flash_bwd_kernel.h 90.4 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
/***************************************************************************************************
 * Copyright (c) 2023, Tri Dao.
 ******************************************************************************/

#pragma once

#include <cute/algorithm/copy.hpp>

#include <cutlass/cutlass.h>
#include <cutlass/array.h>
#include <cutlass/numeric_types.h>

#include "block_info.h"
#include "kernel_traits.h"
#include "utils.h"
#include "softmax.h"

18
19
#include "alibi.h"

Tri Dao's avatar
Tri Dao committed
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
namespace flash {

using namespace cute;

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_B_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    // This gives the correct layout, idk why.
    // auto t = make_tile(Layout<Shape<Shape<_8, _2>, _2>,
    //                           Stride<Stride<_1, _64>, _8> >{},
    // auto t = make_tile(Layout<Shape<_8, _2, _2>,
    //                           Stride<_1, _64, _8> >{},
    auto t = make_tile(Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{},       // (1, 64, 8) or (1, 32, 8)
                       make_layout(size<2>(TileShape_MNK{})));
    // if (cute::thread0()) {printf("make_tiled_copy_B_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutB_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template <int MMA_N,
          class... Args,
          class TiledMMA>
CUTE_HOST_DEVICE
auto
make_tiled_copy_C_warpcontiguousN(Copy_Atom<Args...> const& copy_atom,
                                  TiledMMA           const& tiled_mma) {
    using TileShape_MNK = typename TiledMMA::TiledShape_MNK;
    using AtomShape_MNK = typename TiledMMA::AtomShape_MNK;
    constexpr int AtomShape_N = decltype(size<1>(AtomShape_MNK{}))::value;
    // Divide by 2 because right now we always use 2 for the ValLayout
    constexpr int kNWarpsN = decltype(size<1>(TileShape_MNK{}))::value / AtomShape_N / 2;
    constexpr int MMAStride_N = MMA_N * AtomShape_N * 2;
    auto t = make_tile(make_layout(size<0>(TileShape_MNK{})),
                       Layout<Shape<Int<AtomShape_N>, Int<kNWarpsN>, _2>,   // (8, 2, 2) or (8, 4, 2)
                              Stride<_1, Int<MMAStride_N>, _8> >{});       // (1, 64, 8) or (1, 32, 8)
    // if (cute::thread0()) {printf("make_tiled_copy_C_warpcontiguousN "); print(t); printf("\n");  }
    return make_tiled_copy_impl(copy_atom, tiled_mma.get_layoutC_TV(), t);
}

////////////////////////////////////////////////////////////////////////////////////////////////////

75
template <int THREADS_PER_ROW, typename Engine0, typename Layout0, typename Engine1, typename Layout1>
Tri Dao's avatar
Tri Dao committed
76
inline __device__ void dot_do_o(Tensor<Engine0, Layout0> const &do_, Tensor<Engine0, Layout0> const &o,
77
                                Tensor<Engine1, Layout1> &dP_sum, const int gdP_col_stride, const float scale) {
Tri Dao's avatar
Tri Dao committed
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
    static_assert(Layout0::rank == 3, "Only support 3D Tensor");
    static_assert(Layout1::rank == 1, "Only support 1D Tensor");
    CUTE_STATIC_ASSERT_V(do_.layout() == o.layout());
    // Reshape do_ and o from (8, kBlockM / 32, kHeadDim / 64) to (kBlockM / 32, 8 * kHeadDim / 64)
    // The last coordinate is the "page".
    Tensor do_reshaped = make_tensor(do_.data(), make_layout(get<1>(do_.layout()),
                                                             make_layout(get<0>(do_.layout()),
                                                                         get<2>(do_.layout()))));
    Tensor o_reshaped = make_tensor(o.data(), do_reshaped.layout());
    Tensor do_fp32 = flash::convert_type<float>(do_reshaped);
    Tensor o_fp32 = flash::convert_type<float>(o_reshaped);
    #pragma unroll
    for (int mi = 0; mi < size<0>(do_reshaped); ++mi) {
        float dP_sum_cur = do_fp32(mi, 0) * o_fp32(mi, 0);
        #pragma unroll
        for (int ni = 1; ni < size<1>(do_reshaped); ni++) {
            dP_sum_cur += do_fp32(mi, ni) * o_fp32(mi, ni);
        }
        flash::SumOp<float> sum_op;
        dP_sum_cur = flash::Allreduce<THREADS_PER_ROW>::run(dP_sum_cur, sum_op) * scale;
        if (threadIdx.x % THREADS_PER_ROW == 0) {
            dP_sum(mi * gdP_col_stride + threadIdx.x / THREADS_PER_ROW) = dP_sum_cur;
        }
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Just compute dot(do, o) and write the result (softmax_d) to global memory as a separate kernel.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<bool Clear_dQaccum=true, typename Kernel_traits, typename Params>
inline __device__ void compute_dot_do_o(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
132
133
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
134
135
136
137
138
139
140
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded + m_block * kBlockM;

    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
141
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
142
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
143
144
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
145
146
147
    Tensor dP_sum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

Tri Dao's avatar
Tri Dao committed
148
149
    typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
150
151
    // TODO: careful, we're zeroing out dQaccum with type float4, but when
    // we do atomicAdds, we use type float. The layouts are different. Check this.
Tri Dao's avatar
Tri Dao committed
152
153
    typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
154
155
156

    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
Tri Dao's avatar
Tri Dao committed
157
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tri Dao's avatar
Tri Dao committed
158
159
160
161
162
163
164
165
166
167
168
169
170

    Tensor cdO = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdOcdO = gmem_thr_copy_dO.partition_S(cdO);

    // Allocate predicate tensors for k
    Tensor tdOpdO = make_tensor<bool>(make_shape(size<2>(tdOgdO)));
    // Set predicates for k bounds
    #pragma unroll
    for (int k = 0; k < size(tdOpdO); ++k) {tdOpdO(k) = get<1>(tdOcdO(0, 0, k)) < params.d;}

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
171
        gmem_tiled_copy_dO, tdOgdO, tdOrdO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
172
173
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
174
        gmem_tiled_copy_dO, tdOgO, tdOrO, tdOcdO, tdOpdO, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
175
176
177
178
    );
    // By right we need to scale dP up by 1/p_dropout, but instead we don't and only scale the final
    // results (dQ and dK) by 1/p_dropout. So we need to keep dP_sum scaled down by p_dropout here,
    // so that (dP - dP_sum) is on the same scale.
179
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, dP_sum,
Tri Dao's avatar
Tri Dao committed
180
181
                                                Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    if (Clear_dQaccum) {
182
183
        // We're actually not zero'ing out all of dQaccum, but only the part that we're going to
        // do atomicAdds on.
Tri Dao's avatar
Tri Dao committed
184
185
        Tensor zero = make_fragment_like(tdQgdQaccum);
        clear(zero);
Tri Dao's avatar
Tri Dao committed
186
        cute::copy(gmem_tiled_copy_dQaccum, zero, tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

template<typename Kernel_traits, typename Params>
inline __device__ void clear_dKVaccum(const Params &params) {
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded + n_block * kBlockN) * params.d_rounded;

    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{}, Stride<Int<kHeadDim>, _1>{});

Tri Dao's avatar
Tri Dao committed
218
219
220
221
    typename Kernel_traits::GmemTiledCopydQaccum gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tri Dao's avatar
Tri Dao committed
222
223
    Tensor zero = make_fragment_like(tdKgdKaccum);
    clear(zero);
Tri Dao's avatar
Tri Dao committed
224
225
    cute::copy(gmem_tiled_copy_dKVaccum, zero, tdKgdKaccum);
    cute::copy(gmem_tiled_copy_dKVaccum, zero, tdVgdVaccum);
Tri Dao's avatar
Tri Dao committed
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dQ from dQaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_k.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dQ(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q) return;

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
257
258
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + (m_block * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
259
260
261
262
263
264

    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
265
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
266
267
268
269

    Tensor sdQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdQ{});

Tri Dao's avatar
Tri Dao committed
270
271
272
273
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
274
275

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
Tri Dao's avatar
Tri Dao committed
276
277
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
278
279
280
281
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tri Dao's avatar
Tri Dao committed
282
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_S(gdQaccum);
Tri Dao's avatar
Tri Dao committed
283
284
285
286
287

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));

    Tensor tdQrdQaccum = make_fragment_like(tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
288
    cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, tdQrdQaccum);
Tri Dao's avatar
Tri Dao committed
289
290
291
292
293
294
295
    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) {
        acc_dq(i) = tdQrdQaccum(i) * params.scale_softmax_rp_dropout;
    }
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
296
    cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
297
298
    __syncthreads();
    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
299
    cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
300
301
302
303
304
305
306
307

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    #pragma unroll
    for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
308
        gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

// Convert dK and dV from dKaccum and dVaccum (in float) to fp16/bf16.
// This is used in the case where we want to parallelize the backward across seqlen_q.
template<typename Kernel_traits, typename Params>
inline __device__ void convert_dKV(const Params &params) {
    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;

    const BlockInfo binfo(params, bidb);
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
        + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
        + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + bidh) * params.seqlen_k_rounded
                                          + n_block * kBlockN) * params.d_rounded;

