ln_api.cpp 18.6 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
#include <torch/extension.h>
#include "ATen/cuda/CUDAContext.h"

#include "ln.h"

/*

Supported Type combinations:

input  residual   compute   weights   output
============================================
fp32     fp32      fp32      fp32      fp32
fp16     fp32      fp32      fp32      fp16
fp16     fp16      fp32      fp32      fp16
bf16     fp32      fp32      fp32      bf16
bf16     bf16      fp32      fp32      bf16
fp16     fp16      fp32      fp16      fp16
bf16     bf16      fp32      bf16      bf16

Remarks:
Output type = Input type
Compute always in FP32

*/

namespace layer_norm {

// Create registries and provide runtime versions of config hash functions.

FwdRegistry FWD_FUNCS;
BwdRegistry BWD_FUNCS;

////////////////////////////////////////////////////////////////////////////////////////////////////

uint32_t get_type_id(torch::Dtype dtype){
    if( dtype == torch::kFloat16 ) {
        return TypeId<fp16>::Value;
    } else if( dtype == torch::kBFloat16 ) {
        return TypeId<bf16>::Value;
    } else if( dtype == torch::kFloat32 ) {
        return TypeId<fp32>::Value;
    } else {
        TORCH_CHECK(false, "Type not supported: ", dtype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

uint64_t get_key(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint64_t hidden_size) {
    using namespace layer_norm;
    uint64_t type_key = get_type_id(wtype) | (get_type_id(itype) << 2) | (get_type_id(rtype) << 4) | (get_type_id(otype) << 6) | (get_type_id(ctype) << 8);
    uint64_t launcher_key = (type_key << 32) | hidden_size;
    return launcher_key;
}

}  // namespace layer_norm

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::FwdFunction & get_fwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::FWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::FWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "FWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

layer_norm::BwdFunction & get_bwd_launcher(torch::Dtype wtype, torch::Dtype itype, torch::Dtype rtype, torch::Dtype otype, torch::Dtype ctype, uint32_t hidden_size) {
    auto iter = layer_norm::BWD_FUNCS.find(layer_norm::get_key(wtype, itype, rtype, otype, ctype, hidden_size));
    if( iter != layer_norm::BWD_FUNCS.end() ) {
        return iter->second;
    } else {
        TORCH_CHECK(false, "BWD: Unsupported hidden_size or types: ", hidden_size, wtype, itype, rtype, otype, ctype);
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_fwd(const at::Tensor &x0,      // Input: BxSxhidden_size
                                           c10::optional<const at::Tensor> &x1_,      // Residual: BxSxhidden_size
                                           const at::Tensor &gamma,   // hidden_size
                                           const at::Tensor &beta,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
87
88
89
                                           c10::optional<const at::Tensor> &colscale_,      // hidden_size
                                           c10::optional<const at::Tensor> &x0_subset_,      // BxS
                                           c10::optional<const at::Tensor> &z_subset_,      // BxS
90
91
                                           const float dropout_p,
                                           const float epsilon,
92
93
                                           const float rowscale_const,
                                           const int64_t z_numrows,
94
95
96
97
98
99
100
101
102
103
104
105
                                           c10::optional<at::Generator> gen_,
                                           bool residual_in_fp32
) {
    auto itype = x0.scalar_type();
    auto rtype = x1_.has_value()
        ? x1_.value().scalar_type()
        : (residual_in_fp32 ? torch::kFloat32 : x0.scalar_type());
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

106
    TORCH_CHECK(beta.dtype() == wtype);
107
108
109
110
111
112

    TORCH_CHECK(x0.is_cuda())
    TORCH_CHECK(gamma.is_cuda())
    TORCH_CHECK(beta.is_cuda())

