test_flash_attn.py 90.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
import math

Tri Dao's avatar
Tri Dao committed
3
import pytest
Tri Dao's avatar
Tri Dao committed
4
5
6
import torch
import torch.nn.functional as F
from einops import rearrange, repeat
Tri Dao's avatar
Tri Dao committed
7
8
9
10
11
12
13
from flash_attn import (
    flash_attn_func,
    flash_attn_kvpacked_func,
    flash_attn_qkvpacked_func,
    flash_attn_varlen_func,
    flash_attn_varlen_kvpacked_func,
    flash_attn_varlen_qkvpacked_func,
Tri Dao's avatar
Tri Dao committed
14
    flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
15
)
16
from flash_attn.bert_padding import pad_input, unpad_input
Tri Dao's avatar
Tri Dao committed
17
from flash_attn.flash_attn_interface import _get_block_size
18
from flash_attn.layers.rotary import apply_rotary_emb
Tri Dao's avatar
Tri Dao committed
19
20

MAX_HEADDIM_SM8x = 192
Tri Dao's avatar
Tri Dao committed
21

Tri Dao's avatar
Tri Dao committed
22

Tri Dao's avatar
Tri Dao committed
23
24
25
26
is_sm75 = torch.cuda.get_device_capability("cuda") == (7, 5)
is_sm8x = torch.cuda.get_device_capability("cuda")[0] == 8
is_sm80 = torch.cuda.get_device_capability("cuda") == (8, 0)
is_sm90 = torch.cuda.get_device_capability("cuda") == (9, 0)
Tri Dao's avatar
Tri Dao committed
27
28


29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
def attn_bias_from_alibi_slopes(
    slopes, seqlen_q, seqlen_k, query_padding_mask=None, key_padding_mask=None, causal=False
):
    batch, nheads = slopes.shape
    device = slopes.device
    slopes = rearrange(slopes, "b h -> b h 1 1")
    if causal:
        return torch.arange(-seqlen_k + 1, 1, device=device, dtype=torch.float32) * slopes
    else:
        row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
        col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
        sk = (
            seqlen_k
            if key_padding_mask is None
            else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        sq = (
            seqlen_q
            if query_padding_mask is None
            else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
        )
        relative_pos = torch.abs(row_idx + sk - sq - col_idx)
        return -slopes * relative_pos.to(dtype=slopes.dtype)


Tri Dao's avatar
Tri Dao committed
54
55
56
def generate_random_padding_mask(max_seqlen, batch_size, device, mode="random"):
    assert mode in ["full", "random", "third"]
    if mode == "full":
Tri Dao's avatar
Tri Dao committed
57
        lengths = torch.full((batch_size, 1), max_seqlen, device=device, dtype=torch.int32)
Tri Dao's avatar
Tri Dao committed
58
    elif mode == "random":
59
60
61
        lengths = torch.randint(
            max(1, max_seqlen - 20), max_seqlen + 1, (batch_size, 1), device=device
        )
Tri Dao's avatar
Tri Dao committed
62
    elif mode == "third":
63
        lengths = torch.randint(max_seqlen // 3, max_seqlen + 1, (batch_size, 1), device=device)
Tri Dao's avatar
Tri Dao committed
64
65
66
    padding_mask = (
        repeat(torch.arange(max_seqlen, device=device), "s -> b s", b=batch_size) < lengths
    )
Tri Dao's avatar
Tri Dao committed
67
68
69
    return padding_mask


Tri Dao's avatar
Tri Dao committed
70
71
72
def generate_qkv(
    q, k, v, query_padding_mask=None, key_padding_mask=None, kvpacked=False, qkvpacked=False
):
Tri Dao's avatar
Tri Dao committed
73
74
    """
    Arguments:
Tri Dao's avatar
Tri Dao committed
75
76
77
        q: (batch_size, seqlen_q, nheads, d)
        k: (batch_size, seqlen_k, nheads_k, d)
        v: (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
78
79
80
81
        query_padding_mask: (batch_size, seqlen), bool
        key_padding_mask: (batch_size, seqlen), bool
    """
    assert not (kvpacked and qkvpacked)
Tri Dao's avatar
Tri Dao committed
82
83
84
85
    batch_size, seqlen_q, nheads, d = q.shape
    _, seqlen_k, nheads_k, _ = k.shape
    assert k.shape == (batch_size, seqlen_k, nheads_k, d)
    assert v.shape == (batch_size, seqlen_k, nheads_k, d)
Tri Dao's avatar
Tri Dao committed
86
87
88

    if query_padding_mask is not None:
        q_unpad, indices_q, cu_seqlens_q, max_seqlen_q = unpad_input(q, query_padding_mask)
Tri Dao's avatar
Tri Dao committed
89
90
91
        output_pad_fn = lambda output_unpad: pad_input(
            output_unpad, indices_q, batch_size, seqlen_q
        )
Tri Dao's avatar
Tri Dao committed
92
    else:
Tri Dao's avatar
Tri Dao committed
93
94
95
96
        q_unpad = rearrange(q, "b s h d -> (b s) h d")
        cu_seqlens_q = torch.arange(
            0, (batch_size + 1) * seqlen_q, step=seqlen_q, dtype=torch.int32, device=q_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
97
        max_seqlen_q = seqlen_q
Tri Dao's avatar
Tri Dao committed
98
99
100
        output_pad_fn = lambda output_unpad: rearrange(
            output_unpad, "(b s) h d -> b s h d", b=batch_size
        )
Tri Dao's avatar
Tri Dao committed
101
102
103
104
105

    if key_padding_mask is not None:
        k_unpad, indices_k, cu_seqlens_k, max_seqlen_k = unpad_input(k, key_padding_mask)
        v_unpad, _, _, _ = unpad_input(v, key_padding_mask)
    else:
Tri Dao's avatar
Tri Dao committed
106
107
108
109
110
        k_unpad = rearrange(k, "b s h d -> (b s) h d")
        v_unpad = rearrange(v, "b s h d -> (b s) h d")
        cu_seqlens_k = torch.arange(
            0, (batch_size + 1) * seqlen_k, step=seqlen_k, dtype=torch.int32, device=k_unpad.device
        )
Tri Dao's avatar
Tri Dao committed
111
        max_seqlen_k = seqlen_k
Tri Dao's avatar
Tri Dao committed
112
113
114

    if qkvpacked:
        assert (query_padding_mask == key_padding_mask).all()
Tri Dao's avatar
Tri Dao committed
115
        assert nheads == nheads_k
Tri Dao's avatar
Tri Dao committed
116
        qkv_unpad = torch.stack([q_unpad, k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
117
        qkv = torch.stack([q, k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
118
        if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
119
            dqkv_pad_fn = lambda dqkv_unpad: pad_input(dqkv_unpad, indices_q, batch_size, seqlen_q)
Tri Dao's avatar
Tri Dao committed
120
        else:
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
129
130
131
            dqkv_pad_fn = lambda dqkv_unpad: rearrange(
                dqkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            qkv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            max_seqlen_q,
            qkv.detach().requires_grad_(),
            output_pad_fn,
            dqkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
132
133
    elif kvpacked:
        kv_unpad = torch.stack([k_unpad, v_unpad], dim=1)
Tri Dao's avatar
Tri Dao committed
134
        kv = torch.stack([k, v], dim=2)
Tri Dao's avatar
Tri Dao committed
135
136
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
137
            dkv_pad_fn = lambda dkv_unpad: pad_input(dkv_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
138
        else:
Tri Dao's avatar
Tri Dao committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
            dkv_pad_fn = lambda dkv_unpad: rearrange(
                dkv_unpad, "(b s) t h d -> b s t h d", b=batch_size
            )
        return (
            q_unpad.detach().requires_grad_(),
            kv_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            kv.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
155
156
157
    else:
        dq_pad_fn = output_pad_fn
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
158
            dk_pad_fn = lambda dk_unpad: pad_input(dk_unpad, indices_k, batch_size, seqlen_k)
Tri Dao's avatar
Tri Dao committed
159
        else:
Tri Dao's avatar
Tri Dao committed
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
            dk_pad_fn = lambda dk_unpad: rearrange(dk_unpad, "(b s) h d -> b s h d", b=batch_size)
        return (
            q_unpad.detach().requires_grad_(),
            k_unpad.detach().requires_grad_(),
            v_unpad.detach().requires_grad_(),
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q.detach().requires_grad_(),
            k.detach().requires_grad_(),
            v.detach().requires_grad_(),
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        )
Tri Dao's avatar
Tri Dao committed
176
177


Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184
def construct_local_mask(
    seqlen_q,
    seqlen_k,
    window_size=(-1, -1),  # -1 means infinite window size
    query_padding_mask=None,
    key_padding_mask=None,
    device=None,
185
):
186
187
188
189
190
191
192
193
194
195
196
197
    row_idx = rearrange(torch.arange(seqlen_q, device=device, dtype=torch.long), "s -> s 1")
    col_idx = torch.arange(seqlen_k, device=device, dtype=torch.long)
    sk = (
        seqlen_k
        if key_padding_mask is None
        else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
    )
    sq = (
        seqlen_q
        if query_padding_mask is None
        else rearrange(query_padding_mask.sum(-1), "b -> b 1 1 1")
    )
Tri Dao's avatar
Tri Dao committed
198
199
200
201
202
203
204
205
    if window_size[0] < 0:
        return col_idx > row_idx + sk - sq + window_size[1]
    else:
        sk = torch.full_like(col_idx, seqlen_k) if key_padding_mask is None else sk
        return torch.logical_or(
            col_idx > torch.minimum(row_idx + sk - sq + window_size[1], sk),
            col_idx < row_idx + sk - sq - window_size[0],
        )
206
207