    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});

    Tensor sdK = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                             typename Kernel_traits::SmemLayoutdKV{});
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

Tri Dao's avatar
Tri Dao committed
363
364
365
366
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
367
368

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
Tri Dao's avatar
Tri Dao committed
369
370
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
371
372
373
374
375
376
377
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);  // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
Tri Dao's avatar
Tri Dao committed
378
379
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_S(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_S(gdVaccum);
Tri Dao's avatar
Tri Dao committed
380
381
382
383
384
385
386
387

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    CUTE_STATIC_ASSERT_V(size(acc_dk) == size(tdKgdKaccum));
    CUTE_STATIC_ASSERT_V(size(acc_dv) == size(tdVgdVaccum));

    Tensor tdKrdKaccum = make_fragment_like(tdKgdKaccum);
    Tensor tdVrdVaccum = make_fragment_like(tdVgdVaccum);
Tri Dao's avatar
Tri Dao committed
388
389
    cute::copy(gmem_tiled_copy_dKVaccum, tdKgdKaccum, tdKrdKaccum);
    cute::copy(gmem_tiled_copy_dKVaccum, tdVgdVaccum, tdVrdVaccum);
Tri Dao's avatar
Tri Dao committed
390
391
392
393
394
395
396
397
398
399
400
401
402
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) {
        acc_dk(i) = tdKrdKaccum(i) * params.scale_softmax_rp_dropout;
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dv); ++i) {
        acc_dv(i) = tdVrdVaccum(i) * params.rp_dropout;
    }
    // Convert acc_dk from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
403
404
    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
Tri Dao's avatar
Tri Dao committed
405
406
407
    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
Tri Dao's avatar
Tri Dao committed
408
409
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tri Dao's avatar
Tri Dao committed
410
411
412
413
414
415
416
417

    Tensor cdKV = make_identity_tensor(Shape<Int<kBlockN>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
418
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
419
420
    );
    flash::copy</*Is_even_MN=*/false, /*Is_even_K=*/false, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
421
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
422
423
424
425
426
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

427
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, bool Is_first, bool Is_last, bool Seq_parallel=false, typename Params>
Tri Dao's avatar
Tri Dao committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
inline __device__ void compute_dq_dk_dv_1colblock(const Params &params, const int bidb, const int bidh, const int n_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;
    constexpr bool Double_buffer = !Kernel_traits::No_double_buffer;

448
    const BlockInfo</*Varlen=*/!Is_even_MN> binfo(params, bidb);
449
    if (n_block * kBlockN >= binfo.actual_seqlen_k) return;
Tri Dao's avatar
Tri Dao committed
450
451

    int m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM);
Tri Dao's avatar
Tri Dao committed
452
453
454
    if (Is_local) {
        m_block_max = std::min(m_block_max, cute::ceil_div((n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left, kBlockM));
    }
Tri Dao's avatar
Tri Dao committed
455
456
457
458
459
460
461
462
463
464
465
466
467

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + n_block * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + n_block * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + (m_block_max - 1) * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
468
469
    const index_t row_offset_dq_accum = binfo.q_offset(params.seqlen_q_rounded * params.h * params.d_rounded, params.h * params.d_rounded, bidb)
        + ((m_block_max - 1) * kBlockM + (params.cu_seqlens_q == nullptr ? 0 : 128 * bidb)) * params.h * params.d_rounded + bidh * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q
        + (m_block_max - 1) * kBlockM;
    const index_t row_offset_dpsum = (bidb * params.h + bidh) * params.seqlen_q_rounded
        + (m_block_max - 1) * kBlockM;

    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
489
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
490
491
492
493
494
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));
    Tensor gdQaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dq_accum_ptr) + row_offset_dq_accum),
                                  Shape<Int<kBlockM>, Int<kHeadDim>>{},
495
                                  make_stride(params.h * params.d_rounded, _1{}));
Tri Dao's avatar
Tri Dao committed
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});
    Tensor gdPsum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dsoftmax_sum) + row_offset_dpsum),
                                Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    // Double buffer for sQ
    Tensor sdO = make_tensor(sQ.data() + (Double_buffer ? 2 : 1) * size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    Tensor sV = make_tensor(sK.data() + size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(!Kernel_traits::Is_V_in_regs ? sV.data() + size(sV) : sK.data() + size(sK),
                             typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    // sP and sdQ share the same memory so be careful
    Tensor sdQ = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutdQ{});

Tri Dao's avatar
Tri Dao committed
524
525
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
526
527
528
529
530
    using GmemTiledCopydO = std::conditional_t<
        Is_first,
        typename Kernel_traits::GmemTiledCopydO,
        typename Kernel_traits::GmemTiledCopyQKV
    >;
Tri Dao's avatar
Tri Dao committed
531
532
533
534
    GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
535
536
537
538
539
    using GmemLayoutAtomdQaccum = std::conditional_t<
        !Seq_parallel,
        typename Kernel_traits::GmemTiledCopydQaccum,
        typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd
    >;
Tri Dao's avatar
Tri Dao committed
540
541
    GmemLayoutAtomdQaccum gmem_tiled_copy_dQaccum;
    auto gmem_thr_copy_dQaccum = gmem_tiled_copy_dQaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
542
543
544
545
546
547
548
549
550
551
552
553

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);
Tri Dao's avatar
Tri Dao committed
554
    Tensor tdQgdQaccum = gmem_thr_copy_dQaccum.partition_D(gdQaccum);
Tri Dao's avatar
Tri Dao committed
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
    // if (cute::thread0()) { print(tdQgdQaccum.layout()); printf("\n"); }
    // __syncthreads();
    // if (blockIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0 && tidx < 64) {
    //     printf("tidx = %d, tdQgdQaccum = 0x%p\n", tidx, tdQgdQaccum.data());
    // }

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
    Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
587
588
    auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
589
590
591
592
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

    // auto smem_thr_copy_KV = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp).get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
593
594
    auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
595
596
597
598
599
600
601
602
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    // if (cute::thread(0, 0) && n_block == 0) { printf("sK layout: "); print(sK.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tSsK.layout()); printf("\n"); }
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
    // auto smem_thr_copy_PdS = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp).get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
603
604
    auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
605
606
607
608
609
610
611
612
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    // if (cute::thread(0, 0) && n_block == 0) { printf("sP layout: "); print(sP.layout()); printf("\n"); }
    // if (cute::thread(0, 0) && n_block == 0) { print(tPsP.layout()); printf("\n"); }
    // if (n_block == 0 && blockIdx.x == 0 && blockIdx.y == 0 && tidx < 64) {
    //     printf("tidx=%d, tPsP = 0x%p\n", tidx, tPsP.data());
    // }
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
613
614
    auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
615
616
617
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

Tri Dao's avatar
Tri Dao committed
618
619
    auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
620
621
622
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

Tri Dao's avatar
Tri Dao committed
623
624
    auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
    auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
625
626
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

Tri Dao's avatar
Tri Dao committed
627
628
    auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
    auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
629
630
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

Tri Dao's avatar
Tri Dao committed
631
632
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    //
    // PREDICATES
    //

    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tQcQ = gmem_thr_copy_QKV.partition_D(cQ);
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_D(cKV);

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    // We'll advance gdQ and gdQaccum before the 1st read/write.
    tdQgdQ.data() = tdQgdQ.data() + kBlockM * params.dq_row_stride;
660
    tdQgdQaccum.data() = tdQgdQaccum.data() + kBlockM * params.h * params.d_rounded;
Tri Dao's avatar
Tri Dao committed
661
662

    int m_block = m_block_max - 1;
Tri Dao's avatar
Tri Dao committed
663
664
665
666
    int m_block_min = (!Is_causal && !Is_local)
        ? 0
        : std::max(0, (n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right) / kBlockM);
    // If not local, we're guaranteed that m_block_min <= m_block:
667
668
669
670
671
672
    // We checked earlier that n_block * kBlockN < actual_seqlen_k, so in the causal case,
    // n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k < actual_seqlen_q.
    // So m_block_min <= (actual_seqlen_q - 1) / kBlockM.
    // Recall that m_block_max = cute::ceil_div(binfo.actual_seqlen_q, kBlockM) = (actual_seqlen_q + kBlockM - 1) / kBlockM.
    // So m_block_m - 1 = (actual_seqlen_q - 1) / kBlockM.
    // We conclude that m_block_min <= m_block, so we will always have at least 1 iteration of the for loop.
Tri Dao's avatar
Tri Dao committed
673
674
675
676
    // However, if local, then this possible to have some blocks of K & V not attending to any query.
    // We might need to exit early and write 0 to dK and dV for those blocks.
    // Otherwise we get wrong result for the case where we don't enter the for loop.
    // And we might read OOB elements from gQ and gdO.
677
678
    // This also covers the case where actual_seqlen_q == 0
    if ((Is_local || !Is_even_MN) && m_block < m_block_min) {
Tri Dao's avatar
Tri Dao committed
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
        const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
          + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
        const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
          + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
        Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dk_row_stride, _1{}));
        Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                                 Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                 make_stride(params.dv_row_stride, _1{}));
        typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
        auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
        Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
        Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);
        Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
        Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
        clear(tdKrdK);
        clear(tdVrdV);
        Tensor cdKV = make_identity_tensor(make_shape(size<0>(gdK), size<1>(gdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
        Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
        Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
        #pragma unroll
        for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
        // Clear_OOB_K must be false since we don't want to write zeros to gmem
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
            gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
        );
        return;
    }
Tri Dao's avatar
Tri Dao committed
711
712
713
714
715
716
717
718
719
720
721

    if (Double_buffer && m_block % 2 == 1) {  // Double buffer for sQ
        tQsQ.data() = tQsQ.data() + size(sQ);
        tSsQ.data() = tSsQ.data() + size(sQ);
        tdKsQt.data() = tdKsQt.data() + size(sQ);
    }

    if (!Is_first && !Seq_parallel) { __syncthreads(); }

    if (Kernel_traits::Is_V_in_regs) {
        // Clear the smem tiles to account for predicated off loads
722
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
723
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
724
725
726
727
728
729
730
731
        );
        flash::cp_async_fence();
    }