    TORCH_CHECK(x0.is_contiguous());
113
114
115
116
117
118
    // c10::IntArrayRef does not own the storage, so we need to construct a vector.
    // Otherwise just constructing IntArrayRef({blah}) will cause unintialized memory because
    // blah is then deallocated.
    std::vector<int64_t> sizes_vec {!x0_subset_.has_value() ? x0.size(0) : x0_subset_.value().size(0), x0.size(1)};
    auto sizes = c10::IntArrayRef(sizes_vec);
    TORCH_CHECK(x0.dim() == 2);
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
    TORCH_CHECK(sizes.size() == 2);

    const int rows = sizes[0];
    const int cols = sizes[1];
    auto hidden_size = gamma.numel();

    if (x1_.has_value()) {
        auto x1 = x1_.value();
        TORCH_CHECK(x1.is_cuda())
        TORCH_CHECK(x1.is_contiguous());
        TORCH_CHECK(x1.sizes() == sizes);
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
136
        TORCH_CHECK(rowscale.sizes() == c10::IntArrayRef{rows});
Tri Dao's avatar
Tri Dao committed
137
138
139
140
141
142
143
        TORCH_CHECK(rowscale.dtype() == itype);
    }

    if (colscale_.has_value()) {
        auto colscale = colscale_.value();
        TORCH_CHECK(colscale.is_cuda())
        TORCH_CHECK(colscale.is_contiguous());
144
        TORCH_CHECK(colscale.sizes() == c10::IntArrayRef{cols});
Tri Dao's avatar
Tri Dao committed
145
        TORCH_CHECK(colscale.dtype() == wtype);
146
147
    }

148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
    if (x0_subset_.has_value()) {
        auto x0_subset = x0_subset_.value();
        TORCH_CHECK(x0_subset.is_cuda())
        TORCH_CHECK(x0_subset.is_contiguous());
        TORCH_CHECK(x0_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(x0_subset.dtype() == torch::kInt32);

        TORCH_CHECK(z_subset_.has_value());
        auto z_subset = z_subset_.value();
        TORCH_CHECK(z_subset.is_cuda());
        TORCH_CHECK(z_subset.is_contiguous());
        TORCH_CHECK(z_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(z_subset.dtype() == torch::kInt32);
    }

163
164
    TORCH_CHECK(gamma.sizes() == beta.sizes());
    TORCH_CHECK(hidden_size == cols);
165
    TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144));
166
167
168
169
170

    TORCH_CHECK(epsilon >= 0.f);

    auto opts = x0.options();

171
    bool save_x = x1_.has_value() || (dropout_p > 0.f) || rowscale_.has_value() || colscale_.has_value() || x0_subset_.has_value() || (itype != rtype);
172
173
174
    at::Tensor x;
    if (save_x) { x = torch::empty(sizes, opts.dtype(rtype)); }
    at::Tensor dmask;
175
176
    if (dropout_p > 0.f) { dmask = torch::empty(x0.sizes(), opts.dtype(mtype)); };
    auto z = torch::empty(z_subset_.has_value() ? c10::IntArrayRef{z_numrows, cols} : sizes, opts.dtype(otype));
177
178
179
180
181
182
183
184
185
186
187
188

    auto mu = torch::empty({ rows }, opts.dtype(ctype));
    auto rsigma = torch::empty({ rows }, opts.dtype(ctype));

    layer_norm::LaunchParams<layer_norm::FwdParams> launch_params;

    launch_params.props = at::cuda::getCurrentDeviceProperties();
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.x1 = x1_.has_value() ? x1_.value().data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;
Tri Dao's avatar
Tri Dao committed
189
    launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr;
190
191
    launch_params.params.x0_subset = x0_subset_.has_value() ? x0_subset_.value().data_ptr() : nullptr;
    launch_params.params.z_subset = z_subset_.has_value() ? z_subset_.value().data_ptr() : nullptr;
192
193
194
195

    auto gen = at::get_generator_or_default<at::CUDAGeneratorImpl>(
        gen_, at::cuda::detail::getDefaultCUDAGenerator());

196
197
    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024);
198
    // Request the kernel launcher.
199
    auto launcher = get_fwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple));
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219

    // Query the kernel-specific launch parameters.
    launcher(launch_params, true);

    at::Tensor workspace, barrier;