Tri Dao's avatar
Tri Dao committed
208
209
210
211
212
213
def attention_ref(
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
214
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
215
216
217
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
218
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
219
220
221
    upcast=True,
    reorder_ops=False,
):
Tri Dao's avatar
Tri Dao committed
222
223
224
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
225
226
        k: (batch_size, seqlen_k, nheads_k, head_dim)
        v: (batch_size, seqlen_k, nheads_k, head_dim)
Tri Dao's avatar
Tri Dao committed
227
228
        query_padding_mask: (batch_size, seqlen_q)
        key_padding_mask: (batch_size, seqlen_k)
229
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
230
231
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
232
233
        causal: whether to apply causal masking
        window_size: (int, int), left and right window size
Tri Dao's avatar
Tri Dao committed
234
235
236
237
238
239
240
241
242
        upcast: whether to cast all inputs to fp32, do all computation in fp32, then cast
            output back to fp16/bf16.
        reorder_ops: whether to change the order of operations (scaling k instead of scaling k, etc.)
            without changing the math. This is to estimate the numerical error from operation
            reordering.
    Output:
        output: (batch_size, seqlen_q, nheads, head_dim)
        attention: (batch_size, nheads, seqlen_q, seqlen_k), softmax after dropout
    """
Tri Dao's avatar
Tri Dao committed
243
244
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
245
246
247
248
    dtype_og = q.dtype
    if upcast:
        q, k, v = q.float(), k.float(), v.float()
    seqlen_q, seqlen_k = q.shape[1], k.shape[1]
Tri Dao's avatar
Tri Dao committed
249
250
    k = repeat(k, "b s h d -> b s (h g) d", g=q.shape[2] // k.shape[2])
    v = repeat(v, "b s h d -> b s (h g) d", g=q.shape[2] // v.shape[2])
Tri Dao's avatar
Tri Dao committed
251
252
    d = q.shape[-1]
    if not reorder_ops:
Tri Dao's avatar
Tri Dao committed
253
        scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
Tri Dao's avatar
Tri Dao committed
254
    else:
Tri Dao's avatar
Tri Dao committed
255
        scores = torch.einsum("bthd,bshd->bhts", q, k / math.sqrt(d))
Tri Dao's avatar
Tri Dao committed
256
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
257
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
258
259
260
261
262
263
264
265
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
266
        )
Tri Dao's avatar
Tri Dao committed
267
        scores.masked_fill_(local_mask, float("-inf"))
268
269
270
    if attn_bias is not None:
        scores = scores + attn_bias
    attention = torch.softmax(scores, dim=-1).to(v.dtype)
Tri Dao's avatar
Tri Dao committed
271
272
273
274
275
276
277
    # Some rows might be completely masked out so we fill them with zero instead of NaN
    if window_size[0] >= 0 or window_size[1] >= 0:
        attention = attention.masked_fill(torch.all(local_mask, dim=-1, keepdim=True), 0.0)
    # We want to mask here so that the attention matrix doesn't have any NaNs
    # Otherwise we'll get NaN in dV
    if query_padding_mask is not None:
        attention = attention.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
278
279
280
281
282
    dropout_scaling = 1.0 / (1 - dropout_p)
    # attention_drop = attention.masked_fill(~dropout_mask, 0.0) * dropout_scaling
    # output = torch.einsum('bhts,bshd->bthd', attention_drop , v)
    if dropout_mask is not None:
        attention_drop = attention.masked_fill(~dropout_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
283
284
    else:
        attention_drop = attention
Tri Dao's avatar
Tri Dao committed
285
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v * dropout_scaling)
Tri Dao's avatar
Tri Dao committed
286
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
287
        output.masked_fill_(rearrange(~query_padding_mask, "b s -> b s 1 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
288
289
290
    return output.to(dtype=dtype_og), attention.to(dtype=dtype_og)


Tri Dao's avatar
Tri Dao committed
291
292
293
294
295
def attention_kvpacked_ref(
    q,
    kv,
    query_padding_mask=None,
    key_padding_mask=None,
296
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
297
298
299
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
300
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
301
302
303
304
305
306
307
308
309
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        q,
        kv[:, :, 0],
        kv[:, :, 1],
        query_padding_mask,
        key_padding_mask,
310
        attn_bias,
Tri Dao's avatar
Tri Dao committed
311
312
313
314
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
315
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
316
317
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
318
319


Tri Dao's avatar
Tri Dao committed
320
321
322
def attention_qkvpacked_ref(
    qkv,
    key_padding_mask=None,
323
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
324
325
326
    dropout_p=0.0,
    dropout_mask=None,
    causal=False,
Tri Dao's avatar
Tri Dao committed
327
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
328
329
330
331
332
333
334
335
336
    upcast=True,
    reorder_ops=False,
):
    return attention_ref(
        qkv[:, :, 0],
        qkv[:, :, 1],
        qkv[:, :, 2],
        key_padding_mask,
        key_padding_mask,
337
        attn_bias,
Tri Dao's avatar
Tri Dao committed
338
339
340
341
        dropout_p,
        dropout_mask,
        upcast=upcast,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
342
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
343
344
        reorder_ops=reorder_ops,
    )
Tri Dao's avatar
Tri Dao committed
345
346
347
348
349
350
351
352
353
354
355


def generate_sparsity_mask(seqlen, sparsity=0.3):
    repeats = seqlen // 16 // 2
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([0, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda'),
    #                     torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 1] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    # mask = torch.stack([torch.tensor([1, 0] * repeats, dtype=torch.bool, device='cuda')], dim=-1)
    nrow, ncol = seqlen // 16, seqlen // 256
Tri Dao's avatar
Tri Dao committed
356
    mask = torch.rand(nrow, ncol, device="cuda") < sparsity
Tri Dao's avatar
Tri Dao committed
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
    return mask


def attention_blocksparse_ref(qkv, blockmask, attn_mask, dropout_p, dropout_mask):
    """
    Arguments:
        qkv: (batch_size, seqlen, 3, nheads, head_dim)
        blockmask: (seqlen / 16, seqlen / 256)
        attn_mask: (batch_size, seqlen)
        dropout_p: float
        dropout_mask: (batch_size, nheads, seqlen, seqlen)
    Output:
        output: (batch_size, seqlen, nheads, head_dim)
        attention: softmax after dropout
    """
    q, k, v = qkv.float().unbind(dim=2)
    d = qkv.shape[-1]
    seqlen = qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
375
376
377
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(d), k)
    scores.masked_fill_(rearrange(~attn_mask, "b s -> b 1 1 s"), float("-inf"))
    blockmask = repeat(blockmask, "s_16 s_256 -> (s_16 16) (s_256 256)")
Tri Dao's avatar
Tri Dao committed
378
    blockmask = blockmask[:seqlen, :seqlen]
Tri Dao's avatar
Tri Dao committed
379
    scores.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
380
    attention = torch.softmax(scores, dim=-1)
Tri Dao's avatar
Tri Dao committed
381
382
    attention = attention.masked_fill(rearrange(~attn_mask, "b s -> b 1 s 1"), 0.0)
    attention = attention.masked_fill_(rearrange(~blockmask, "t s -> 1 1 t s"), 0.0)
Tri Dao's avatar
Tri Dao committed
383
    attention_drop = attention.masked_fill(~dropout_mask, 0.0) / (1 - dropout_p)
Tri Dao's avatar
Tri Dao committed
384
385
    output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
    output.masked_fill_(rearrange(~attn_mask, "b s -> b s 1 1"), 0)
Tri Dao's avatar
Tri Dao committed
386
387
388
    return output.to(dtype=qkv.dtype), attention.to(dtype=qkv.dtype)


Tri Dao's avatar
Tri Dao committed
389
def convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
390
391
392
393
394
395
396
397
398
    S,
    seqlen_q,
    seqlen_k,
    query_padding_mask,
    key_padding_mask,
    head_dim,
    is_dropout,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
399
):
Tri Dao's avatar
Tri Dao committed
400
401
    """FlashAttention stores the S matrix in a different way.
    Arguments:
Tri Dao's avatar
Tri Dao committed
402
        S: (batch_size, nheads, seqlen_q_rounded, seqlen_k_rounded)
403
404
        query_padding_mask: (batch_size, seqlen_q_rounded)
        key_padding_mask: (batch_size, seqlen_k_rounded)
Tri Dao's avatar
Tri Dao committed
405
    """
Tri Dao's avatar
Tri Dao committed
406
407
    if causal:
        window_size = (window_size[0], 0)
408
    seqlen_q_rounded, seqlen_k_rounded = S.shape[-2:]
Tri Dao's avatar
Tri Dao committed
409
    warps_n = 4
Tri Dao's avatar
Tri Dao committed
410
    blocksize_m, blocksize_n = _get_block_size(S.device, head_dim, is_dropout, causal)
411
412
    nblocks_n = (seqlen_k_rounded + blocksize_n - 1) // blocksize_n
    nblocks_m = (seqlen_q_rounded + blocksize_m - 1) // blocksize_m
Tri Dao's avatar
Tri Dao committed
413
    mmas_n = (blocksize_n + 16 - 1) // 16
Tri Dao's avatar
Tri Dao committed
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
    S_flat = rearrange(
        S,
        "b h (nblocks_m blocksize_m) (nblocks_n blocksize_n) -> b h nblocks_m nblocks_n (blocksize_m blocksize_n)",
        blocksize_m=blocksize_m,
        blocksize_n=blocksize_n,
    )
    S_converted = rearrange(
        S_flat,
        "b h nblocks_m nblocks_n (mmas_n mmas_m warps_n eight four c2 c1 c0) -> b h (nblocks_m mmas_m warps_n c1 eight) (nblocks_n mmas_n c2 four c0)",
        mmas_n=mmas_n,
        warps_n=warps_n,
        eight=8,
        c0=2,
        c1=2,
        c2=2,
        four=4,
    )
431

Tri Dao's avatar
Tri Dao committed
432
433
434
435
436
437
438
439
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            S.device,
Tri Dao's avatar
Tri Dao committed
440
        )
Tri Dao's avatar
Tri Dao committed
441
442
        local_mask = F.pad(
            local_mask,
443
444
445
            (0, seqlen_k_rounded - seqlen_k, 0, seqlen_q_rounded - seqlen_q),
            value=True,
        )
Tri Dao's avatar
Tri Dao committed
446
        S_converted.masked_fill_(local_mask, 0.0)
Tri Dao's avatar
Tri Dao committed
447
448
449