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);
    if (!Is_first) {
        // Clear the smem tiles to account for predicated off loads
732
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
733
            gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
734
735
        );
    } else {
736
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
737
            gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
738
        );
739
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
740
            gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
741
742
        );
    }
743
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
744
        gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
745
746
747
748
749
750
751
752
753
754
755
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        const int row = get<0>(taccScS_row(mi));
756
        lse(mi) = Is_even_MN || row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : INFINITY;
Tri Dao's avatar
Tri Dao committed
757
    }
758
759
760
761
    // We want LSE = inf if the row is OOB. In that case Q would be zero, K would be zero,
    // and scores would be zero. With LSE = 0, probs will be all 1's, and when we multiply
    // with V (which would be zero), we're fine. However, with ALiBi, we might modify these
    // scores, and probs can become NaN. Instead if we set LSE = inf for OOB rows, probs are always 0.
Tri Dao's avatar
Tri Dao committed
762
763

    // Tensor tKrK = make_fragment_like(tKsK);
Tri Dao's avatar
Tri Dao committed
764
765
    // // cute::copy(gmem_tiled_copy_QKV, tKgK(_, _, _, 0), tKrK);
    // cute::copy(gmem_tiled_copy_QKV, tKgK, tKrK);
Tri Dao's avatar
Tri Dao committed
766
767
    // // if (cute::thread(1, 0)) { print(tKrK); }

768
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
769
        gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
770
771
    );
    if (!Kernel_traits::Is_V_in_regs) {
772
        flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
773
            gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
774
775
776
777
778
779
        );
    }
    flash::cp_async_fence();

    // if (cute::thread0()) { print(tdOgdO.layout()); printf("\n"); print(tdOrdO); print(tdOrO); }
    if (Is_first) {
Tri Dao's avatar
Tri Dao committed
780
        cute::copy(tdOrdO, tdOsdO);
781
        dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Tri Dao's avatar
Tri Dao committed
782
783
784
785
786
787
788
789
                                                    Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
    }

    if (Kernel_traits::Is_V_in_regs) {
        cute::cp_async_wait<1>();
        __syncthreads();
        Tensor tdPrV_copy_view = smem_thr_copy_KV.retile_D(tdPrV);
        CUTE_STATIC_ASSERT_V(size<1>(tdPsV) == size<1>(tdPrV_copy_view));            // M
Tri Dao's avatar
Tri Dao committed
790
        cute::copy(smem_tiled_copy_KV, tdPsV, tdPrV_copy_view);
Tri Dao's avatar
Tri Dao committed
791
792
    }

793
794
    auto seed = params.rng_state[0];
    auto offset = params.rng_state[1] + (bidb * params.h + bidh) * 32 + tidx % 32;
Tri Dao's avatar
Tri Dao committed
795
796
797
798

    clear(acc_dv);
    clear(acc_dk);

799
    float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
800

Tri Dao's avatar
Tri Dao committed
801
802
803
804
805
806
807
808
809
810
811
812
813
814
    for (; m_block >= m_block_min; --m_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        clear(acc_s);
        cute::cp_async_wait<0>();
        __syncthreads();

        Tensor dP_sum = make_fragment_like(lse);
        #pragma unroll
        for (int mi = 0; mi < size(lse); ++mi) { dP_sum(mi) = gdPsum(get<0>(taccScS_row(mi))); }

        // if (cute::thread0()) { print(sK); }
        // Tensor tSrK_copy_view = smem_thr_copy_KV.retile_D(tSrK);
        // #pragma unroll
        // for (int k = 0; k < size<2>(tSrK_copy_view); ++k) {
Tri Dao's avatar
Tri Dao committed
815
        //     cute::copy(smem_tiled_copy_KV, tSsK(_, _, k), tSrK_copy_view(_, _, k));
Tri Dao's avatar
Tri Dao committed
816
817
        // }
        // if (cute::thread0()) { print(tSrK); }
Tri Dao's avatar
Tri Dao committed
818
819
        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
820
821
822
823

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
        // if (cute::thread(32, 0)) { print(scores); }
824
825

        if (Has_alibi) {
826
            flash::apply_alibi<Is_causal>(
827
828
829
830
831
832
833
834
835
                scores, 
                n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                binfo.actual_seqlen_k, 
                m_block * kBlockM + get<0>(taccScS_row(0)),
                binfo.actual_seqlen_q, 
                AtomLayoutMS * 16,
                alibi_slope
            );
        }
836

837
838
839
840
841
842
843
        // TD [2023-07-29]: I was thinking that we don't need to mask out the elements beyond
        // actual_seqlen_k, because acc_s would be some finite value for those indices.
        // In the end when we multiply with K to get dQ, the corresponding values of K would be 0,
        // so the result would still be correct.
        // However, it's possible that the values in acc_s are so large that they overflow
        // when we multiply with dP and convert to fp16, resulting in Inf in dS and NaNs in dQ.
        // So we need to mask out the elements beyond actual_seqlen_k.
Tri Dao's avatar
Tri Dao committed
844
        if (!Is_causal && !Is_local) {
845
846
847
848
            if (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k) {
                flash::apply_mask(scores, binfo.actual_seqlen_k,
                                  n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16);
            }
Tri Dao's avatar
Tri Dao committed
849
        } else if (Is_causal) {
850
            // Putting this causal masking right after acc_s is *much* slower for some reason.
851
852
            // TD [2023-08-16]: We need the 2nd condition because if seqlen_q is long and seqlen_k is short
            // (e.g., 256 and 2), the 2nd block of seqlen_q (from 128 to 255), we're not doing causal masking.
853
            // But we still want to mask out elements beyond actual_seqlen_k.
854
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k
855
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
856
                flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
857
858
                                         binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                         binfo.actual_seqlen_q,
859
860
861
                                         // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
                                         AtomLayoutMS * 16);
            }
Tri Dao's avatar
Tri Dao committed
862
863
864
865
866
867
868
869
870
871
        } else if (Is_local) {
            if (m_block * kBlockM < (n_block + 1) * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k - params.window_size_right
                || (m_block + 1) * kBlockM >= n_block * kBlockN + binfo.actual_seqlen_q - binfo.actual_seqlen_k + params.window_size_left
                || (!Is_even_MN && (n_block + 1) * kBlockN >= binfo.actual_seqlen_k)) {
                flash::apply_mask_local(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                                        binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
                                        binfo.actual_seqlen_q, AtomLayoutMS * 16,
                                        params.window_size_left, params.window_size_right);
            }

Tri Dao's avatar
Tri Dao committed
872
        }
873

Tri Dao's avatar
Tri Dao committed
874
875
876
877
        // if (cute::thread(32, 0)) { print(scores); }
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
878
879
            int warp_id = tidx / 32;
            int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
Tri Dao's avatar
Tri Dao committed
880
881
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
882
            int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
Tri Dao's avatar
Tri Dao committed
883
884
885
886
887
888
889
890
891
892
893
894
895
896
            Tensor scores_dropped = make_tensor(scores.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(scores.layout()));
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores_dropped, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
897
        cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
Tri Dao's avatar
Tri Dao committed
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
        // if (cute::thread0()) { print(tPaP); }
        // __syncthreads();
        // if (cute::thread0()) { print(sP); }

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
        // Tensor acc_dp_reshaped = make_tensor(acc_dp.data(), flash::convert_layout_acc_rowcol(acc_dp.layout()));
        // #pragma unroll
        // for (int mi = 0; mi < size<0>(acc_dp_reshaped); ++mi) {
        //     #pragma unroll
        //     for (int ni = 0; ni < size<1>(acc_dp_reshaped); ++ni) {
        //         acc_dp_reshaped(mi, ni) = -dP_sum(mi);
        //     }
        // }

        // if (cute::thread0()) { print(dP_sum); }

        flash::gemm</*A_in_regs=*/false, /*B_in_regs=*/Kernel_traits::Is_V_in_regs>(
Tri Dao's avatar
Tri Dao committed
920
921
            acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
            smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV
Tri Dao's avatar
Tri Dao committed
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
        );