    // Set the kernel runtime parameters.
    layer_norm::FwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x0 = x0.data_ptr();
    params.x = save_x ? x.data_ptr() : nullptr;
    params.dmask = dropout_p > 0.f ? dmask.data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.beta = beta.data_ptr();
    params.z = z.data_ptr();
    params.epsilon = epsilon;
    params.dropout_scale = 1.f / (1.f - dropout_p);
220
    params.inverse_cols = 1.f / float(params.cols);
221
    params.rowscale_const = rowscale_const;
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251

    if (dropout_p > 0.f) {
        // number of times random will be generated per thread, to offset philox counter in thc random
        // state
        int64_t counter_offset = launch_params.elts_per_thread;

        // See Note [Acquire lock when using random generators]
        {
            std::lock_guard<std::mutex> lock(gen->mutex_);
            params.philox_args = gen->philox_cuda_state(counter_offset);
        }
    }

    if( launch_params.barrier_size > 0 ) {
        auto options = x0.options();
        barrier = torch::zeros(launch_params.barrier_size, options.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, options.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

    // Launch the kernel.
    launcher(launch_params, false);

    return { z, x, dmask, mu, rsigma };
}

////////////////////////////////////////////////////////////////////////////////////////////////////

std::vector<at::Tensor> dropout_add_ln_bwd(const at::Tensor &dz,     // BxSxhidden_size
Tri Dao's avatar
Tri Dao committed
252
                                           c10::optional<const at::Tensor> &dx_,     // BxSxhidden_size
253
                                           const at::Tensor &x,      // BxSxhidden_size
Tri Dao's avatar
Tri Dao committed
254
                                           c10::optional<const at::Tensor> &x0_,     // BxSxhidden_size
255
256
257
258
259
                                           c10::optional<const at::Tensor> &dmask_,  // BxSxhidden_size
                                           const at::Tensor &mu,     // BxS, FP32!
                                           const at::Tensor &rsigma, // BxS, FP32!
                                           const at::Tensor &gamma,   // hidden_size
                                           c10::optional<const at::Tensor> &rowscale_,      // BxS
260
261
262
                                           c10::optional<const at::Tensor> &colscale_,      // hidden_size
                                           c10::optional<const at::Tensor> &x0_subset_,      // BxS
                                           c10::optional<const at::Tensor> &z_subset_,      // BxS
263
                                           const float dropout_p,
264
265
                                           const float rowscale_const,
                                           const int64_t x0_numrows,
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
                                           const bool has_residual
) {

    auto itype = dz.scalar_type();
    auto rtype = x.scalar_type();
    auto wtype = gamma.scalar_type();
    auto otype = itype;
    auto ctype = torch::kFloat32;
    auto mtype = torch::kUInt8;

    if (dropout_p > 0.f) { TORCH_CHECK(dmask_.has_value()); }

    TORCH_CHECK(dz.dtype() == otype);
    TORCH_CHECK(mu.dtype() == ctype);
    TORCH_CHECK(rsigma.dtype() == ctype);

    TORCH_CHECK(x.is_cuda());
    TORCH_CHECK(dz.is_cuda());
    TORCH_CHECK(mu.is_cuda());
    TORCH_CHECK(rsigma.is_cuda());
    TORCH_CHECK(gamma.is_cuda());

    TORCH_CHECK(x.is_contiguous());
    TORCH_CHECK(dz.is_contiguous());

    auto sizes = x.sizes();
    TORCH_CHECK(sizes.size() == 2);
    auto rows = sizes[0];
    auto cols = sizes[1];
295
296
297
298
299
300
301
302
    TORCH_CHECK(dz.dim() == 2);
    TORCH_CHECK(dz.size(1) == cols);

    // c10::IntArrayRef does not own the storage, so we need to construct a vector.
    // Otherwise just constructing IntArrayRef({blah}) will cause unintialized memory because
    // blah is then deallocated.
    std::vector<int64_t> x0_sizes_vec {!x0_subset_.has_value() ? rows : x0_numrows, cols};
    auto x0_sizes = c10::IntArrayRef(x0_sizes_vec);
303