    # Need to zero out things not in attention_mask in case S was initialized with random values
    # and some of those values aren't overwritten.
450
451
452
    seqlen_q_og = (
        query_padding_mask.shape[-1] if query_padding_mask is not None else seqlen_q_rounded
    )
Tri Dao's avatar
Tri Dao committed
453
    if query_padding_mask is not None:
454
        query_padding_mask = F.pad(query_padding_mask, (0, seqlen_q_rounded - seqlen_q_og))
Tri Dao's avatar
Tri Dao committed
455
        S_converted = S_converted.masked_fill(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
456
457
    seqlen_k_og = key_padding_mask.shape[-1] if key_padding_mask is not None else seqlen_k
    if key_padding_mask is not None:
458
        key_padding_mask = F.pad(key_padding_mask, (0, seqlen_k_rounded - seqlen_k_og))
Tri Dao's avatar
Tri Dao committed
459
        S_converted = S_converted.masked_fill(rearrange(~key_padding_mask, "b s -> b 1 1 s"), 0.0)
460
461
462
    S_converted = F.pad(S_converted, (0, 0, 0, seqlen_q_og - seqlen_q_rounded))
    S_converted = F.pad(S_converted, (0, seqlen_k_og - seqlen_k_rounded))
    return S_converted[:, :, :seqlen_q, :seqlen_k]
Tri Dao's avatar
Tri Dao committed
463
464


Tri Dao's avatar
Tri Dao committed
465
466
467
468
469
470
471
def normalize_flash_attn_S(
    attn_unnorm,
    q,
    k,
    v,
    query_padding_mask=None,
    key_padding_mask=None,
472
    attn_bias=None,
Tri Dao's avatar
Tri Dao committed
473
474
    is_dropout=False,
    causal=False,
Tri Dao's avatar
Tri Dao committed
475
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
476
):
Tri Dao's avatar
Tri Dao committed
477
478
479
480
481
    """
    Arguments:
        q: (batch_size, seqlen_q, nheads, head_dim)
        k, v: (batch_size, seqlen_k, nheads, head_dim)
        key_padding_mask: (batch_size, seqlen_q)
482
        attn_bias: broadcastable to (batch_size, nheads, seqlen_q, seqlen_k)
Tri Dao's avatar
Tri Dao committed
483
484
485
486
    Output:
        softmax_lse: (batch_size, nheads, seqlen_q)
        softmax_max: (batch_size, nheads, seqlen_q)
    """
Tri Dao's avatar
Tri Dao committed
487
488
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
489
490
491
    q, k, v = q.float(), k.float(), v.float()
    _, seqlen_q, _, head_dim = q.shape
    seqlen_k = k.shape[1]
Tri Dao's avatar
Tri Dao committed
492
    scores = torch.einsum("bthd,bshd->bhts", q / math.sqrt(head_dim), k)
Tri Dao's avatar
Tri Dao committed
493
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
494
        scores.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), float("-inf"))
Tri Dao's avatar
Tri Dao committed
495
496
497
498
499
500
501
502
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            q.device,
Tri Dao's avatar
Tri Dao committed
503
        )
Tri Dao's avatar
Tri Dao committed
504
        scores.masked_fill_(local_mask, float("-inf"))
505
506
    if attn_bias is not None:
        scores = scores + attn_bias.to(dtype=scores.dtype)
Tri Dao's avatar
Tri Dao committed
507
508
    _, block_size_n = _get_block_size(scores.device, head_dim, is_dropout, causal)
    scores_block = scores.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
509
    lse_block = torch.stack([torch.logsumexp(s, dim=-1) for s in scores_block], dim=-1)
Tri Dao's avatar
Tri Dao committed
510
    lse = torch.logsumexp(lse_block, dim=-1)
511
512
513
    # lse could be -inf (i.e. all values in scores are -inf), and we want to set those to inf
    # so that when we do torch.exp(m - lse), we get 0.0 instead of NaN.
    lse[lse == float("-inf")] = float("inf")
Tri Dao's avatar
Tri Dao committed
514
515
516
    scores_max_block = torch.stack([torch.amax(s, dim=-1) for s in scores_block], dim=-1)
    cummax_block = torch.cummax(scores_max_block.flip(-1), dim=-1).values.flip(-1).unbind(dim=-1)
    attn_unnorm_block = attn_unnorm.split(block_size_n, dim=-1)
Tri Dao's avatar
Tri Dao committed
517
518
    attn_norm = torch.cat(
        [
519
            a * rearrange(torch.exp(m - lse), "b h s -> b h s 1")
Tri Dao's avatar
Tri Dao committed
520
521
522
523
            for a, m in zip(attn_unnorm_block, cummax_block)
        ],
        dim=-1,
    )
Tri Dao's avatar
Tri Dao committed
524
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
525
        attn_norm.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), 0.0)
Tri Dao's avatar
Tri Dao committed
526
527
528
    return attn_norm.to(dtype=attn_unnorm.dtype)


Tri Dao's avatar
Tri Dao committed
529
def get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
530
531
532
533
534
    dropout_mask,
    query_padding_mask=None,
    key_padding_mask=None,
    causal=False,
    window_size=(-1, -1),  # -1 means infinite window size
Tri Dao's avatar
Tri Dao committed
535
):
Tri Dao's avatar
Tri Dao committed
536
537
538
539
540
    """
    dropout_mask: (batch_size, nheads, seqlen_q, seqlen_k), bool. True means keep, False means drop.
    query_padding_mask: (batch_size, seqlen_q)
    key_padding_mask: (batch_size, seqlen_k)
    """
Tri Dao's avatar
Tri Dao committed
541
542
    if causal:
        window_size = (window_size[0], 0)
Tri Dao's avatar
Tri Dao committed
543
544
    batch_size, nheads, seqlen_q, seqlen_k = dropout_mask.shape
    dropped = ~dropout_mask
Tri Dao's avatar
Tri Dao committed
545
    valid = torch.ones_like(dropout_mask)
Tri Dao's avatar
Tri Dao committed
546
    if query_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
547
        dropped.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
548
        valid.masked_fill_(rearrange(~query_padding_mask, "b s -> b 1 s 1"), False)
Tri Dao's avatar
Tri Dao committed
549
    if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
550
        dropped.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
Tri Dao's avatar
Tri Dao committed
551
552
553
554
555
556
557
558
559
        valid.masked_fill_(rearrange(~key_padding_mask, "b s -> b 1 1 s"), False)
    if window_size[0] >= 0 or window_size[1] >= 0:
        local_mask = construct_local_mask(
            seqlen_q,
            seqlen_k,
            window_size,
            query_padding_mask,
            key_padding_mask,
            dropout_mask.device,
Tri Dao's avatar
Tri Dao committed
560
        )
Tri Dao's avatar
Tri Dao committed
561
562
        dropped.masked_fill_(local_mask, False)
        valid.masked_fill_(local_mask, False)
Tri Dao's avatar
Tri Dao committed
563
    dropped_total = dropped.sum()
Tri Dao's avatar
Tri Dao committed
564
    return dropped.sum() / valid.sum()
Tri Dao's avatar
Tri Dao committed
565
566


Tri Dao's avatar
Tri Dao committed
567
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
568
# @pytest.mark.parametrize("dtype", [torch.float16])
569
570
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
571
@pytest.mark.parametrize("alibi", [False, True])
572
# @pytest.mark.parametrize("alibi", [False])
Tri Dao's avatar
Tri Dao committed
573
@pytest.mark.parametrize("local", [False, True])
574
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
575
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
576
# @pytest.mark.parametrize("causal", [False])
Tri Dao's avatar
Tri Dao committed
577
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
578
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
579
# @pytest.mark.parametrize('d', [32, 64, 96, 128])
Tri Dao's avatar
Tri Dao committed
580
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
581
# @pytest.mark.parametrize('seqlen', [128, 256, 384, 512, 768, 1024, 2048])
582
@pytest.mark.parametrize("seqlen", [97, 128, 200, 384, 768, 1024, 1025, 2048])
583
# @pytest.mark.parametrize("seqlen", [512])
Tri Dao's avatar
Tri Dao committed
584
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
585
# @pytest.mark.parametrize("dropout_p", [0.0])
586
def test_flash_attn_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
587
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
588
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
589
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
590
591
    # set seed
    torch.random.manual_seed(0)
592
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
593
    nheads = 9
Tri Dao's avatar
Tri Dao committed
594
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
595
596
597
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
598
599
600
601
602
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen, seqlen, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
603
    out, lse, S_dmask = flash_attn_qkvpacked_func(
604
605
606
607
608
        qkv,
        dropout_p,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
609
        deterministic=deterministic,
610
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
611
    )
Tri Dao's avatar
Tri Dao committed
612
613
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
614
615
616
617
618
619
620
621
622
            S_dmask,
            seqlen,
            seqlen,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
623
        )
Tri Dao's avatar
Tri Dao committed
624
625
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
626
627
628
629
630
631
632
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            None,
            None,
633
            attn_bias,
Tri Dao's avatar
Tri Dao committed
634
635
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
636
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
637
        )
Tri Dao's avatar
Tri Dao committed
638
639
640
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
641
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
642
643
644
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
645
    out_ref, attn_ref = attention_qkvpacked_ref(
646
        qkv, None, attn_bias, dropout_p, dropout_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
647
    )
Tri Dao's avatar
Tri Dao committed
648
    out_pt, attn_pt = attention_qkvpacked_ref(
Tri Dao's avatar
Tri Dao committed
649
650
        qkv,
        None,
651
        attn_bias,
Tri Dao's avatar
Tri Dao committed
652
653
654
655
656
657
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
        upcast=False,
        reorder_ops=True,
Tri Dao's avatar
Tri Dao committed
658
    )
Tri Dao's avatar
Tri Dao committed
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    # v = qkv[:, :, 2].float()
    # qk = torch.einsum('bshd,bthd->bhst', qkv[:, :, 0], qkv[:, :, 1]).float()
    # if causal:
    #     causal_mask = torch.triu(torch.ones(seqlen, seqlen, dtype=torch.bool, device=qkv.device), 1)
    #     qk.masked_fill_(causal_mask, float('-inf'))
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # p_tmp = torch.softmax(qk / math.sqrt(d), -1)
    # p_dropped = p_tmp if dropout_mask is None else p_tmp.masked_fill(~dropout_mask, 0)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # qk_max1 = torch.max(qk[:, :, 128:, 192:], -1, keepdim=True).values
    # qk_max2 = torch.max(qk[:, :, 128:, 128:], -1, keepdim=True).values
    # qk_max3 = torch.max(qk[:, :, 128:, 64:], -1, keepdim=True).values
    # qk_max4 = torch.max(qk[:, :, 128:, :], -1, keepdim=True).values
    # o1 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 192:] - qk_max1) / math.sqrt(d)), v[:, 192:])
    # o2 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 128:] - qk_max2) / math.sqrt(d)), v[:, 128:])
    # o3 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, 64:] - qk_max3) / math.sqrt(d)), v[:, 64:])
    # o4 = torch.einsum('bhst,bthd->bshd', torch.exp((qk[:, :, 128:, :] - qk_max4) / math.sqrt(d)), v[:, :])
Tri Dao's avatar
Tri Dao committed
677
678
679
680
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
681
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
682
683
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
684
685
686
687
688
689

    g = torch.randn_like(out)
    # do_o = (g.float() * out.float()).sum(-1)
    # dv_tmp = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, :64], g[:, :64])
    # dv_tmp1 = torch.einsum('bhts,bthd->bshd', attn_pt[:, :, 64:], g[:, 64:])
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
690
691
692
693
694
695
696
697
698
699
700
        (dqkv,) = torch.autograd.grad(out, qkv, g)
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
701
702
703

