.pop(f'h.{d}.mlp.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mlp.fc2.weight'] = W2.t()
    def key_mapping_mlp(key):
        key = re.sub(r'^h.(\d+).mlp.c_fc.bias', r'transformer.layers.\1.mlp.fc1.bias', key)
        key = re.sub(r'^h.(\d+).mlp.c_proj.bias', r'transformer.layers.\1.mlp.fc2.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())

    # Attention
    for d in range(config.num_hidden_layers):
        state_dict.pop(f'h.{d}.attn.bias')  # We don't store this bias
        Wqkv = state_dict.pop(f'h.{d}.attn.c_attn.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = Wqkv.t()
        Wout = state_dict.pop(f'h.{d}.attn.c_proj.weight')
        state_dict[f'transformer.layers.{d}.mixer.out_proj.weight'] = Wout.t()
    def key_mapping_attn(key):
        key = re.sub(r'^h.(\d+).attn.c_attn.bias', r'transformer.layers.\1.mixer.Wqkv.bias', key)
        key = re.sub(r'^h.(\d+).attn.c_proj.bias', r'transformer.layers.\1.mixer.out_proj.bias', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())

    return state_dict
639
640


Tri Dao's avatar
Tri Dao committed
641
642
643
644
645
646
647
648
649
650
651
652
def remap_state_dict_megatron(state_dict, config):
    def key_mapping_transformer(key):
        key = re.sub(r'^language_model.encoder.', 'transformer.', key)
        key = re.sub(r'^language_model.', 'transformer.', key)
        return key
    state_dict = OrderedDict((key_mapping_transformer(k), v) for k, v in state_dict.items())
    # Word embedding and position embedding
    def key_mapping_pos_emb(key):
        return re.sub(r'^wpe.', 'transformer.embeddings.position_embeddings.', key)
    state_dict = OrderedDict((key_mapping_pos_emb(k), v) for k, v in state_dict.items())
    word_embeddings = state_dict.pop('transformer.embedding.word_embeddings.weight')
    # It's possible that vocab_size is padded to be a multiple of 8, for example.
653
    pad_vocab_size_multiple = getattr(config, 'pad_vocab_size_multiple', 1)
Tri Dao's avatar
Tri Dao committed
654
655
    vocab_size = (math.ceil(word_embeddings.shape[0] / pad_vocab_size_multiple)
                  * pad_vocab_size_multiple)
Tri Dao's avatar
Tri Dao committed
656
657
658
659
    state_dict['transformer.embeddings.word_embeddings.weight'] = F.pad(
        word_embeddings, (0, 0, 0, vocab_size - word_embeddings.shape[0])
    )
    state_dict['lm_head.weight'] = state_dict['transformer.embeddings.word_embeddings.weight']
660

Tri Dao's avatar
Tri Dao committed
661
662
663
664
665
666
667
668
669
    # LayerNorm
    def key_mapping_ln(key):
        key = re.sub(r'^transformer.final_layernorm.(weight|bias)', r'transformer.ln_f.\1', key)
        key = re.sub(r'^transformer.layers.(\d+).input_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).post_attention_layernorm.(weight|bias)',
                     r'transformer.layers.\1.norm2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_ln(k), v) for k, v in state_dict.items())
670

Tri Dao's avatar
Tri Dao committed
671
672
673
674
675
676
677
678
    # MLP
    def key_mapping_mlp(key):
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_h_to_4h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc1.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).mlp.dense_4h_to_h.(weight|bias)',
                     r'transformer.layers.\1.mlp.fc2.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_mlp(k), v) for k, v in state_dict.items())
679

Tri Dao's avatar
Tri Dao committed
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
    # Attention
    def key_mapping_attn(key):
        key = re.sub(r'^transformer.layers.(\d+).self_attention.rotary_emb.inv_freq',
                     r'transformer.layers.\1.mixer.rotary_emb.inv_freq', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.query_key_value.(weight|bias)',
                     r'transformer.layers.\1.mixer.Wqkv.\2', key)
        key = re.sub(r'^transformer.layers.(\d+).self_attention.dense.(weight|bias)',
                     r'transformer.layers.\1.mixer.out_proj.\2', key)
        return key
    state_dict = OrderedDict((key_mapping_attn(k), v) for k, v in state_dict.items())
    # Megatron stores Wqkv as ((nheads 3 headdim), hidden_dim)
    # while we store Wqkv as ((3 nheads headdim), hidden_dim)
    headdim = config.hidden_size // config.num_attention_heads
    for d in range(config.num_hidden_layers):
        Wqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.weight')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.weight'] = rearrange(
            Wqkv, '(nheads three headdim) ... -> (three nheads headdim) ...',
            three=3, headdim=headdim
        )
        bqkv = state_dict.pop(f'transformer.layers.{d}.mixer.Wqkv.bias')
        state_dict[f'transformer.layers.{d}.mixer.Wqkv.bias'] = rearrange(
            bqkv, '(nheads three headdim) -> (three nheads headdim)',
            three=3, headdim=headdim
        )
704
705

    return state_dict