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }
        // if (cute::thread0()) { print(dS); }

        Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
939
        tdQgdQaccum.data() = tdQgdQaccum.data() + (-int(kBlockM * params.h * params.d_rounded));
Tri Dao's avatar
Tri Dao committed
940
941
942
943
944
945
946
947
        if (Is_first || Seq_parallel) {
            clear(acc_dq);
        } else {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
Tri Dao's avatar
Tri Dao committed
948
            cute::copy(gmem_tiled_copy_dQaccum, tdQgdQaccum, acc_dq_reshaped);
Tri Dao's avatar
Tri Dao committed
949
950
951
952
953
954
955
956
957
        }

        if (Double_buffer && m_block > m_block_min) {
            // Double buffer for sQ
            const int sQ_offset = m_block % 2 == 0 ? size(sQ) : -size(sQ);
            tQsQ.data() = tQsQ.data() + sQ_offset;
            tSsQ.data() = tSsQ.data() + sQ_offset;
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
Tri Dao's avatar
Tri Dao committed
958
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
959
960
961
962
963
964
965
966
            flash::cp_async_fence();
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        // if (cute::thread0()) { print(tPrP); }
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
967
        cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
Tri Dao's avatar
Tri Dao committed
968
969
970
971
972
973
974
        __syncthreads();

        // Layout p_l = tPrP.layout();
        // Tensor tdVrPt = make_tensor(tPrP.data(), make_layout(get<0>(p_l), get<2>(p_l), get<1>(p_l)));
        // flash::gemm_A_in_regs(acc_dv, tdVrPt, tdVrdO, tdVsdOt, tiled_mma_dkv, smem_thr_copy_QdOt);
        // Tensor tdKrdSt = make_tensor(tdSrdS.data(), tdVrPt.layout());
        // flash::gemm_A_in_regs(acc_dk, tdKrdSt, tdKrQt, tdKsQt, tiled_mma_dkv, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
975
976
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
977
978
979
980
981
982
983
984
985
986
        // if (cute::thread0() && n_block == 0 && m_block == 0) { print(tdVrPt); }
        // if (cute::thread0()) { print(acc_dv); }

        __syncthreads(); // Need syncthreads since we're writing to the same sdO location

        if (m_block > m_block_min) {
            // Advance gdO
            tdOgdO.data() = tdOgdO.data() + (-int(kBlockM * params.do_row_stride));
            if (Is_first) {
                tdOgO.data() = tdOgO.data() + (-int(kBlockM * params.o_row_stride));
Tri Dao's avatar
Tri Dao committed
987
988
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ);
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
989
            } else {
Tri Dao's avatar
Tri Dao committed
990
                flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_dO, tdOgdO, tdOsdO, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
991
992
993
994
                flash::cp_async_fence();
            }
        }

Tri Dao's avatar
Tri Dao committed
995
996
        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
                    smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
Tri Dao's avatar
Tri Dao committed
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
        // if (cute::thread0()) { print(acc_dq); }

        if (m_block > m_block_min) {
            gLSE.data() = gLSE.data() + (-int(kBlockM));
            #pragma unroll
            for (int mi = 0; mi < size(lse); ++mi) { lse(mi) = gLSE(get<0>(taccScS_row(mi))); }
            gdPsum.data() = gdPsum.data() + (-int(kBlockM));
        }

        if (!Is_last) {
            // Reshape acc_dq from (4, 1, 2) to (4, 2, 1) to write to gdQaccum
            Tensor acc_dq_reshaped = make_tensor(acc_dq.data(),
                                                 make_layout(get<0>(acc_dq.layout()),
                                                             get<2>(acc_dq.layout()),
                                                             get<1>(acc_dq.layout())));
            if (!Seq_parallel) {
Tri Dao's avatar
Tri Dao committed
1013
                cute::copy(gmem_tiled_copy_dQaccum, acc_dq_reshaped, tdQgdQaccum);
Tri Dao's avatar
Tri Dao committed
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
            } else {
                // if (cute::thread0()) { print(acc_dq.layout()); printf("\n"); print(acc_dq_reshaped.layout()); printf("\n"); print(tdQgdQaccum.layout()); printf("\n"); }
                CUTE_STATIC_ASSERT_V(size(acc_dq) == size(tdQgdQaccum));
                #pragma unroll
                for (int i = 0; i < size(acc_dq); ++i) { atomicAdd(&tdQgdQaccum(i), acc_dq(i)); }
            }
        } else {
            #pragma unroll
            for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
            // Convert acc_dq from fp32 to fp16
            Tensor rdQ = flash::convert_type<Element>(acc_dq);
            Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1026
            cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
1027
1028
        }

Tri Dao's avatar
Tri Dao committed
1029
1030
        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1031
1032
1033
1034
1035
1036
1037
1038
        // if (cute::thread0()) { print(acc_dk); }
        if (Double_buffer) {  // Double buffer for sQ
            tdKsQt.data() = tdKsQt.data() + (m_block % 2 == 0 ? size(sQ) : -size(sQ));
        }
        if (!Double_buffer && m_block > m_block_min) {
            __syncthreads();
            // Advance gQ
            tQgQ.data() = tQgQ.data() + (-int(kBlockM * params.q_row_stride));
Tri Dao's avatar
Tri Dao committed
1039
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ);
Tri Dao's avatar
Tri Dao committed
1040
1041
1042
1043
            flash::cp_async_fence();
        }

        if (Is_first && m_block > m_block_min) {
Tri Dao's avatar
Tri Dao committed
1044
            cute::copy(tdOrdO, tdOsdO);
1045
            dot_do_o<Kernel_traits::kGmemThreadsPerRow>(tdOrdO, tdOrO, gdPsum,
Tri Dao's avatar
Tri Dao committed
1046
1047
1048
1049
1050
1051
                                                        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout);
        }

        if (Is_last) {
            __syncthreads();
            Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
1052
            cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
1053
1054
1055
1056
1057
            tdQgdQ.data() = tdQgdQ.data() + (-int(kBlockM * params.dq_row_stride));
            Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
            Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
            #pragma unroll
            for (int m = 0; m < size<1>(tdQgdQ); ++m) {
1058
                if (Is_even_MN || get<0>(tdQcdQ(0, m, 0)) < binfo.actual_seqlen_q - m_block * kBlockM) {
Tri Dao's avatar
Tri Dao committed
1059
                    cute::copy(gmem_tiled_copy_dQ, tdQrdQ(_, m, _), tdQgdQ(_, m, _));
Tri Dao's avatar
Tri Dao committed
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
                }
            }
        }

    }

    // Epilogue

    if (Is_dropout) {
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { acc_dv(i) *= params.rp_dropout; }
    }
    #pragma unroll
    for (int i = 0; i < size(acc_dk); ++i) { acc_dk(i) *= params.scale_softmax_rp_dropout; }

    // Convert acc_dv from fp32 to fp16
    Tensor rdK = flash::convert_type<Element>(acc_dk);
    Tensor rdV = flash::convert_type<Element>(acc_dv);

    Tensor sdK = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutdKV{});  // (SMEM_N, SMEM_K)
    Tensor sdV = make_tensor(sdK.data() + size(sdK), typename Kernel_traits::SmemLayoutdKV{}); // (SMEM_N, SMEM_K)

    // Partition sdV and sdK to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1083
1084
    auto smem_tiled_copy_dKV = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdKV{}, tiled_mma_dkv);
    auto smem_thr_copy_dKV = smem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1085
1086
1087
1088
1089
    Tensor taccdKrdK = smem_thr_copy_dKV.retile_S(rdK);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdKsdK = smem_thr_copy_dKV.partition_D(sdK);   // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor taccdVrdV = smem_thr_copy_dKV.retile_S(rdV);       // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdVsdV = smem_thr_copy_dKV.partition_D(sdV);    // ((Atom,AtomNum),PIPE_M,PIPE_N)

1090
1091
1092
1093
1094
    // We need syncthreads here since we're writing to the same location as sK and sV.
    // Without syncthreads, some thread might modify the location of sK while another thread
    // is reading it for dQ gemm, leading to a race condition.
    // If Is_last, there's already a __syncthreads() at the end of the loop.
    if (!Is_last) { __syncthreads(); }
Tri Dao's avatar
Tri Dao committed
1095

Tri Dao's avatar
Tri Dao committed
1096
1097
    cute::copy(smem_tiled_copy_dKV, taccdKrdK, taccdKsdK);
    cute::copy(smem_tiled_copy_dKV, taccdVrdV, taccdVsdV);
Tri Dao's avatar
Tri Dao committed
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109

    const index_t row_offset_dk = binfo.k_offset(params.dk_batch_stride, params.dk_row_stride, bidb)
       + n_block * kBlockN * params.dk_row_stride + bidh * params.dk_head_stride;
    const index_t row_offset_dv = binfo.k_offset(params.dv_batch_stride, params.dv_row_stride, bidb)
       + n_block * kBlockN * params.dv_row_stride + bidh * params.dv_head_stride;
    Tensor gdK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dk_ptr) + row_offset_dk),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dk_row_stride, _1{}));
    Tensor gdV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dv_ptr) + row_offset_dv),
                             Shape<Int<kBlockN>, Int<kHeadDim>>{},
                             make_stride(params.dv_row_stride, _1{}));