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
704
705
706
707
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
708
709
710
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
711
712
713

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
714
715


Tri Dao's avatar
Tri Dao committed
716
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
Tri Dao's avatar
Tri Dao committed
717
# @pytest.mark.parametrize('dtype', [torch.float16])
718
719
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
720
721
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
722
723
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
724
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
725
# @pytest.mark.parametrize('causal', [False])
726
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
727
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
728
# @pytest.mark.parametrize('d', [64])
729
@pytest.mark.parametrize("seqlen", [97, 128, 200, 257, 384, 512, 768, 1025, 2048])
Tri Dao's avatar
Tri Dao committed
730
# @pytest.mark.parametrize('seqlen', [128])
Tri Dao's avatar
Tri Dao committed
731
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
Tri Dao's avatar
Tri Dao committed
732
# @pytest.mark.parametrize('dropout_p', [0.0])
733
def test_flash_attn_varlen_qkvpacked(seqlen, d, dropout_p, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
734
    if seqlen >= 2048 and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30:
Tri Dao's avatar
Tri Dao committed
735
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
736
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
737
738
    # set seed
    torch.random.manual_seed(0)
Tri Dao's avatar
Tri Dao committed
739
740
    batch_size = 5
    nheads = 6
Tri Dao's avatar
Tri Dao committed
741
    window_size = (-1, -1) if not local else torch.randint(0, seqlen, (2,))
Tri Dao's avatar
Tri Dao committed
742
743
744
    qkv = torch.randn(
        batch_size, seqlen, 3, nheads, d, device=device, dtype=dtype, requires_grad=True
    )
Tri Dao's avatar
Tri Dao committed
745

Tri Dao's avatar
Tri Dao committed
746
    key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
747
    # key_padding_mask = generate_random_padding_mask(seqlen, batch_size, device, mode='full')
748
749
750
751
752
753
754
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen, seqlen, key_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
755

Tri Dao's avatar
Tri Dao committed
756
757
    qkv_unpad, cu_seqlens, max_seqlen, qkv, output_pad_fn, dqkv_pad_fn = generate_qkv(
        *qkv.unbind(dim=2), key_padding_mask, key_padding_mask, qkvpacked=True
Tri Dao's avatar
Tri Dao committed
758
    )
Tri Dao's avatar
Tri Dao committed
759
760

    out_unpad, sm_lse, S_dmask = flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
761
762
763
764
765
766
        qkv_unpad,
        cu_seqlens,
        max_seqlen,
        dropout_p,
        causal=causal,
        window_size=window_size,
767
        alibi_slopes=alibi_slopes,
768
        deterministic=deterministic,
Tri Dao's avatar
Tri Dao committed
769
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
770
    )
Tri Dao's avatar
Tri Dao committed
771
772
773
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
774
775
776
777
778
779
780
781
            S_dmask,
            seqlen,
            seqlen,
            key_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
782
            window_size=window_size,
783
        )
Tri Dao's avatar
Tri Dao committed
784
785
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
Tri Dao's avatar
Tri Dao committed
786
787
788
789
790
791
792
        attn = normalize_flash_attn_S(
            attn_unnorm,
            qkv[:, :, 0],
            qkv[:, :, 1],
            qkv[:, :, 2],
            key_padding_mask,
            key_padding_mask,
793
            attn_bias,
Tri Dao's avatar
Tri Dao committed
794
795
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
796
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
797
798
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
799
            dropout_mask, key_padding_mask, key_padding_mask, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
800
801
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
802
803
804
    else:
        dropout_mask = None

Tri Dao's avatar
Tri Dao committed
805
    out_ref, attn_ref = attention_qkvpacked_ref(
806
807
808
809
810
811
812
        qkv,
        key_padding_mask,
        attn_bias,
        dropout_p,
        dropout_mask,
        causal=causal,
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
813
814
815
816
    )
    out_pt, attn_pt = attention_qkvpacked_ref(
        qkv,
        key_padding_mask,
817
        attn_bias,
Tri Dao's avatar
Tri Dao committed
818
819
820
        dropout_p,
        dropout_mask,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
821
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
822
823
824
825
826
827
828
        upcast=False,
        reorder_ops=True,
    )
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
829
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
830
831
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
832
833
834

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
835
        (dqkv_unpad,) = torch.autograd.grad(out, qkv_unpad, g)
Tri Dao's avatar
Tri Dao committed
836
        dqkv = dqkv_pad_fn(dqkv_unpad)
Tri Dao's avatar
Tri Dao committed
837
838
839
840
841
842
843
844
845
846
        (dqkv_ref,) = torch.autograd.grad(out_ref, qkv, g)
        (dqkv_pt,) = torch.autograd.grad(out_pt, qkv, g)
        print(f"dQ max diff: {(dqkv[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK max diff: {(dqkv[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV max diff: {(dqkv[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV mean diff: {(dqkv - dqkv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dqkv_pt[:, :, 0] - dqkv_ref[:, :, 0]).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dqkv_pt[:, :, 1] - dqkv_ref[:, :, 1]).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dqkv_pt[:, :, 2] - dqkv_ref[:, :, 2]).abs().max().item()}")
        print(f"dQKV Pytorch mean diff: {(dqkv_pt - dqkv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
847
848
849

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
850
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
851

Tri Dao's avatar
Tri Dao committed
852
853
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
854
855
856
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
857
858
859

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dqkv - dqkv_ref).abs().max().item() <= 2 * (dqkv_pt - dqkv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
860
861


Tri Dao's avatar
Tri Dao committed
862
@pytest.mark.parametrize("kvpacked", [True, False])
863
# @pytest.mark.parametrize("kvpacked", [False])
Tri Dao's avatar
Tri Dao committed
864
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
865
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
866
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
867
# @pytest.mark.parametrize("mha_type", ["mha"])
868
869
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
870
871
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
872
873
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
874
@pytest.mark.parametrize("causal", [False, True])
875
# @pytest.mark.parametrize("causal", [True])
876
@pytest.mark.parametrize("d", [32, 40, 59, 64, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
877
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
878
879
880
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
881
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
897
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
898
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
899
# @pytest.mark.parametrize("dropout_p", [0.17])
Tri Dao's avatar
Tri Dao committed
900
def test_flash_attn_output(
901
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
902
):
Tri Dao's avatar
Tri Dao committed
903
904
905
906
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
Tri Dao's avatar
Tri Dao committed
907
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
908
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
909
910
    # set seed
    torch.random.manual_seed(0)
911
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
912
913
914
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
915
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
916
917
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
918
919
920
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
921
    else:
Tri Dao's avatar
Tri Dao committed
922
923
924
925
926
927
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
928
929
930
931
932
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
933
934
935

    if kvpacked:
        out, lse, S_dmask = flash_attn_kvpacked_func(
936
937
938
939
940
941
            q,
            kv,
            dropout_p,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
942
            deterministic=deterministic,
943
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
944
945
946
        )
    else:
        out, lse, S_dmask = flash_attn_func(
947
948
949
950
951
952
953
            q,
            k,
            v,
            dropout_p,
            causal=causal,
            window_size=window_size,
            alibi_slopes=alibi_slopes,
954
            deterministic=deterministic,
955
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
956
957
958
        )
    if dropout_p > 0.0:
        S_dmask_converted = convert_flash_attn_S_to_softmax(
Tri Dao's avatar
Tri Dao committed
959
960
961
962
963
964
965
966
967
            S_dmask,
            seqlen_q,
            seqlen_k,
            None,
            None,
            d,
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
968
        )
Tri Dao's avatar
Tri Dao committed
969
970
971
972
973
974
975
976
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
977
        attn = normalize_flash_attn_S(
Tri Dao's avatar
Tri Dao committed
978
979
980
981
982
983
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            None,
            None,
984
            attn_bias,
Tri Dao's avatar
Tri Dao committed
985
986
987
            dropout_p > 0.0,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
988
        )
Tri Dao's avatar
Tri Dao committed
989
990
991
        dropout_fraction = get_dropout_fraction(
            dropout_mask, None, None, causal=causal, window_size=window_size
        ).item()
Tri Dao's avatar
Tri Dao committed
992
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
993
994
    else:
        dropout_mask = None
Tri Dao's avatar
Tri Dao committed
995

Tri Dao's avatar
Tri Dao committed
996
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
997
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
998
999
1000
1001
            q,
            kv,
            None,
            None,
1002
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1003
1004
1005
1006
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1007
1008
1009
1010
1011
1012
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            None,
            None,
1013
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1014
1015
1016
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1017
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1018
1019
1020
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1021
    else:
Tri Dao's avatar
Tri Dao committed
1022
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1023
1024
1025
1026
1027
            q,
            k,
            v,
            None,
            None,
1028
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1029
1030
1031
1032
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1033
1034
1035
1036
1037
1038
1039
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            None,
            None,
1040
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1041
1042
1043
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1044
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1045
1046
1047
1048
1049
1050
1051
1052
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1053
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1054
1055
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1056
1057
1058
1059
1060

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1061
1062
1063
1064
            (
                dq,
                dkv,
            ) = torch.autograd.grad(out, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1065
            dk, dv = dkv.unbind(2)
Tri Dao's avatar
Tri Dao committed
1066
1067
1068
1069
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1070
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1071
1072
1073
1074
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1075
1076
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1104
1105
1106

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1107
1108
1109
1110
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()

    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1111
1112
1113
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1114