Tri Dao's avatar
Tri Dao committed
304
305
306
307
308
309
    if (dx_.has_value()) {
        auto dx = dx_.value();
        TORCH_CHECK(dx.dtype() == rtype);
        TORCH_CHECK(dx.is_cuda())
        TORCH_CHECK(dx.is_contiguous());
        TORCH_CHECK(dx.sizes() == sizes);
310
311
312
313
314
315
316
    }

    if (dmask_.has_value()) {
        auto dmask = dmask_.value();
        TORCH_CHECK(dmask.dtype() == mtype);
        TORCH_CHECK(dmask.is_cuda());
        TORCH_CHECK(dmask.is_contiguous());
317
        TORCH_CHECK(dmask.sizes() == x0_sizes);
318
319
320
321
322
323
    }

    if (rowscale_.has_value()) {
        auto rowscale = rowscale_.value();
        TORCH_CHECK(rowscale.is_cuda())
        TORCH_CHECK(rowscale.is_contiguous());
324
        TORCH_CHECK(rowscale.sizes() == c10::IntArrayRef{rows});
Tri Dao's avatar
Tri Dao committed
325
326
327
328
329
330
331
        TORCH_CHECK(rowscale.dtype() == itype);
    }

    if (colscale_.has_value()) {
        auto colscale = colscale_.value();
        TORCH_CHECK(colscale.is_cuda())
        TORCH_CHECK(colscale.is_contiguous());
332
        TORCH_CHECK(colscale.sizes() == c10::IntArrayRef{cols});
Tri Dao's avatar
Tri Dao committed
333
334
335
336
337
338
        TORCH_CHECK(colscale.dtype() == wtype);

        TORCH_CHECK(x0_.has_value());
        auto x0 = x0_.value();
        TORCH_CHECK(x0.is_cuda())
        TORCH_CHECK(x0.is_contiguous());
339
        TORCH_CHECK(x0.sizes() == x0_sizes);
Tri Dao's avatar
Tri Dao committed
340
        TORCH_CHECK(x0.dtype() == itype);
341
342
    }

343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
    if (x0_subset_.has_value()) {
        auto x0_subset = x0_subset_.value();
        TORCH_CHECK(x0_subset.is_cuda())
        TORCH_CHECK(x0_subset.is_contiguous());
        TORCH_CHECK(x0_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(x0_subset.dtype() == torch::kInt32);

        TORCH_CHECK(z_subset_.has_value());
        auto z_subset = z_subset_.value();
        TORCH_CHECK(z_subset.is_cuda());
        TORCH_CHECK(z_subset.is_contiguous());
        TORCH_CHECK(z_subset.sizes() == c10::IntArrayRef{rows});
        TORCH_CHECK(z_subset.dtype() == torch::kInt32);
    }

358
    auto hidden_size = gamma.numel();
359
360
    TORCH_CHECK(hidden_size == cols);
    TORCH_CHECK((hidden_size % 8 == 0) && (hidden_size <= 6144));
361
362
363
364
365
366
367
368

    TORCH_CHECK(mu.numel() == rows);
    TORCH_CHECK(mu.sizes() == rsigma.sizes());

    TORCH_CHECK(gamma.numel() == cols);

    auto opts = x.options();

369
    auto dx0 = torch::empty(x0_sizes, opts.dtype(itype));
370
371
372
373
    at::Tensor dx1;
    if (has_residual) { dx1 = torch::empty_like(x, opts.dtype(rtype)); }
    auto dgamma = torch::empty_like(gamma);
    auto dbeta = torch::empty_like(gamma);
Tri Dao's avatar
Tri Dao committed
374
375
376
377
    at::Tensor dcolscale;
    if (colscale_.has_value()) {
        dcolscale = torch::empty_like(colscale_.value());
    }
378
379
380
381
382
383
384
385

    layer_norm::LaunchParams<layer_norm::BwdParams> launch_params;
    launch_params.stream = at::cuda::getCurrentCUDAStream().stream();
    launch_params.props = at::cuda::getCurrentDeviceProperties();
    TORCH_CHECK(dropout_p < 1.f);
    launch_params.params.dropout_keep_p = 1.f - dropout_p;
    launch_params.params.dx1 = has_residual ? dx1.data_ptr() : nullptr;
    launch_params.params.rowscale = rowscale_.has_value() ? rowscale_.value().data_ptr() : nullptr;
Tri Dao's avatar
Tri Dao committed
386
    launch_params.params.colscale = colscale_.has_value() ? colscale_.value().data_ptr() : nullptr;
387
388
    launch_params.params.x0_subset = x0_subset_.has_value() ? x0_subset_.value().data_ptr() : nullptr;
    launch_params.params.z_subset = z_subset_.has_value() ? z_subset_.value().data_ptr() : nullptr;
389