Tri Dao's avatar
Tri Dao committed
1110
1111
    typename Kernel_traits::GmemTiledCopydKV gmem_tiled_copy_dKV;
    auto gmem_thr_copy_dKV = gmem_tiled_copy_dKV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1112
1113
1114
1115
1116
1117
1118
    Tensor tdKsdK = gmem_thr_copy_dKV.partition_S(sdK);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdKgdK = gmem_thr_copy_dKV.partition_D(gdK);
    Tensor tdVsdV = gmem_thr_copy_dKV.partition_S(sdV);   // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdVgdV = gmem_thr_copy_dKV.partition_D(gdV);

    __syncthreads();
    Tensor tdKrdK = make_tensor<Element>(shape(tdKgdK));
Tri Dao's avatar
Tri Dao committed
1119
    cute::copy(gmem_tiled_copy_dKV, tdKsdK, tdKrdK);
Tri Dao's avatar
Tri Dao committed
1120
    Tensor tdVrdV = make_tensor<Element>(shape(tdVgdV));
Tri Dao's avatar
Tri Dao committed
1121
    cute::copy(gmem_tiled_copy_dKV, tdVsdV, tdVrdV);
Tri Dao's avatar
Tri Dao committed
1122
1123
1124
1125
1126
1127
    Tensor cdKV = make_identity_tensor(make_shape(size<0>(sdK), size<1>(sdK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    Tensor tdKVcdKV = gmem_thr_copy_dKV.partition_D(cdKV);
    Tensor tdKVpdKV = make_tensor<bool>(make_shape(size<2>(tdKgdK)));
    #pragma unroll
    for (int k = 0; k < size(tdKVpdKV); ++k) { tdKVpdKV(k) = get<1>(tdKVcdKV(0, 0, k)) < params.d; }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
1128
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1129
        gmem_tiled_copy_dKV, tdKrdK, tdKgdK, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1130
    );
1131
    flash::copy<Is_even_MN, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1132
        gmem_tiled_copy_dKV, tdVrdV, tdVgdV, tdKVcdKV, tdKVpdKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1133
1134
1135
1136
1137
1138
    );

}

////////////////////////////////////////////////////////////////////////////////////////////////////

1139
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_N, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
inline __device__ void compute_dq_dk_dv_1rowblock(const Params &params, const int bidb, const int bidh, const int m_block) {

    using Element = typename Kernel_traits::Element;
    using ElementAccum = typename Kernel_traits::ElementAccum;
    using index_t = typename Kernel_traits::index_t;

    // Shared memory.
    extern __shared__ char smem_[];

    // The thread index.
    const int tidx = threadIdx.x;

    constexpr int kBlockM = Kernel_traits::kBlockM;
    constexpr int kBlockN = Kernel_traits::kBlockN;
    constexpr int kHeadDim = Kernel_traits::kHeadDim;
    // constexpr int kNWarps = Kernel_traits::kNWarps;
    constexpr int MMA_N_SdP = kBlockN / decltype(size<1>(typename Kernel_traits::TiledMmaSdP::TiledShape_MNK{}))::value;
    constexpr int AtomLayoutMS = Kernel_traits::AtomLayoutMSdP;

    const BlockInfo</*Varlen=*/!Is_even_N> binfo(params, bidb);
    if (m_block * kBlockM >= binfo.actual_seqlen_q || binfo.actual_seqlen_k == 0) return;

    int n_block_max = cute::ceil_div(binfo.actual_seqlen_k, kBlockN);
    if (Is_causal) {
        n_block_max = std::min(n_block_max, cute::ceil_div((m_block + 1) * kBlockM, kBlockN));
    }

    // We iterate over the blocks in reverse order. This is because the last block is the only one
    // that needs masking when we read K and V from global memory. Moreover, iterating in reverse
    // might save us 1 register (we just need n_block instead of both n_block and n_block_max).

    const index_t row_offset_q = binfo.q_offset(params.q_batch_stride, params.q_row_stride, bidb)
        + m_block * kBlockM * params.q_row_stride + bidh * params.q_head_stride;
    // We move K and V to the last block.
    const index_t row_offset_k = binfo.k_offset(params.k_batch_stride, params.k_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.k_row_stride + (bidh / params.h_h_k_ratio) * params.k_head_stride;
    const index_t row_offset_v = binfo.k_offset(params.v_batch_stride, params.v_row_stride, bidb)
        + (n_block_max - 1) * kBlockN * params.v_row_stride + (bidh / params.h_h_k_ratio) * params.v_head_stride;
    const index_t row_offset_do = binfo.q_offset(params.do_batch_stride, params.do_row_stride, bidb)
        + m_block * kBlockM * params.do_row_stride + bidh * params.do_head_stride;
    const index_t row_offset_o = binfo.q_offset(params.o_batch_stride, params.o_row_stride, bidb)
1181
        + m_block * kBlockM * params.o_row_stride + bidh * params.o_head_stride;
Tri Dao's avatar
Tri Dao committed
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
    // We'll advance gdKaccum and gdVaccum before the first write.
    const index_t row_offset_dkv_accum = ((bidb * params.h_k + (bidh / params.h_h_k_ratio)) * params.seqlen_k_rounded
                                          + n_block_max * kBlockN) * params.d_rounded;
    const index_t row_offset_lse = (bidb * params.h + bidh) * params.seqlen_q + m_block * kBlockM;

    // We assume that params.d == kHeadDim for now
    Tensor gQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.q_ptr) + row_offset_q),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
                            make_stride(params.q_row_stride, _1{}));
    Tensor gK = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.k_ptr) + row_offset_k),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.k_row_stride, _1{}));
    Tensor gV = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.v_ptr) + row_offset_v),
                            Shape<Int<kBlockN>, Int<kHeadDim>>{},
                            make_stride(params.v_row_stride, _1{}));
    Tensor gdO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.do_ptr) + row_offset_do),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.do_row_stride, _1{}));
    Tensor gO = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.o_ptr) + row_offset_o),
                            Shape<Int<kBlockM>, Int<kHeadDim>>{},
1202
                            make_stride(params.o_row_stride, _1{}));
Tri Dao's avatar
Tri Dao committed
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
    Tensor gdKaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dk_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gdVaccum = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.dv_accum_ptr) + row_offset_dkv_accum),
                                  Shape<Int<kBlockN>, Int<kHeadDim>>{},
                                  Stride<Int<kHeadDim>, _1>{});
    Tensor gLSE = make_tensor(make_gmem_ptr(reinterpret_cast<ElementAccum *>(params.softmax_lse_ptr) + row_offset_lse),
                              Shape<Int<kBlockM>>{}, Stride<_1>{});

    Tensor sQ = make_tensor(make_smem_ptr(reinterpret_cast<Element *>(smem_)),
                            typename Kernel_traits::SmemLayoutQdO{});
    Tensor sQt = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sQtNoSwizzle = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sdO = make_tensor(sQ.data() + size(sQ), typename Kernel_traits::SmemLayoutQdO{});
    Tensor sdOt = make_tensor(sdO.data(), typename Kernel_traits::SmemLayoutQdOtransposed{});
    Tensor sdOtransposedNoSwizzle = make_tensor(sdO.data(),
                                                typename Kernel_traits::SmemLayoutQdOtransposedNoSwizzle{});
    Tensor sK = make_tensor(sdO.data() + size(sdO), typename Kernel_traits::SmemLayoutKV{});
    // Double buffer for sK
    Tensor sV = make_tensor(sK.data() + 2 * size(sK), typename Kernel_traits::SmemLayoutKV{});
    Tensor sKt = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposed{});
    Tensor sKtNoSwizzle = make_tensor(sK.data(), typename Kernel_traits::SmemLayoutKtransposedNoSwizzle{});
    Tensor sdS = make_tensor(sV.data() + size(sV), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sdSt = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sdStNoSwizzle = make_tensor(sdS.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sP = make_tensor(sdS.data() + size(sdS), typename Kernel_traits::SmemLayoutPdS{});
    Tensor sPt = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposed{});
    Tensor sPtNoSwizzle = make_tensor(sP.data(), typename Kernel_traits::SmemLayoutPdStransposedNoSwizzle{});
    Tensor sdPsum = make_tensor(make_smem_ptr(reinterpret_cast<ElementAccum *>(sdS.data().get())),
                                Shape<Int<kBlockM>>{});

Tri Dao's avatar
Tri Dao committed
1234
1235
1236
1237
1238
1239
    typename Kernel_traits::GmemTiledCopyQKV gmem_tiled_copy_QKV;
    auto gmem_thr_copy_QKV = gmem_tiled_copy_QKV.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydO gmem_tiled_copy_dO;
    auto gmem_thr_copy_dO = gmem_tiled_copy_dO.get_thread_slice(tidx);
    typename Kernel_traits::GmemTiledCopydQaccumAtomicAdd gmem_tiled_copy_dKVaccum;
    auto gmem_thr_copy_dKVaccum = gmem_tiled_copy_dKVaccum.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249