Tri Dao's avatar
Tri Dao committed
1115
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
Tri Dao's avatar
Tri Dao committed
1116
1117
1118
1119
1120
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item()


Tri Dao's avatar
Tri Dao committed
1121
@pytest.mark.parametrize("kvpacked", [True, False])
Tri Dao's avatar
Tri Dao committed
1122
# @pytest.mark.parametrize('kvpacked', [False])
Tri Dao's avatar
Tri Dao committed
1123
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1124
# @pytest.mark.parametrize('dtype', [torch.float16])
Tri Dao's avatar
Tri Dao committed
1125
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
Tri Dao's avatar
Tri Dao committed
1126
# @pytest.mark.parametrize('mha_type', ["mqa"])
1127
1128
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1129
1130
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1131
1132
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
Tri Dao's avatar
Tri Dao committed
1133
@pytest.mark.parametrize("causal", [False, True])
Tri Dao's avatar
Tri Dao committed
1134
# @pytest.mark.parametrize('causal', [True])
1135
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1136
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1137
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
1138
1139
1140
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
1141
        (1, 147),
Tri Dao's avatar
Tri Dao committed
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (512, 256),
        (1024, 1024),
        (1023, 1024),
        (1024, 1023),
        (2048, 2048),
    ],
)
Tri Dao's avatar
Tri Dao committed
1154
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(128, 128)])
Tri Dao's avatar
Tri Dao committed
1155
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
1156
# @pytest.mark.parametrize('dropout_p', [0.0])
Tri Dao's avatar
Tri Dao committed
1157
def test_flash_attn_varlen_output(
1158
    seqlen_q, seqlen_k, d, dropout_p, causal, local, alibi, deterministic, mha_type, dtype, kvpacked
Tri Dao's avatar
Tri Dao committed
1159
1160
1161
1162
1163
):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
1164
        pytest.skip()  # Reference implementation OOM
Tri Dao's avatar
Tri Dao committed
1165
    device = "cuda"
1166
1167
    # set seed
    torch.random.manual_seed(0)
1168
    batch_size = 4
Tri Dao's avatar
Tri Dao committed
1169
1170
1171
    nheads = 9
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1172
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1173
1174
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1175
1176
1177
        kv = torch.randn(
            batch_size, seqlen_k, 2, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
1178
    else:
Tri Dao's avatar
Tri Dao committed
1179
1180
1181
1182
1183
1184
        k = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
        v = torch.randn(
            batch_size, seqlen_k, nheads_k, d, device=device, dtype=dtype, requires_grad=True
        )
Tri Dao's avatar
Tri Dao committed
1185

Tri Dao's avatar
Tri Dao committed
1186
1187
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
Tri Dao's avatar
Tri Dao committed
1188
    # key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode='full')
1189
1190
1191
1192
1193
1194
1195
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, query_padding_mask, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1196
1197

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
        (
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            kv,
            output_pad_fn,
            dq_pad_fn,
            dkv_pad_fn,
        ) = generate_qkv(q, *kv.unbind(dim=2), query_padding_mask, key_padding_mask, kvpacked=True)
Tri Dao's avatar
Tri Dao committed
1211
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
1212
1213
1214
1215
1216
1217
1218
1219
            q_unpad,
            kv_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1220
            window_size=window_size,
1221
            alibi_slopes=alibi_slopes,
1222
            deterministic=deterministic,
1223
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1224
1225
        )
    else:
Tri Dao's avatar
Tri Dao committed
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
        (
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            q,
            k,
            v,
            output_pad_fn,
            dq_pad_fn,
            dk_pad_fn,
        ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
Tri Dao's avatar
Tri Dao committed
1241
        out_unpad, sm_lse, S_dmask = flash_attn_varlen_func(
Tri Dao's avatar
Tri Dao committed
1242
1243
1244
1245
1246
1247
1248
1249
1250
            q_unpad,
            k_unpad,
            v_unpad,
            cu_seqlens_q,
            cu_seqlens_k,
            max_seqlen_q,
            max_seqlen_k,
            dropout_p,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1251
            window_size=window_size,
1252
            alibi_slopes=alibi_slopes,
1253
            deterministic=deterministic,
1254
            return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1255
        )
Tri Dao's avatar
Tri Dao committed
1256
1257
    out = output_pad_fn(out_unpad)
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1258
        S_dmask_converted = convert_flash_attn_S_to_softmax(
1259
1260
1261
1262
1263
1264
1265
1266
            S_dmask,
            seqlen_q,
            seqlen_k,
            query_padding_mask,
            key_padding_mask,
            d,
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1267
            window_size=window_size,
1268
        )
Tri Dao's avatar
Tri Dao committed
1269
1270
1271
1272
1273
1274
1275
1276
        dropout_mask = S_dmask_converted >= 0
        attn_unnorm = S_dmask_converted.abs()
        if kvpacked:
            kv_rep = repeat(kv, "b s two h d -> b s two (h g) d", g=nheads // nheads_k)
            k_rep, v_rep = kv_rep.unbind(dim=2)
        else:
            k_rep = repeat(k, "b s h d -> b s (h g) d", g=nheads // nheads_k)
            v_rep = repeat(v, "b s h d -> b s (h g) d", g=nheads // nheads_k)
Tri Dao's avatar
Tri Dao committed
1277
1278
1279
1280
1281
1282
1283
        attn = normalize_flash_attn_S(
            attn_unnorm,
            q,
            k_rep,
            v_rep,
            query_padding_mask,
            key_padding_mask,
1284
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1285
1286
            dropout_p > 0.0,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1287
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1288
1289
        )
        dropout_fraction = get_dropout_fraction(
Tri Dao's avatar
Tri Dao committed
1290
1291
1292
1293
1294
            dropout_mask,
            query_padding_mask,
            key_padding_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1295
1296
        ).item()
        print(f"Actual dropout fraction: {dropout_fraction}")
Tri Dao's avatar
Tri Dao committed
1297
1298
1299
1300
    else:
        dropout_mask = None

    if kvpacked:
Tri Dao's avatar
Tri Dao committed
1301
        out_ref, attn_ref = attention_kvpacked_ref(
Tri Dao's avatar
Tri Dao committed
1302
1303
1304
1305
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1306
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1307
1308
1309
1310
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1311
1312
1313
1314
1315
1316
        )
        out_pt, attn_pt = attention_kvpacked_ref(
            q,
            kv,
            query_padding_mask,
            key_padding_mask,
1317
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1318
1319
1320
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1321
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1322
1323
1324
            upcast=False,
            reorder_ops=True,
        )
Tri Dao's avatar
Tri Dao committed
1325
    else:
Tri Dao's avatar
Tri Dao committed
1326
        out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1327
1328
1329
1330
1331
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1332
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1333
1334
1335
1336
            dropout_p,
            dropout_mask,
            causal=causal,
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1337
1338
1339
1340
1341
1342
1343
        )
        out_pt, attn_pt = attention_ref(
            q,
            k,
            v,
            query_padding_mask,
            key_padding_mask,
1344
            attn_bias,
Tri Dao's avatar
Tri Dao committed
1345
1346
1347
            dropout_p,
            dropout_mask,
            causal=causal,
Tri Dao's avatar
Tri Dao committed
1348
            window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1349
1350
1351
1352
1353
1354
1355
1356
            upcast=False,
            reorder_ops=True,
        )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")
Tri Dao's avatar
Tri Dao committed
1357
    if dropout_p > 0.0:
Tri Dao's avatar
Tri Dao committed
1358
1359
        print(f"Attention max diff: {(attn - attn_ref).abs().max().item()}")
        print(f"Attention Pytorch max diff: {(attn_pt - attn_ref).abs().max().item()}")
Tri Dao's avatar
Tri Dao committed
1360
1361
1362
1363

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        if kvpacked:
Tri Dao's avatar
Tri Dao committed
1364
1365
1366
1367
            (
                dq_unpad,
                dkv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, kv_unpad), g)
Tri Dao's avatar
Tri Dao committed
1368
            dk, dv = dkv_pad_fn(dkv_unpad).unbind(2)
Tri Dao's avatar
Tri Dao committed
1369
1370
1371
1372
            (
                dq_ref,
                dkv_ref,
            ) = torch.autograd.grad(out_ref, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1373
            dk_ref, dv_ref = dkv_ref.unbind(2)
Tri Dao's avatar
Tri Dao committed
1374
1375
1376
1377
            (
                dq_pt,
                dkv_pt,
            ) = torch.autograd.grad(out_pt, (q, kv), g)
Tri Dao's avatar
Tri Dao committed
1378
1379
            dk_pt, dv_pt = dkv_pt.unbind(2)
        else:
Tri Dao's avatar
Tri Dao committed
1380
1381
1382
1383
1384
            (
                dq_unpad,
                dk_unpad,
                dv_unpad,
            ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
Tri Dao's avatar
Tri Dao committed
1385
1386
            dk = dk_pad_fn(dk_unpad)
            dv = dk_pad_fn(dv_unpad)
Tri Dao's avatar
Tri Dao committed
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
            (
                dq_ref,
                dk_ref,
                dv_ref,
            ) = torch.autograd.grad(out_ref, (q, k, v), g)
            (
                dq_pt,
                dk_pt,
                dv_pt,
            ) = torch.autograd.grad(out_pt, (q, k, v), g)
Tri Dao's avatar
Tri Dao committed
1397
        dq = dq_pad_fn(dq_unpad)
Tri Dao's avatar
Tri Dao committed
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")
1410
1411
1412

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
Tri Dao's avatar
Tri Dao committed
1413
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
1414

Tri Dao's avatar
Tri Dao committed
1415
1416
    if dropout_p > 0.0:
        assert (attn - attn_ref).abs().max().item() <= 2 * (attn_pt - attn_ref).abs().max().item()
1417
1418
1419
        # With alibi, many of the prob values are 0.0 & -0.0 so dropout_fraction isn't accurate
        if not alibi:
            assert abs(dropout_fraction - dropout_p) <= (0.01 if not local else 0.025)
Tri Dao's avatar
Tri Dao committed
1420

Tri Dao's avatar
Tri Dao committed
1421
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1422
1423
1424
        assert (dq - dq_ref).abs().max().item() <= 3 * (dq_pt - dq_ref).abs().max().item()
        assert (dk - dk_ref).abs().max().item() <= 3 * (dk_pt - dk_ref).abs().max().item()
        assert (dv - dv_ref).abs().max().item() <= 3 * (dv_pt - dv_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
1425