390
391
392
    auto round_multiple = [](int x, int m) { return (x + m - 1) / m * m; };
    const int multiple = hidden_size <= 1536 ? 256 : (hidden_size <= 3072 ? 512 : 1024);
    auto launcher = get_bwd_launcher(wtype, itype, rtype, otype, ctype, round_multiple(hidden_size, multiple));
393

Tri Dao's avatar
Tri Dao committed
394
    launcher(launch_params, true);
395
396
397

    auto dgamma_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    auto dbeta_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
Tri Dao's avatar
Tri Dao committed
398
399
400
401
    at::Tensor dcolscale_part;
    if (colscale_.has_value()) {
        dcolscale_part = torch::empty({ launch_params.params.ctas_per_col, hidden_size }, opts.dtype(ctype));
    }
402
403
404
405
406
407
    at::Tensor workspace, barrier;

    layer_norm::BwdParams &params = launch_params.params;
    params.rows = rows;
    params.cols = cols;
    params.x = x.data_ptr();
Tri Dao's avatar
Tri Dao committed
408
    params.x0 = x0_.has_value() ? x0_.value().data_ptr() : nullptr;
409
410
411
412
413
    params.dmask = dropout_p > 0.f ? dmask_.value().data_ptr() : nullptr;
    params.mu = mu.data_ptr();
    params.rs = rsigma.data_ptr();
    params.gamma = gamma.data_ptr();
    params.dz = dz.data_ptr();
Tri Dao's avatar
Tri Dao committed
414
    params.dx = dx_.has_value() ? dx_.value().data_ptr() : nullptr;
415
416
417
    params.dx0 = dx0.data_ptr();
    params.dbeta = dbeta.data_ptr();
    params.dgamma = dgamma.data_ptr();
Tri Dao's avatar
Tri Dao committed
418
    params.dcolscale = colscale_.has_value() ? dcolscale.data_ptr() : nullptr;
419
420
    params.dbeta_part = dbeta_part.data_ptr();
    params.dgamma_part = dgamma_part.data_ptr();
Tri Dao's avatar
Tri Dao committed
421
    params.dcolscale_part = colscale_.has_value() ? dcolscale_part.data_ptr() : nullptr;
422
    params.dropout_scale = 1.f / (1.f - dropout_p);
423
    params.inverse_cols = 1.f / float(params.cols);
424
    params.rowscale_const = rowscale_const;
425
426
427
428
429
430
431
432
433

    if( launch_params.barrier_size > 0 ) {
        // TODO Any way to avoid this?
        barrier = torch::zeros(launch_params.barrier_size, opts.dtype(torch::kInt32));
        workspace = torch::empty(launch_params.workspace_bytes, opts.dtype(torch::kChar));
        params.workspace = workspace.data_ptr();
        params.barrier = barrier.data_ptr<int>();
    }

Tri Dao's avatar
Tri Dao committed
434
    launcher(launch_params, false);
435

Tri Dao's avatar
Tri Dao committed
436
437
438
439
440
441
    std::vector<at::Tensor> result = { dx0, dx1, dgamma, dbeta, dgamma_part, dbeta_part };
    if (colscale_.has_value()) {
        result.push_back(dcolscale);
        result.push_back(dcolscale_part);
    }
    return result;
442
443
444
445
446
447
448
449
}
////////////////////////////////////////////////////////////////////////////////////////////////////

PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) {
  m.doc() = "CUDA DropoutAddLayerNorm";
  m.def("dropout_add_ln_fwd", &dropout_add_ln_fwd, "Run Dropout + Add + LayerNorm forward kernel");
  m.def("dropout_add_ln_bwd", &dropout_add_ln_bwd, "Run Dropout + Add + LayerNorm backward kernel");
}