    Tensor tQgQ = gmem_thr_copy_QKV.partition_S(gQ);
    Tensor tQsQ = gmem_thr_copy_QKV.partition_D(sQ);
    Tensor tdOgdO = gmem_thr_copy_dO.partition_S(gdO);
    Tensor tdOsdO = gmem_thr_copy_dO.partition_D(sdO);
    Tensor tdOgO = gmem_thr_copy_dO.partition_S(gO);
    Tensor tKgK = gmem_thr_copy_QKV.partition_S(gK);  // (KCPY, KCPY_N, KCPY_K)
    Tensor tKsK = gmem_thr_copy_QKV.partition_D(sK);
    Tensor tVgV = gmem_thr_copy_QKV.partition_S(gV);  // (VCPY, VCPY_N, VCPY_K)
    Tensor tVsV = gmem_thr_copy_QKV.partition_D(sV);
Tri Dao's avatar
Tri Dao committed
1250
1251
    Tensor tdKgdKaccum = gmem_thr_copy_dKVaccum.partition_D(gdKaccum);
    Tensor tdVgdVaccum = gmem_thr_copy_dKVaccum.partition_D(gdVaccum);
Tri Dao's avatar
Tri Dao committed
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277

    typename Kernel_traits::TiledMmaSdP tiled_mma_sdp;
    auto thr_mma_sdp = tiled_mma_sdp.get_thread_slice(tidx);
    Tensor tSrQ = thr_mma_sdp.partition_fragment_A(sQ);         // (MMA,MMA_N,MMA_K)
    Tensor tSrK = thr_mma_sdp.partition_fragment_B(sK);         // (MMA,MMA_N,MMA_K)
    Tensor tdPrdO = thr_mma_sdp.partition_fragment_A(sdO);      // (MMA,MMA_N,MMA_K)
    Tensor tdPrV = thr_mma_sdp.partition_fragment_B(sV);        // (MMA,MMA_N,MMA_K)

    typename Kernel_traits::TiledMmadKV tiled_mma_dkv;
    auto thr_mma_dkv = tiled_mma_dkv.get_thread_slice(tidx);
    Tensor tdKrdSt = thr_mma_dkv.partition_fragment_A(sdStNoSwizzle); // (MMA, MMA_N, MMA_N)
    Tensor tdKrQt = thr_mma_dkv.partition_fragment_B(sQtNoSwizzle);   // (MMA, MMA_K, MMA_N)
    Tensor tdVrPt = thr_mma_dkv.partition_fragment_A(sPtNoSwizzle);   // (MMA, MMA_N, MMA_N)
    Tensor tdVrdO = thr_mma_dkv.partition_fragment_B(sdOtransposedNoSwizzle); // (MMA, MMA_K, MMA_N)

    typename Kernel_traits::TiledMmadQ tiled_mma_dq;
    auto thr_mma_dq = tiled_mma_dq.get_thread_slice(tidx);
    Tensor tdQrdS = thr_mma_dq.partition_fragment_A(sdS);                      // (MMA, MMA_N, MMA_N)
    Tensor tdQrKt  = thr_mma_dq.partition_fragment_B(sKtNoSwizzle);    // (MMA, MMA_K, MMA_N)

    Tensor acc_dq = partition_fragment_C(tiled_mma_dq, Shape<Int<kBlockM>, Int<kHeadDim>>{});  // MMA, MMA_M_SdP, MMA_K

    //
    // Copy Atom retiling
    //

Tri Dao's avatar
Tri Dao committed
1278
1279
    auto smem_tiled_copy_QdO = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_QdO = smem_tiled_copy_QdO.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1280
1281
1282
    Tensor tSsQ = smem_thr_copy_QdO.partition_S(sQ);
    Tensor tdPsdO = smem_thr_copy_QdO.partition_S(sdO);

Tri Dao's avatar
Tri Dao committed
1283
1284
    auto smem_tiled_copy_KV = make_tiled_copy_B_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_sdp);
    auto smem_thr_copy_KV = smem_tiled_copy_KV.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1285
1286
1287
1288
1289
    Tensor tSsK = smem_thr_copy_KV.partition_S(sK);
    Tensor tdPsV = smem_thr_copy_KV.partition_S(sV);

    // Partition sP and sdS to match the accumulator partitioning
    // This has to be tiled_mma_sdp, not tiled_mma_dkv
Tri Dao's avatar
Tri Dao committed
1290
1291
    auto smem_tiled_copy_PdS = make_tiled_copy_C_warpcontiguousN<MMA_N_SdP>(typename Kernel_traits::SmemCopyAtomPdS{}, tiled_mma_sdp);
    auto smem_thr_copy_PdS = smem_tiled_copy_PdS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1292
1293
1294
    Tensor tPsP = smem_thr_copy_PdS.partition_D(sP);      // ((Atom,AtomNum),PIPE_M,PIPE_N)
    Tensor tdSsdS = smem_thr_copy_PdS.partition_D(sdS);   // ((Atom,AtomNum),PIPE_M,PIPE_N)

Tri Dao's avatar
Tri Dao committed
1295
1296
    auto smem_tiled_copy_PdSt = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_PdSt = smem_tiled_copy_PdSt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1297
1298
1299
    Tensor tdVsPt = smem_thr_copy_PdSt.partition_S(sPt);
    Tensor tdKsdSt = smem_thr_copy_PdSt.partition_S(sdSt);

Tri Dao's avatar
Tri Dao committed
1300
1301
    auto smem_tiled_copy_QdOt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dkv);
    auto smem_thr_copy_QdOt = smem_tiled_copy_QdOt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1302
1303
1304
    Tensor tdVsdOt = smem_thr_copy_QdOt.partition_S(sdOt);
    Tensor tdKsQt = smem_thr_copy_QdOt.partition_S(sQt);

Tri Dao's avatar
Tri Dao committed
1305
1306
    auto smem_tiled_copy_dS = make_tiled_copy_A(typename Kernel_traits::SmemCopyAtom{}, tiled_mma_dq);
    auto smem_thr_copy_dS = smem_tiled_copy_dS.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1307
1308
    Tensor tdQsdS = smem_thr_copy_dS.partition_S(sdS);

Tri Dao's avatar
Tri Dao committed
1309
1310
    auto smem_tiled_copy_Kt = make_tiled_copy_B(typename Kernel_traits::SmemCopyAtomTransposed{}, tiled_mma_dq);
    auto smem_thr_copy_Kt = smem_tiled_copy_Kt.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
    Tensor tdQsKt = smem_thr_copy_Kt.partition_S(sKt);

    //
    // PREDICATES
    //

    // Construct identity layout for sQ and sK
    Tensor cQ = make_identity_tensor(make_shape(size<0>(sQ), size<1>(sQ)));    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor cKV = make_identity_tensor(make_shape(size<0>(sK), size<1>(sK)));    // (BLK_N,BLK_K) -> (blk_n,blk_k)
    // Repeat the partitioning with identity layouts
    Tensor tQcQ = gmem_thr_copy_QKV.partition_S(cQ);       // (ACPY,ACPY_M,ACPY_K) -> (blk_m,blk_k)
    Tensor tKVcKV = gmem_thr_copy_QKV.partition_S(cKV);   // (BCPY,BCPY_N,BCPY_K) -> (blk_n,blk_k)

    // Allocate predicate tensors for k
    Tensor tQpQ = make_tensor<bool>(make_shape(size<2>(tQsQ)));
    Tensor tKVpKV = make_tensor<bool>(make_shape(size<2>(tKsK)));

    // Set predicates for k bounds
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tQpQ); ++k) { tQpQ(k) = get<1>(tQcQ(0, 0, k)) < params.d; }
        #pragma unroll
        for (int k = 0; k < size(tKVpKV); ++k) { tKVpKV(k) = get<1>(tKVcKV(0, 0, k)) < params.d; }
    }

    // Prologue

    Tensor tdOrdO = make_fragment_like(tdOgdO);
    Tensor tdOrO = make_fragment_like(tdOgO);

    // TODO: Might need to exit early and write 0 to gdQ.