1426

Tri Dao's avatar
Tri Dao committed
1427
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
1428
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1429
1430
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1431
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1432
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64, 128])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1455
def test_flash_attn_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1467
    batch_size = 8
1468
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1469
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1470
1471
1472
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
Tri Dao's avatar
Tri Dao committed
1473
1474
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size)
    out_ref, attn_ref = attention_ref(
1475
        q, k, v, None, None, None, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1476
    )
1477
1478
1479
1480
1481
1482
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1483
        None,
1484
1485
1486
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1487
        window_size=window_size,
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
1540
1541
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
1542
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1543
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
1544
1545
1546
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
Tri Dao's avatar
Tri Dao committed
1547
# @pytest.mark.parametrize("d", [64])
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
Tri Dao's avatar
Tri Dao committed
1566
def test_flash_attn_varlen_causal(seqlen_q, seqlen_k, swap_sq_sk, d, local, dtype):
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    causal = True
    # set seed
    torch.random.manual_seed(0)
1578
    batch_size = 8
1579
    nheads = 9
Tri Dao's avatar
Tri Dao committed
1580
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out_unpad = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1611
        window_size=window_size,
1612
1613
1614
    )
    out = output_pad_fn(out_unpad)
    out_ref, attn_ref = attention_ref(
Tri Dao's avatar
Tri Dao committed
1615
1616
1617
1618
1619
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1620
        None,
Tri Dao's avatar
Tri Dao committed
1621
1622
1623
1624
        0.0,
        None,
        causal=causal,
        window_size=window_size,
1625
1626
1627
1628
1629
1630
1631
    )
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        query_padding_mask,
        key_padding_mask,
1632
        None,
1633
1634
1635
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1636
        window_size=window_size,
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq_unpad,
            dk_unpad,
            dv_unpad,
        ) = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g)
        dq = dq_pad_fn(dq_unpad)
        dk = dk_pad_fn(dk_unpad)
        dv = dk_pad_fn(dv_unpad)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        assert (dq - dq_ref).abs().max().item() <= 2 * (dq_pt - dq_ref).abs().max().item() + 1e-5
        assert (dk - dk_ref).abs().max().item() <= 2 * (dk_pt - dk_ref).abs().max().item() + 1e-5
        assert (dv - dv_ref).abs().max().item() <= 2 * (dv_pt - dv_ref).abs().max().item() + 1e-5


Tri Dao's avatar
Tri Dao committed
1690
1691
@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.float16])
1692
1693
@pytest.mark.parametrize("deterministic", [False, True])
# @pytest.mark.parametrize("deterministic", [True])
1694
1695
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1696
@pytest.mark.parametrize("local", [False, True])
1697
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1698
1699
1700
1701
1702
1703
1704
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1705
# @pytest.mark.parametrize("d", [64])
Tri Dao's avatar
Tri Dao committed
1706
1707
1708
1709
1710
1711
1712
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (3, 1024),
        (1, 339),
1713
        (64, 800),
Tri Dao's avatar
Tri Dao committed
1714
1715
1716
1717
1718
1719
1720
1721
1722
        (3, 799),
        (64, 2048),
        (16, 20000),
        (16, 100000),
        (128, 128),
        (256, 256),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1723
def test_flash_attn_splitkv(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, alibi, deterministic, dtype):
Tri Dao's avatar
Tri Dao committed
1724
1725
1726
1727
1728
1729
1730
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 1
    nheads = 12
Tri Dao's avatar
Tri Dao committed
1731
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1732
1733
1734
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
1735
1736
1737
1738
1739
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(alibi_slopes, seqlen_q, seqlen_k, causal=causal)
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1740
    out, lse, _ = flash_attn_func(
1741
1742
1743
1744
1745
1746
1747
        q,
        k,
        v,
        0.0,
        causal=causal,
        window_size=window_size,
        alibi_slopes=alibi_slopes,
1748
        deterministic=deterministic,
1749
        return_attn_probs=True,
Tri Dao's avatar
Tri Dao committed
1750
1751
    )
    out_ref, attn_ref = attention_ref(
1752
        q, k, v, None, None, attn_bias, 0.0, None, causal=causal, window_size=window_size
Tri Dao's avatar
Tri Dao committed
1753
    )
Tri Dao's avatar
Tri Dao committed
1754
1755
1756
1757
1758
1759
    out_pt, attn_pt = attention_ref(
        q,
        k,
        v,
        None,
        None,
1760
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1761
1762
1763
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1764
        window_size=window_size,
Tri Dao's avatar
Tri Dao committed
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
        upcast=False,
        reorder_ops=True,
    )

    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    g = torch.randn_like(out)
    do_o = (g.float() * out.float()).sum(-1)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        (
            dq,
            dk,
            dv,
        ) = torch.autograd.grad(out, (q, k, v), g)
        (
            dq_ref,
            dk_ref,
            dv_ref,
        ) = torch.autograd.grad(out_ref, (q, k, v), g)
        (
            dq_pt,
            dk_pt,
            dv_pt,
        ) = torch.autograd.grad(out_pt, (q, k, v), g)
        print(f"dQ max diff: {(dq - dq_ref).abs().max().item()}")
        print(f"dK max diff: {(dk - dk_ref).abs().max().item()}")
        print(f"dV max diff: {(dv - dv_ref).abs().max().item()}")
        print(f"dQ mean diff: {(dq - dq_ref).abs().mean().item()}")
        print(f"dK mean diff: {(dk - dk_ref).abs().mean().item()}")
        print(f"dV mean diff: {(dv - dv_ref).abs().mean().item()}")
        print(f"dQ Pytorch max diff: {(dq_pt - dq_ref).abs().max().item()}")
        print(f"dK Pytorch max diff: {(dk_pt - dk_ref).abs().max().item()}")
        print(f"dV Pytorch max diff: {(dv_pt - dv_ref).abs().max().item()}")
        print(f"dQ Pytorch mean diff: {(dq_pt - dq_ref).abs().mean().item()}")
        print(f"dK Pytorch mean diff: {(dk_pt - dk_ref).abs().mean().item()}")
        print(f"dV Pytorch mean diff: {(dv_pt - dv_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item() + 1e-5

1809
    mult = 2 if not alibi else 8
Tri Dao's avatar
Tri Dao committed
1810
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
1811
1812
1813
        assert (dq - dq_ref).abs().max().item() <= mult * (dq_pt - dq_ref).abs().max().item() + 2e-4
        assert (dk - dk_ref).abs().max().item() <= mult * (dk_pt - dk_ref).abs().max().item() + 2e-4
        assert (dv - dv_ref).abs().max().item() <= mult * (dv_pt - dv_ref).abs().max().item() + 2e-4
Tri Dao's avatar
Tri Dao committed
1814

