fmha_fprop_fp16_kernel.sm80.cu 8.6 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/******************************************************************************
 * Copyright (c) 2011-2021, NVIDIA CORPORATION.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
28
29
30
31
#include <cuda_fp16.h>
#include <cuda_bf16.h>

#include "static_switch.h"
32
#include "fp16_switch.h"
Tri Dao's avatar
Tri Dao committed
33
34
35
#include "fmha.h"
#include "fmha_fprop_kernel_1xN.h"

Tri Dao's avatar
Tri Dao committed
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
// Find the number of splits that maximizes the occupancy. For example, if we have
// batch * n_heads = 48 and we have 108 SMs, having 2 splits (efficiency = 0.89) is
// better than having 3 splits (efficiency = 0.67). However, we also don't want too many
// splits as that would incur more HBM reads/writes.
// So we find the best efficiency, then find the smallest number of splits that gets 95%
// of the best efficiency.
int num_splits_heuristic_fwd(int batch_nheads, int num_SMs, int ctas_per_sm, int max_splits) {
    float max_efficiency = 0.f;
    std::vector<float> efficiency;
    efficiency.reserve(max_splits);
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        float n_waves = float(batch_nheads * num_splits) / (num_SMs * ctas_per_sm);
        float eff = n_waves / ceil(n_waves);
        // printf("num_splits = %d, eff = %f\n", num_splits, eff);
        if (eff > max_efficiency) { max_efficiency = eff; }
        efficiency.push_back(eff);
    }
    for (int num_splits = 1; num_splits <= max_splits; num_splits++) {
        if (efficiency[num_splits - 1] > 0.95 * max_efficiency) {
            // printf("num_splits chosen = %d\n", num_splits);
            return num_splits;
        }
    }
    return 1;
}

Tri Dao's avatar
Tri Dao committed
62
template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Return_softmax>
Tri Dao's avatar
Tri Dao committed
63
__global__ void fmha_fprop_fp16_sm80_loop_kernel(FMHA_fprop_params params) {
Tri Dao's avatar
Tri Dao committed
64
65
66
67
    fmha::device_1xN_loop<Kernel_traits, Is_dropout, Is_causal, Return_softmax>(params);
}

template<typename Kernel_traits>
68
void run_fmha_fp16_sm80_loop_(Launch_params<FMHA_fprop_params> &launch_params) {
Tri Dao's avatar
Tri Dao committed
69
70
    constexpr int blocksize_c = Kernel_traits::Cta_tile_p::N;
    const int loop_steps = (launch_params.params.seqlen_k + blocksize_c - 1) / blocksize_c;
Tri Dao's avatar
Tri Dao committed
71

Tri Dao's avatar
Tri Dao committed
72
73
74
75
    constexpr int smem_size_softmax_lse = Kernel_traits::Smem_dp_sum::BYTES_PER_TILE;
    // Don't need smem_size_softmax_lse if we're not looping
    const int smem_size = fmha::get_dynamic_smem_size<Kernel_traits>()
        + (loop_steps > 1 ? smem_size_softmax_lse : 0);
Tri Dao's avatar
Tri Dao committed
76