    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1344
        gmem_tiled_copy_dO, tdOgdO, tdOrdO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1345
1346
    );
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1347
        gmem_tiled_copy_dO, tdOgO, tdOrO, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1348
1349
1350
1351
    );

    Tensor tQrQ = make_fragment_like(tQgQ);
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1352
        gmem_tiled_copy_QKV, tQgQ, tQsQ, tQcQ, tQpQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
    );

    int n_block = n_block_max - 1;
    if (n_block % 2 == 1) {
        tKsK.data() = tKsK.data() + size(sK);
        tSsK.data() = tSsK.data() + size(sK);
        tdQsKt.data() = tdQsKt.data() + size(sK);
    }

    flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1363
        gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1364
1365
    );
    flash::copy<Is_even_N, Is_even_K, /*Clear_OOB_MN=*/true>(
Tri Dao's avatar
Tri Dao committed
1366
        gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV, binfo.actual_seqlen_k - n_block * kBlockN
Tri Dao's avatar
Tri Dao committed
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
    );

    Tensor caccS = make_identity_tensor(Shape<Int<kBlockM>, Int<kBlockN>>{});    // (BLK_M,BLK_N) -> (blk_m,blk_n)
    Tensor taccScS = thr_mma_sdp.partition_C(caccS);                           // (MMA,MMA_N,MMA_N)
    static_assert(decltype(size<0>(taccScS))::value == 4);
    // Convert to ((2, 2), MMA_N, MMA_N) then take only the row indices.
    Tensor taccScS_row = logical_divide(taccScS, Shape<_2>{})(make_coord(0, _), _, 0);
    Tensor lse = make_tensor<ElementAccum>(Shape<Int<decltype(size(taccScS_row))::value>>{});
    #pragma unroll
    for (int mi = 0; mi < size(lse); ++mi) {
        const int row = get<0>(taccScS_row(mi));
        lse(mi) = row < binfo.actual_seqlen_q - m_block * kBlockM ? gLSE(row) : 0;
    }

    cute::cp_async_fence();

    Tensor dP_sum = make_fragment_like(lse);
Tri Dao's avatar
Tri Dao committed
1384
    cute::copy(tdOrdO, tdOsdO);
Tri Dao's avatar
Tri Dao committed
1385
    dot_do_o<Kernel_traits::kGmemThreadsPerRow>(
1386
        tdOrdO, tdOrO, sdPsum,
Tri Dao's avatar
Tri Dao committed
1387
1388
1389
1390
1391
1392
        Kernel_traits::kNThreads / (Kernel_traits::kGmemThreadsPerRow), params.p_dropout
    );
    __syncthreads();
    #pragma unroll
    for (int mi = 0; mi < size(dP_sum); ++mi) { dP_sum(mi) = sdPsum(get<0>(taccScS_row(mi))); }

1393
1394
    auto seed = params.rng_state[0];
    auto offset = params.rng_state[1] + (bidb * params.h + bidh) * 32 + tidx % 32;
Tri Dao's avatar
Tri Dao committed
1395
1396
1397

    clear(acc_dq);

1398
    float alibi_slope = !Has_alibi ? 0.0f : reinterpret_cast<float *>(params.alibi_slopes_ptr)[bidb * params.alibi_slopes_batch_stride + bidh] / params.scale_softmax;
1399

Tri Dao's avatar
Tri Dao committed
1400
1401
1402
1403
1404
1405
    for (; n_block >= 0; --n_block) {
        Tensor acc_s = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_M_SdP, MMA_N)
        clear(acc_s);
        flash::cp_async_wait<0>();
        __syncthreads();

Tri Dao's avatar
Tri Dao committed
1406
1407
        flash::gemm(acc_s, tSrQ, tSrK, tSsQ, tSsK, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
1408
1409
1410

        // Reshape acc_s from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor scores = make_tensor(acc_s.data(), flash::convert_layout_acc_rowcol(acc_s.layout()));
1411
1412

        if (Has_alibi) {
1413
            flash::apply_alibi<Is_causal>(
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
                scores, 
                n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
                binfo.actual_seqlen_k, 
                m_block * kBlockM + get<0>(taccScS_row(0)),
                binfo.actual_seqlen_q, 
                AtomLayoutMS * 16,
                alibi_slope
            );
        }

Tri Dao's avatar
Tri Dao committed
1424
1425
1426
1427
1428
        // We don't need to mask out the elements beyond actual_seqlen_k, because acc_s would
        // be some finite value for those indices. In the end when we multiply with K to get dQ,
        // the corresponding values of K would be 0, so the result would still be correct.
        if (Is_causal && m_block * kBlockM < (n_block + 1) * kBlockN) {
            flash::apply_mask_causal(scores, n_block * kBlockN + (tidx / 32 / AtomLayoutMS) * MMA_N_SdP * 16,
1429
                                     binfo.actual_seqlen_k, m_block * kBlockM + get<0>(taccScS_row(0)),
Tri Dao's avatar
Tri Dao committed
1430
                                     // binfo.actual_seqlen_k, m_block * kBlockM + (tidx / 32) % AtomLayoutMS * 16 + (tidx % 32) / 4,
1431
                                     binfo.actual_seqlen_q,
Tri Dao's avatar
Tri Dao committed
1432
1433
                                     AtomLayoutMS * 16);
        }
1434

Tri Dao's avatar
Tri Dao committed
1435
1436
1437
        // Compute the exponential value.
        flash::scale_apply_exp2</*scale_max=*/false>(scores, lse, params.scale_softmax_log2);
        if (Is_dropout) {
1438
1439
            int warp_id = tidx / 32;
            int block_row_idx = m_block * (kBlockM / 16) + warp_id % AtomLayoutMS;
Tri Dao's avatar
Tri Dao committed
1440
1441
            // Need col to be multiples of 32, since we're doing dropout with block of 16 x 32
            static_assert(MMA_N_SdP % 2 == 0);
1442
            int block_col_idx = n_block * (kBlockN / 32) + (warp_id / AtomLayoutMS) * (MMA_N_SdP / 2);
Tri Dao's avatar
Tri Dao committed
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
            Tensor scores_dropped = make_tensor(scores.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(scores.layout()));
            flash::apply_dropout</*encode_dropout_in_sign_bit=*/true>(
                scores_dropped, params.p_dropout_in_uint8_t, seed, offset,
                block_row_idx, block_col_idx, AtomLayoutMS
            );
        }
        // Convert scores from fp32 to fp16/bf16
        Tensor rP = !Is_dropout
            ? flash::convert_type<Element>(scores)
            : flash::convert_type_relu<Element>(scores);
        // Reshape rP from (nrow=(2, MMA_N), ncol=(2, MMA_N)) to ((2, 2, 2), MMA_N, MMA_N / 2)
        // if using m16n8k16 or ((2, 2, 1), MMA_N, MMA_N) if using m16n8k8.
        Tensor tPrP = make_tensor(rP.data(), flash::convert_layout_rowcol_Aregs<Kernel_traits::TiledMmaSdP>(rP.layout()));
        Tensor tPaP = smem_thr_copy_PdS.retile_S(tPrP);     // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1457
        cute::copy(smem_tiled_copy_PdS, tPaP, tPsP);
Tri Dao's avatar
Tri Dao committed
1458
1459
1460
1461
1462
1463
1464

        Tensor acc_dp = partition_fragment_C(tiled_mma_sdp, Shape<Int<kBlockM>, Int<kBlockN>>{});  // (MMA=4, MMA_N, MMA_N)
        CUTE_STATIC_ASSERT_V(size<0>(acc_dp) == size<0>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<1>(acc_dp) == size<1>(acc_s));                     // MMA
        CUTE_STATIC_ASSERT_V(size<2>(acc_dp) == size<2>(acc_s));                     // MMA

        clear(acc_dp);
Tri Dao's avatar
Tri Dao committed
1465
1466
        flash::gemm(acc_dp, tdPrdO, tdPrV, tdPsdO, tdPsV, tiled_mma_sdp,
                    smem_tiled_copy_QdO, smem_tiled_copy_KV, smem_thr_copy_QdO, smem_thr_copy_KV);
Tri Dao's avatar
Tri Dao committed
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484

        // Reshape acc_dp from (MMA=4, MMA_N, MMA_N) to (col=(2, MMA_N), row=(2, MMA_N))
        Tensor dS = make_tensor(acc_dp.data(), scores.layout());
        auto pointwise_mult = [](float p, float dp, float d) {
            return p * (!Is_dropout || p >= 0 ? dp - d : d);
        };
        #pragma unroll
        for (int mi = 0; mi < size<0>(dS); ++mi) {
            #pragma unroll
            for (int ni = 0; ni < size<1>(dS); ++ni) {
                dS(mi, ni) = pointwise_mult(scores(mi, ni), dS(mi, ni), dP_sum(mi));
            }
        }

        Tensor dS_reshaped = make_tensor(dS.data(), acc_dp.layout());
        // Convert dS from fp32 to fp16
        Tensor tdSrdS = flash::convert_type<Element>(dS_reshaped);
        Tensor tdSadS = smem_thr_copy_PdS.retile_S(tdSrdS);                                          // ((Atom,AtomNum), MMA_N, MMA_N)
Tri Dao's avatar
Tri Dao committed
1485
        cute::copy(smem_tiled_copy_PdS, tdSadS, tdSsdS);
Tri Dao's avatar
Tri Dao committed
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
        __syncthreads();

        if (n_block > 0) {
            // Double buffer for sK
            const int sK_offset = n_block % 2 == 0 ? size(sK) : -size(sK);
            tKsK.data() = tKsK.data() + sK_offset;
            tSsK.data() = tSsK.data() + sK_offset;
            // Advance gK, gV
            tKgK.data() = tKgK.data() + (-int(kBlockN * params.k_row_stride));
            tVgV.data() = tVgV.data() + (-int(kBlockN * params.v_row_stride));
Tri Dao's avatar
Tri Dao committed
1496
1497
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tKgK, tKsK, tKVcKV, tKVpKV);
            flash::copy</*Is_even_MN=*/true, Is_even_K>(gmem_tiled_copy_QKV, tVgV, tVsV, tKVcKV, tKVpKV);
Tri Dao's avatar
Tri Dao committed
1498
1499
1500
1501
1502
1503
1504
            // This cp_async_fence needs to be in the if block, otherwise the synchronization
            // isn't right and we get race conditions.
            cute::cp_async_fence();
        }