1815

1816
1817
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
1818
@pytest.mark.parametrize("num_splits", [1, 0])
1819
# @pytest.mark.parametrize("num_splits", [1])
Tri Dao's avatar
Tri Dao committed
1820
@pytest.mark.parametrize("mha_type", ["mha", "mqa", "gqa"])
1821
# @pytest.mark.parametrize("mha_type", ["mha"])
Tri Dao's avatar
Tri Dao committed
1822
@pytest.mark.parametrize("new_kv", [False, True])
1823
1824
1825
# @pytest.mark.parametrize("new_kv", [False])
@pytest.mark.parametrize("alibi", [False, True])
# @pytest.mark.parametrize("alibi", [True])
Tri Dao's avatar
Tri Dao committed
1826
@pytest.mark.parametrize("local", [False, True])
1827
# @pytest.mark.parametrize("local", [False])
Tri Dao's avatar
Tri Dao committed
1828
@pytest.mark.parametrize("causal", [False, True])
1829
# @pytest.mark.parametrize("causal", [False])
1830
@pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True, False])
1831
1832
1833
1834
# @pytest.mark.parametrize("seqlen_new_eq_seqlen_q", [True])
@pytest.mark.parametrize("rotary_interleaved", [False, True])
# @pytest.mark.parametrize("rotary_interleaved", [False])
@pytest.mark.parametrize("rotary_fraction", [0.0, 0.5, 1.0])
1835
# @pytest.mark.parametrize("rotary_fraction", [0.0])
1836
@pytest.mark.parametrize("has_batch_idx", [False, True])
1837
# @pytest.mark.parametrize("has_batch_idx", [False])
Tri Dao's avatar
Tri Dao committed
1838
@pytest.mark.parametrize("d", [32, 59, 64, 80, 96, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
1839
1840
1841
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
1842
# @pytest.mark.parametrize("d", [128])
Tri Dao's avatar
Tri Dao committed
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 128),
        (1, 339),
        (3, 1024),
        (64, 800),
        (64, 256),
        (3, 799),
        (64, 2048),
        (16, 20000),
        (1, 128 * 1024),
        (16, 128 * 1024),
        (128, 128),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
1860
def test_flash_attn_kvcache(
1861
1862
1863
    seqlen_q,
    seqlen_k,
    d,
1864
    has_batch_idx,
1865
1866
1867
1868
    rotary_fraction,
    rotary_interleaved,
    seqlen_new_eq_seqlen_q,
    causal,
Tri Dao's avatar
Tri Dao committed
1869
    local,
1870
    alibi,
1871
1872
1873
1874
    new_kv,
    mha_type,
    num_splits,
    dtype,
1875
):
Tri Dao's avatar
Tri Dao committed
1876
1877
    if seqlen_q > seqlen_k and new_kv:
        pytest.skip()
1878
1879
    if not new_kv and rotary_fraction > 0.0:
        pytest.skip()
Tri Dao's avatar
Tri Dao committed
1880
1881
1882
1883
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
1884
    batch_size_cache = batch_size if not has_batch_idx else batch_size * 2
Tri Dao's avatar
Tri Dao committed
1885
    nheads = 6
1886
1887
    # rotary_dim must be a multiple of 16, and must be <= d
    rotary_dim = math.floor(int(rotary_fraction * d) / 16) * 16
Tri Dao's avatar
Tri Dao committed
1888
1889
    nheads_k = nheads if mha_type == "mha" else (1 if mha_type == "mqa" else 3)
    assert nheads % nheads_k == 0
Tri Dao's avatar
Tri Dao committed
1890
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
Tri Dao's avatar
Tri Dao committed
1891
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype)
1892
    seqlen_new = seqlen_q if seqlen_new_eq_seqlen_q else torch.randint(1, seqlen_q + 1, (1,)).item()
Tri Dao's avatar
Tri Dao committed
1893
    if new_kv:
1894
1895
        k = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
        v = torch.randn(batch_size, seqlen_new, nheads_k, d, device=device, dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1896
1897
    else:
        k, v = None, None
1898
1899
    k_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
    v_cache = torch.randn(batch_size_cache, seqlen_k, nheads_k, d, device=device, dtype=dtype)
1900
1901
    cache_seqlens = torch.randint(
        0,
1902
        # If we don't use seqlen_q in the case of causal and rotary, cos/sin won't be long enough
Tri Dao's avatar
Tri Dao committed
1903
        (seqlen_k - (seqlen_q if (causal or local) and rotary_dim > 1 else seqlen_new) + 1)
1904
1905
        if new_kv
        else (seqlen_k + 1),
1906
1907
1908
1909
        (batch_size,),
        dtype=torch.int32,
        device=device,
    )
1910
1911
1912
    arange = rearrange(torch.arange(seqlen_k, device=device), "s -> 1 s")
    cache_seqlens_expanded = rearrange(cache_seqlens, "b -> b 1")
    key_padding_mask = arange < cache_seqlens_expanded + (seqlen_new if new_kv else 0)
1913
    if has_batch_idx:
1914
1915
1916
        cache_batch_idx = torch.randperm(batch_size_cache, dtype=torch.int32, device=device)[
            :batch_size
        ]
1917
1918
    else:
        cache_batch_idx = None
1919
1920
1921
1922
1923
1924
1925
    if alibi:
        alibi_slopes = torch.rand(batch_size, nheads, device=device, dtype=torch.float32) * 0.3
        attn_bias = attn_bias_from_alibi_slopes(
            alibi_slopes, seqlen_q, seqlen_k, None, key_padding_mask, causal=causal
        )
    else:
        alibi_slopes, attn_bias = None, None
Tri Dao's avatar
Tri Dao committed
1926
    # cache_seqlens = torch.tensor([64], dtype=torch.int32, device=device)
1927
1928
1929
1930
    if rotary_dim > 0:
        angle = torch.rand(seqlen_k, rotary_dim // 2, device=device) * 2 * math.pi
        cos = torch.cos(angle).to(dtype=dtype)
        sin = torch.sin(angle).to(dtype=dtype)
Tri Dao's avatar
Tri Dao committed
1931
        if causal or local:
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
            q_ro = apply_rotary_emb(
                q, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
            )
        else:
            q_ro = rearrange(
                apply_rotary_emb(
                    rearrange(q, "b s h d -> b 1 (s h) d"),
                    cos,
                    sin,
                    seqlen_offsets=cache_seqlens,
                    interleaved=rotary_interleaved,
                ),
                "b 1 (s h) d -> b s h d",
                s=seqlen_q,
            )
        # q_ro = q
        k_ro = apply_rotary_emb(
            k, cos, sin, seqlen_offsets=cache_seqlens, interleaved=rotary_interleaved
        )
    else:
        cos, sin = None, None
        q_ro, k_ro = q, k
Tri Dao's avatar
Tri Dao committed
1954
    # k_cache[:, 64:] = -1
1955
1956
    k_cache_ref = (k_cache if not has_batch_idx else k_cache[cache_batch_idx]).clone()
    v_cache_ref = (v_cache if not has_batch_idx else v_cache[cache_batch_idx]).clone()
Tri Dao's avatar
Tri Dao committed
1957
    if new_kv:
1958
1959
1960
        update_mask = torch.logical_and(
            cache_seqlens_expanded <= arange, arange < cache_seqlens_expanded + seqlen_new
        )
1961
        k_cache_ref[update_mask] = rearrange(k_ro, "b s ... -> (b s) ...")
Tri Dao's avatar
Tri Dao committed
1962
1963
1964
        v_cache_ref[update_mask] = rearrange(v, "b s ... -> (b s) ...")
    k_cache_rep = repeat(k_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
    v_cache_rep = repeat(v_cache_ref, "b s h d -> b s (h g) d", g=nheads // nheads_k)
1965
    out = flash_attn_with_kvcache(
1966
1967
1968
1969
1970
1971
1972
1973
        q,
        k_cache,
        v_cache,
        k,
        v,
        cos,
        sin,
        cache_seqlens,
1974
        cache_batch_idx,
1975
        causal=causal,
Tri Dao's avatar
Tri Dao committed
1976
        window_size=window_size,
1977
        rotary_interleaved=rotary_interleaved,
1978
        alibi_slopes=alibi_slopes,
1979
        num_splits=num_splits,
1980
    )
Tri Dao's avatar
Tri Dao committed
1981
1982
1983
1984
    # out = flash_attn_with_kvcache(
    #     q, k_cache, v_cache, cache_seqlens=cache_seqlens, causal=causal, window_size=window_size
    # )
    # out = flash_attn_with_kvcache(q, k_cache, v_cache, causal=causal, window_size=window_size)
Tri Dao's avatar
Tri Dao committed
1985
1986
1987
1988
1989
1990
    # qk = torch.einsum("bqhd,bkhd->bhqk", q, k_cache_ref)
    # m = qk.amax(-1, keepdim=True)
    # s_tmp = torch.exp((qk - m) / math.sqrt(d))
    # o1 = torch.einsum('bhst,bthd->bshd', s_tmp, v_cache_ref)
    # lse_ref = torch.logsumexp(qk / math.sqrt(d), -1)
    # probs = torch.softmax(qk, dim=-1)
1991
    out_ref, _ = attention_ref(
Tri Dao's avatar
Tri Dao committed
1992
1993
1994
1995
1996
        q_ro,
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
1997
        attn_bias,
Tri Dao's avatar
Tri Dao committed
1998
1999
2000
2001
        0.0,
        None,
        causal=causal,
        window_size=window_size,
2002
2003
    )
    out_pt, _ = attention_ref(
2004
        q_ro,
2005
2006
2007
2008
        k_cache_rep,
        v_cache_rep,
        None,
        key_padding_mask,
2009
        attn_bias,
2010
2011
2012
        0.0,
        None,
        causal=causal,
Tri Dao's avatar
Tri Dao committed
2013
        window_size=window_size,
2014
2015
2016
        upcast=False,
        reorder_ops=True,
    )
Tri Dao's avatar
Tri Dao committed
2017
2018
2019
2020
2021
2022
2023
2024
    print(f"Output max diff: {(out - out_ref).abs().max().item()}")
    print(f"Output mean diff: {(out - out_ref).abs().mean().item()}")
    print(f"Pytorch max diff: {(out_pt - out_ref).abs().max().item()}")
    print(f"Pytorch mean diff: {(out_pt - out_ref).abs().mean().item()}")

    # Check that FlashAttention's numerical error is at most twice the numerical error
    # of a Pytorch implementation.
    if new_kv:
2025
2026
2027
2028
        k_cache_select = k_cache if not has_batch_idx else k_cache[cache_batch_idx]
        v_cache_select = v_cache if not has_batch_idx else v_cache[cache_batch_idx]
        assert torch.allclose(k_cache_select, k_cache_ref, rtol=1e-3, atol=1e-3)
        assert torch.equal(v_cache_select, v_cache_ref)
2029
2030
    mult = 3 if not alibi else 5
    assert (out - out_ref).abs().max().item() <= mult * (out_pt - out_ref).abs().max().item() + 1e-5
Tri Dao's avatar
Tri Dao committed
2031

Tri Dao's avatar
Tri Dao committed
2032

2033
2034
# @pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
@pytest.mark.parametrize("dtype", [torch.float16])
Tri Dao's avatar
Tri Dao committed
2035
@pytest.mark.parametrize("causal", [False, True])
2036
2037
# @pytest.mark.parametrize('causal', [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
Tri Dao's avatar
Tri Dao committed
2038
# @pytest.mark.parametrize('d', [32, 56, 64, 80, 96, 128])
2039
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192])
Tri Dao's avatar
Tri Dao committed
2040
# @pytest.mark.parametrize('d', [128])
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (239, 1),
        (3, 799),
        (799, 3),
        (1024, 128),
        (97, 97),
        (128, 128),
        (200, 200),
        (256, 256),
        (257, 257),
        (384, 384),
        (512, 512),
        (768, 768),
        (1024, 1024),
    ],
)
2060
@pytest.mark.parametrize("dropout_p", [0.0, 0.17])
2061
2062
# @pytest.mark.parametrize("dropout_p", [0.0])
def test_flash_attn_race_condition(seqlen_q, seqlen_k, d, dropout_p, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2063
    device = "cuda"
Tri Dao's avatar
Tri Dao committed
2064
2065
    # set seed
    torch.random.manual_seed(0)
2066
    batch_size = 60  # Sometimes we need large batch size for the race conditions to trigger
Tri Dao's avatar
Tri Dao committed
2067
    nheads = 4
2068
2069
2070
2071
2072
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    torch.random.manual_seed(42)
    out0, lse0, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2073
    g = torch.randn_like(out0)
2074
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
2075
2076
2077
2078
2079
        (
            dq0,
            dk0,
            dv0,
        ) = torch.autograd.grad(out0, (q, k, v), g)
2080
        # Numerical error if we just do any arithmetic on dq
2081
        dq_atol = 2 * ((dq0 + 0.3 - 0.3) - dq0).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2082

2083
2084
2085
    for i in range(250):
        torch.random.manual_seed(42)
        out, lse, _ = flash_attn_func(q, k, v, dropout_p, causal=causal, return_attn_probs=True)
Tri Dao's avatar
Tri Dao committed
2086
2087
        assert torch.equal(out, out0)
        assert torch.equal(lse, lse0)
Tri Dao's avatar
Tri Dao committed
2088

2089
        if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
2090
2091
2092
2093
2094
2095
            (
                dq,
                dk,
                dv,
            ) = torch.autograd.grad(out, (q, k, v), g)
            dq_equal = torch.allclose(dq, dq0, atol=dq_atol)
2096
            if not dq_equal:
2097
2098
2099
                print(f"Iter {i}, {dq_atol = }, dQ max diff: {(dq - dq0).abs().max().item()}")
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
2100
            assert dq_equal
2101
2102