77
78
79
    // Work-around for gcc 7. It doesn't like nested BOOL_SWITCH.
    // https://github.com/kokkos/kokkos-kernels/issues/349
    // https://github.com/HazyResearch/flash-attention/issues/21
Tri Dao's avatar
Tri Dao committed
80
    BOOL_SWITCH(launch_params.is_dropout, IsDropoutConst, [&] {
81
82
83
84
85
86
87
88
89
90
91
        auto kernel = launch_params.params.is_causal
            ? (launch_params.return_softmax
               ? &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, true, true>
               : &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, true, false>)
            : (launch_params.return_softmax
               ? &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, false, true>
               : &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, false, false>);
        if( smem_size >= 48 * 1024 ) {
            FMHA_CHECK_CUDA(cudaFuncSetAttribute(
                kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        }
Tri Dao's avatar
Tri Dao committed
92
93
94
95
96
97
98
99
100
101
102
103
104
105
        // Automatically set num_splits to maximize occupancy
        if (launch_params.params.num_splits <= 0) {
            int ctas_per_sm;
            cudaError status_ = cudaOccupancyMaxActiveBlocksPerMultiprocessor(
                &ctas_per_sm, kernel, Kernel_traits::THREADS, smem_size);
            auto dprops = at::cuda::getCurrentDeviceProperties();
            // printf("CTAS_PER_SM = %d, nSMs = %d\n", ctas_per_sm, dprops->multiProcessorCount);
            constexpr int M = Kernel_traits::Cta_tile_p::M;
            launch_params.params.num_splits = num_splits_heuristic_fwd(
                launch_params.params.b * launch_params.params.h, dprops->multiProcessorCount,
                ctas_per_sm,
                /*max_splits=*/std::min(30, (launch_params.params.seqlen_q + M - 1 / M))
            );
        }
106
        // printf("smem_size = %d\n", smem_size);
Tri Dao's avatar
Tri Dao committed
107
        dim3 grid(launch_params.params.b, launch_params.params.h, launch_params.params.num_splits);
108
109
110
        kernel<<<grid, Kernel_traits::THREADS, smem_size, launch_params.stream>>>(
            launch_params.params);
        FMHA_CHECK_CUDA(cudaPeekAtLastError());
Tri Dao's avatar
Tri Dao committed
111
    });
Tri Dao's avatar
Tri Dao committed
112
113
}

114
void run_fmha_fp16_sm80(Launch_params<FMHA_fprop_params> &launch_params) {
115
    FP16_SWITCH(launch_params.params.is_bf16, [&] {
Tri Dao's avatar
Tri Dao committed
116
        auto dprops = at::cuda::getCurrentDeviceProperties();
117
118
        if (launch_params.params.d <= 32) {
            if (launch_params.params.seqlen_k == 128) {
Tri Dao's avatar
Tri Dao committed
119
                using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 4, 0x08u, elem_type>;
120
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params);
121
            } else if (launch_params.params.seqlen_k >= 256) {
Tri Dao's avatar
Tri Dao committed
122
                using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>;
123
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params);
Tri Dao's avatar
Tri Dao committed
124
            }
125
126
        } else if (launch_params.params.d <= 64) {
            if (launch_params.params.seqlen_k == 128) {
Tri Dao's avatar
Tri Dao committed
127
                using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
128
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params);
129
            } else if (launch_params.params.seqlen_k >= 256) {
130
                using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
131
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params);
Tri Dao's avatar
Tri Dao committed
132
            }
133
        } else if (launch_params.params.d <= 128) {
134
135
136
137
138
139
140
141
142
            // TD [2022-10-21]: Previously for SM80 we use block size 256 and keep K in shared memory
            // to reduce register spilling. However, that increases the smem usage from ~41KB to ~105KB,
            // reducing occupancy (only 1 kernel can be scheduled per SM instead of 2). This strategy gives
            // some speedup (6-10%) for large batch size, but slows things down for smal batch size.
            // Now that we have better parallelism (over seqlen_q), block size 128 is faster for small
            // batch size and only slightly slower (~3%) on large batch size.
            // For causal=True, block size 128 seems always faster (for small & large batch size).
            // So we're just gonna use block size 128 for simplicity.
            using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
143
            run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params);
Tri Dao's avatar
Tri Dao committed
144
        }
Tri Dao's avatar
Tri Dao committed
145
146
147
148
149
        // if (launch_params.params.d == 64) {
        //     // using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //     // using Kernel_traits = FMHA_kernel_traits<64, 64, 16, 1, 4, 0x08u, elem_type>;
        //     // using Kernel_traits = FMHA_kernel_traits<512, 64, 16, 1, 8, 0x08u, elem_type>;
        //     using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
150
        //     run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params);
Tri Dao's avatar
Tri Dao committed
151
152
        // }
    });
Tri Dao's avatar
Tri Dao committed
153
}