        Tensor acc_dv = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        clear(acc_dv);
Tri Dao's avatar
Tri Dao committed
1505
1506
        flash::gemm(acc_dv, tdVrPt, tdVrdO, tdVsPt, tdVsdOt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1507
1508
1509
1510
1511
1512
1513
1514
        // if (threadIdx.x == 0 && blockIdx.y == 0 && blockIdx.z == 0) { print(acc_dv); }
        tdVgdVaccum.data() = tdVgdVaccum.data() + (-int(kBlockN * params.d_rounded));
        #pragma unroll
        for (int i = 0; i < size(acc_dv); ++i) { atomicAdd(&tdVgdVaccum(i), acc_dv(i)); }

        __syncthreads();
        Tensor acc_dk = partition_fragment_C(tiled_mma_dkv, Shape<Int<kBlockN>, Int<kHeadDim>>{});  // MMA, MMA_N, MMA_K
        clear(acc_dk);
Tri Dao's avatar
Tri Dao committed
1515
1516
        flash::gemm(acc_dk, tdKrdSt, tdKrQt, tdKsdSt, tdKsQt, tiled_mma_dkv,
                    smem_tiled_copy_PdSt, smem_tiled_copy_QdOt, smem_thr_copy_PdSt, smem_thr_copy_QdOt);
Tri Dao's avatar
Tri Dao committed
1517
1518
1519
1520
        tdKgdKaccum.data() = tdKgdKaccum.data() + (-int(kBlockN * params.d_rounded));
        #pragma unroll
        for (int i = 0; i < size(acc_dk); ++i) { atomicAdd(&tdKgdKaccum(i), acc_dk(i)); }

Tri Dao's avatar
Tri Dao committed
1521
1522
        flash::gemm(acc_dq, tdQrdS, tdQrKt, tdQsdS, tdQsKt, tiled_mma_dq,
                    smem_tiled_copy_dS, smem_tiled_copy_Kt, smem_thr_copy_dS, smem_thr_copy_Kt);
Tri Dao's avatar
Tri Dao committed
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
        // Double buffer for sK
        tdQsKt.data() = tdQsKt.data() + (n_block % 2 == 0 ? size(sK) : -size(sK));

    }

    // Epilogue

    #pragma unroll
    for (int i = 0; i < size(acc_dq); ++i) { acc_dq(i) *= params.scale_softmax_rp_dropout; }
    // Convert acc_dq from fp32 to fp16
    Tensor rdQ = flash::convert_type<Element>(acc_dq);

    Tensor sdQ = make_tensor(sQ.data(), typename Kernel_traits::SmemLayoutdQ{});

    // Partition sdV and sdK to match the accumulator partitioning
Tri Dao's avatar
Tri Dao committed
1538
1539
    auto smem_tiled_copy_dQ = make_tiled_copy_C(typename Kernel_traits::SmemCopyAtomdQ{}, tiled_mma_dq);
    auto smem_thr_copy_dQ = smem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1540
1541
1542
1543
    Tensor taccdQrdQ = smem_thr_copy_dQ.retile_S(rdQ);  // ((Atom,AtomNum), MMA_N, MMA_N)
    Tensor taccdQsdQ = smem_thr_copy_dQ.partition_D(sdQ);  // ((Atom,AtomNum),PIPE_M,PIPE_N)

    __syncthreads();
Tri Dao's avatar
Tri Dao committed
1544
    cute::copy(smem_tiled_copy_dQ, taccdQrdQ, taccdQsdQ);
Tri Dao's avatar
Tri Dao committed
1545
1546
1547
1548
1549
1550
1551

    const index_t row_offset_dq = binfo.q_offset(params.dq_batch_stride, params.dq_row_stride, bidb)
        + m_block * kBlockM * params.dq_row_stride + bidh * params.dq_head_stride;
    Tensor gdQ = make_tensor(make_gmem_ptr(reinterpret_cast<Element *>(params.dq_ptr) + row_offset_dq),
                             Shape<Int<kBlockM>, Int<kHeadDim>>{},
                             make_stride(params.dq_row_stride, _1{}));

Tri Dao's avatar
Tri Dao committed
1552
1553
    typename Kernel_traits::GmemTiledCopydQ gmem_tiled_copy_dQ;
    auto gmem_thr_copy_dQ = gmem_tiled_copy_dQ.get_thread_slice(tidx);
Tri Dao's avatar
Tri Dao committed
1554
1555
1556
1557
1558
1559
    Tensor tdQsdQ = gmem_thr_copy_dQ.partition_S(sdQ);    // ((Atom,AtomNum),ATOM_M,ATOM_N)
    Tensor tdQgdQ = gmem_thr_copy_dQ.partition_D(gdQ);

    __syncthreads();

    Tensor tdQrdQ = make_tensor<Element>(shape(tdQgdQ));
Tri Dao's avatar
Tri Dao committed
1560
    cute::copy(gmem_tiled_copy_dQ, tdQsdQ, tdQrdQ);
Tri Dao's avatar
Tri Dao committed
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570

    Tensor cdQ = make_identity_tensor(Shape<Int<kBlockM>, Int<kHeadDim>>{});    // (BLK_M,BLK_K) -> (blk_m,blk_k)
    Tensor tdQcdQ = gmem_thr_copy_dQ.partition_D(cdQ);
    Tensor tdQpdQ = make_tensor<bool>(make_shape(size<2>(tdQgdQ)));
    if (!Is_even_K) {
        #pragma unroll
        for (int k = 0; k < size(tdQpdQ); ++k) { tdQpdQ(k) = get<1>(tdQcdQ(0, 0, k)) < params.d; }
    }
    // Clear_OOB_K must be false since we don't want to write zeros to gmem
    flash::copy</*Is_even_MN=*/false, Is_even_K, /*Clear_OOB_MN=*/false, /*Clear_OOB_K=*/false>(
Tri Dao's avatar
Tri Dao committed
1571
        gmem_tiled_copy_dQ, tdQrdQ, tdQgdQ, tdQcdQ, tdQpdQ, binfo.actual_seqlen_q - m_block * kBlockM
Tri Dao's avatar
Tri Dao committed
1572
1573
1574
1575
1576
    );
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1577
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_M, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
inline __device__ void compute_dq_dk_dv(const Params &params) {

    // The block index for the batch.
    const int bidb = blockIdx.x;
    // const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.y;
    // const int bidh = blockIdx.z;
    // The thread index.
    const int tidx = threadIdx.x;

    const int n_block_max = (params.seqlen_k + Kernel_traits::kBlockN - 1) / Kernel_traits::kBlockN;
    if (n_block_max == 1) {
1591
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, true>(params, bidb, bidh, 0);
Tri Dao's avatar
Tri Dao committed
1592
1593
    } else {
        // Iterating backward from n_block_max - 1 to 0 might save 1 register
1594
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, true, false>(params, bidb, bidh, n_block_max - 1);
Tri Dao's avatar
Tri Dao committed
1595
        for (int n_block = n_block_max - 2; n_block > 0; n_block--) {
1596
            compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, false>(params, bidb, bidh, n_block);
Tri Dao's avatar
Tri Dao committed
1597
        }
1598
        compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_M, Is_even_K, false, true>(params, bidb, bidh, 0);
Tri Dao's avatar
Tri Dao committed
1599
1600
1601
1602
1603
    }
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1604
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Is_local, bool Has_alibi, bool Is_even_MN, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1605
1606
1607
1608
1609
1610
1611
1612
inline __device__ void compute_dq_dk_dv_seqk_parallel(const Params &params) {

    const int n_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

1613
    compute_dq_dk_dv_1colblock<Kernel_traits, Is_dropout, Is_causal, Is_local, Has_alibi, Is_even_MN, Is_even_K, false, false, /*Seq_parallel=*/true>(params, bidb, bidh, n_block);
Tri Dao's avatar
Tri Dao committed
1614
1615
1616
1617
}

////////////////////////////////////////////////////////////////////////////////////////////////////

1618
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Has_alibi, bool Is_even_N, bool Is_even_K, typename Params>
Tri Dao's avatar
Tri Dao committed
1619
1620
1621
1622
1623
1624
1625
1626
inline __device__ void compute_dq_dk_dv_seqq_parallel(const Params &params) {

    const int m_block = blockIdx.x;
    // The block index for the batch.
    const int bidb = blockIdx.y;
    // The block index for the head.
    const int bidh = blockIdx.z;

1627
    compute_dq_dk_dv_1rowblock<Kernel_traits, Is_dropout, Is_causal, Has_alibi, Is_even_N, Is_even_K>(params, bidb, bidh, m_block);
Tri Dao's avatar
Tri Dao committed
1628
1629
1630
1631
}

////////////////////////////////////////////////////////////////////////////////////////////////////
} // namespace flash