Tri Dao's avatar
Tri Dao committed
2103
2104
@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2105
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2106
@pytest.mark.parametrize("d", [16, 32, 64])
2107
# @pytest.mark.parametrize('d', [16])
Tri Dao's avatar
Tri Dao committed
2108
@pytest.mark.parametrize("seqlen", [1, 2, 5, 17, 128])
2109
2110
# @pytest.mark.parametrize('seqlen', [2])
def test_flash_attn_bwd_overflow(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2111
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2112
2113
    in the case where seqlen % 128 != 0.
    """
Tri Dao's avatar
Tri Dao committed
2114
    device = "cuda"
2115
2116
2117
2118
2119
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 5
    q = torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 5
Tri Dao's avatar
Tri Dao committed
2120
2121
2122
2123
    k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda") * 3
        for _ in range(2)
    ]
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)
    out = flash_attn_func(q, k, v, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, _ = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2140
2141
2142
2143
2144
2145
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2146
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
    assert (q.grad - q_ref.grad).abs().max().item() <= 5 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item() + 1e-3
    assert (k.grad - k_ref.grad).abs().max().item() <= 5 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item() + 1e-3
    assert (v.grad - v_ref.grad).abs().max().item() <= 5 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item() + 1e-3


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
2159
# @pytest.mark.parametrize('dtype', [torch.bfloat16])
Tri Dao's avatar
Tri Dao committed
2160
@pytest.mark.parametrize("causal", [False, True])
2161
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2162
@pytest.mark.parametrize("d", [64, 128])
2163
# @pytest.mark.parametrize('d', [64])
Tri Dao's avatar
Tri Dao committed
2164
@pytest.mark.parametrize("seqlen", [97, 128, 200, 256])
2165
2166
# @pytest.mark.parametrize('seqlen', [128])
def test_flash_attn_bwd_transpose(seqlen, d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2167
    """We previously had a bug where we were using the wrong strides of dout, which shows up
2168
2169
    when dout is not contiguous.
    """
Tri Dao's avatar
Tri Dao committed
2170
    device = "cuda"
2171
2172
2173
2174
    # set seed
    torch.random.manual_seed(0)
    batch_size = 5
    nheads = 2
Tri Dao's avatar
Tri Dao committed
2175
2176
2177
2178
    q, k, v = [
        torch.randn([batch_size, seqlen, nheads, d], dtype=dtype, device="cuda", requires_grad=True)
        for _ in range(3)
    ]
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
    out = rearrange(flash_attn_func(q, k, v, causal=causal), "b s ... -> s b ...")
    # So g is not contiguous
    g = torch.randn(seqlen, 2 * batch_size, nheads, d, dtype=dtype, device="cuda")[:, ::2]
    out.backward(g)
    q_pt = q.detach().clone().requires_grad_(True)
    k_pt = k.detach().clone().requires_grad_(True)
    v_pt = v.detach().clone().requires_grad_(True)
    out_pt, attn_pt = attention_ref(q_pt, k_pt, v_pt, causal=causal, upcast=False, reorder_ops=True)
    out_pt = rearrange(out_pt, "b s ... -> s b ...")
    out_pt.backward(g)
    q_ref = q.detach().clone().requires_grad_(True)
    k_ref = k.detach().clone().requires_grad_(True)
    v_ref = v.detach().clone().requires_grad_(True)
    out_ref, attn_ref = attention_ref(q_ref, k_ref, v_ref, causal=causal)
    out_ref = rearrange(out_ref, "b s ... -> s b ...")
    out_ref.backward(g)
Tri Dao's avatar
Tri Dao committed
2195
2196
2197
2198
2199
2200
    print(f"dQ max diff: {(q.grad - q_ref.grad).abs().max().item()}")
    print(f"dK max diff: {(k.grad - k_ref.grad).abs().max().item()}")
    print(f"dV max diff: {(v.grad - v_ref.grad).abs().max().item()}")
    print(f"dQ Pytorch max diff: {(q_pt.grad - q_ref.grad).abs().max().item()}")
    print(f"dK Pytorch max diff: {(k_pt.grad - k_ref.grad).abs().max().item()}")
    print(f"dV Pytorch max diff: {(v_pt.grad - v_ref.grad).abs().max().item()}")
2201
    assert (out - out_ref).abs().max().item() <= 2 * (out_pt - out_ref).abs().max().item()
Tri Dao's avatar
Tri Dao committed
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
    assert (q.grad - q_ref.grad).abs().max().item() <= 2 * (
        q_pt.grad - q_ref.grad
    ).abs().max().item()
    assert (k.grad - k_ref.grad).abs().max().item() <= 2 * (
        k_pt.grad - k_ref.grad
    ).abs().max().item()
    assert (v.grad - v_ref.grad).abs().max().item() <= 2 * (
        v_pt.grad - v_ref.grad
    ).abs().max().item()


@pytest.mark.parametrize("dtype", [torch.float16])
@pytest.mark.parametrize("causal", [False, True])
2215
# @pytest.mark.parametrize('causal', [False])
Tri Dao's avatar
Tri Dao committed
2216
@pytest.mark.parametrize("d", [16, 32, 64])
2217
2218
# @pytest.mark.parametrize('d', [16])
def test_flash_attn_bwd_varlen_overflow(d, causal, dtype):
Tri Dao's avatar
Tri Dao committed
2219
    """We previously had a bug where not masking elements beyond seqlen_k caused NaN in dQ,
2220
2221
    in the case where seqlen % 128 != 0 or varlen.
    """
Tri Dao's avatar
Tri Dao committed
2222
    device = "cuda"
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
    # set seed
    torch.random.manual_seed(0)
    nheads = 5
    q_cuseqlen = torch.tensor([0, 76, 110, 256], device=device, dtype=torch.int32)
    k_cuseqlen = torch.tensor([0, 1, 2, 3], device=device, dtype=torch.int32)
    Mq = 256
    Mk = 3

    q = torch.randn([Mq, nheads, d], dtype=dtype, device=device) * 3
    k, v = [torch.randn([Mk, nheads, d], dtype=dtype, device=device) * 3 for _ in range(2)]
    q.requires_grad_(True)
    k.requires_grad_(True)
    v.requires_grad_(True)

    out = flash_attn_varlen_func(q, k, v, q_cuseqlen, k_cuseqlen, Mq, Mk, causal=causal)
    g = torch.randn_like(out)
    out.backward(g)

    assert not q.grad.isnan().any()
    assert not k.grad.isnan().any()
    assert not v.grad.isnan().any()
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392


@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [False])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize('seqlen_q,seqlen_k', [(256, 128)])
def test_flash_attn_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 4
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    out = flash_attn_func(q, k, v, 0.0, causal=causal, window_size=window_size, deterministic=True)

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        dq0, dk0, dv0 = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
        for _ in range(50):
            dq, dk, dv = torch.autograd.grad(out, (q, k, v), g, retain_graph=True)
            assert torch.equal(dv, dv0)
            assert torch.equal(dk, dk0)
            assert torch.equal(dq, dq0)




@pytest.mark.parametrize("dtype", ([torch.float16] if is_sm75 else [torch.float16, torch.bfloat16]))
# @pytest.mark.parametrize("dtype", [torch.bfloat16])
@pytest.mark.parametrize("local", [False, True])
# @pytest.mark.parametrize("local", [True])
@pytest.mark.parametrize("causal", [False, True])
# @pytest.mark.parametrize("causal", [True])
@pytest.mark.parametrize("d", [32, 40, 59, 64, 80, 96, 111, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize("d", [32, 64, 96, 128, 160, 192, 224, 256])
# @pytest.mark.parametrize('d', [32, 40, 64, 80, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [32, 64, 96, 128, 160, 192])
# @pytest.mark.parametrize('d', [56, 80])
# @pytest.mark.parametrize("d", [64])
@pytest.mark.parametrize("swap_sq_sk", [False, True])
# @pytest.mark.parametrize("swap_sq_sk", [True])
@pytest.mark.parametrize(
    "seqlen_q,seqlen_k",
    [
        (1, 239),
        (3, 799),
        (127, 512),
        (127, 513),
        (113, 203),
        (128, 217),
        (113, 211),
        (108, 256),
        (256, 512),
        (1023, 1024),
    ],
)
# @pytest.mark.parametrize("seqlen_q,seqlen_k", [(256, 128)])
def test_flash_attn_varlen_deterministic(seqlen_q, seqlen_k, swap_sq_sk, d, causal, local, dtype):
    if (
        max(seqlen_q, seqlen_k) >= 2048
        and torch.cuda.get_device_properties("cuda").total_memory <= 16 * 2**30
    ):
        pytest.skip()  # Reference implementation OOM
    if swap_sq_sk:
        seqlen_q, seqlen_k = seqlen_k, seqlen_q
    device = "cuda"
    # set seed
    torch.random.manual_seed(0)
    batch_size = 2
    nheads = 9
    window_size = (-1, -1) if not local else torch.randint(0, seqlen_k, (2,))
    q = torch.randn(batch_size, seqlen_q, nheads, d, device=device, dtype=dtype, requires_grad=True)
    k = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    v = torch.randn(batch_size, seqlen_k, nheads, d, device=device, dtype=dtype, requires_grad=True)
    query_padding_mask = generate_random_padding_mask(seqlen_q, batch_size, device, mode="random")
    key_padding_mask = generate_random_padding_mask(seqlen_k, batch_size, device, mode="random")
    (
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        q,
        k,
        v,
        output_pad_fn,
        dq_pad_fn,
        dk_pad_fn,
    ) = generate_qkv(q, k, v, query_padding_mask, key_padding_mask, kvpacked=False)
    out = flash_attn_varlen_func(
        q_unpad,
        k_unpad,
        v_unpad,
        cu_seqlens_q,
        cu_seqlens_k,
        max_seqlen_q,
        max_seqlen_k,
        0.0,
        causal=causal,
        window_size=window_size,
        deterministic=True,
    )

    g = torch.randn_like(out)
    if d <= MAX_HEADDIM_SM8x or (is_sm80 or is_sm90):
        dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
        for _ in range(50):
            dq, dk, dv = torch.autograd.grad(out, (q_unpad, k_unpad, v_unpad), g, retain_graph=True)
            assert torch.equal(dv, dv)
            assert torch.equal(dk, dk)
            assert torch.equal(dq, dq)