fmha_fprop_fp16_kernel.sm80.cu 11.3 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/******************************************************************************
 * Copyright (c) 2011-2021, NVIDIA CORPORATION.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
28
29
30
31
#include <cuda_fp16.h>
#include <cuda_bf16.h>

#include "static_switch.h"
Tri Dao's avatar
Tri Dao committed
32
33
34
35
#include "fmha.h"
#include "fmha_fprop_kernel_1xN.h"

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Return_softmax>
Tri Dao's avatar
Tri Dao committed
36
__global__ void fmha_fprop_fp16_sm80_loop_kernel(FMHA_fprop_params params) {
Tri Dao's avatar
Tri Dao committed
37
38
39
40
    fmha::device_1xN_loop<Kernel_traits, Is_dropout, Is_causal, Return_softmax>(params);
}

template<typename Kernel_traits>
Tri Dao's avatar
Tri Dao committed
41
void run_fmha_fp16_sm80_loop_(Launch_params<FMHA_fprop_params> &launch_params,
Tri Dao's avatar
Tri Dao committed
42
                              const bool configure) {
Tri Dao's avatar
Tri Dao committed
43
44
    constexpr int blocksize_c = Kernel_traits::Cta_tile_p::N;
    const int loop_steps = (launch_params.params.seqlen_k + blocksize_c - 1) / blocksize_c;
Tri Dao's avatar
Tri Dao committed
45
46
47
48

    if (configure) {
        using Mma_tile_p = fmha::Hmma_tile<typename Kernel_traits::Cta_tile_p>;
        constexpr int M = Kernel_traits::Cta_tile_p::M;
Tri Dao's avatar
Tri Dao committed
49
        size_t STEPS = (launch_params.params.seqlen_q + M - 1) / M;
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55
56
        constexpr size_t MMAS_M = Mma_tile_p::MMAS_M;
        constexpr size_t MMAS_N = Mma_tile_p::MMAS_N;
        size_t elts_per_head = STEPS * MMAS_M * MMAS_N * 8 * loop_steps;
        launch_params.elts_per_thread = elts_per_head;
        return;
    }

Tri Dao's avatar
Tri Dao committed
57
58
59
60
    constexpr int smem_size_softmax_lse = Kernel_traits::Smem_dp_sum::BYTES_PER_TILE;
    // Don't need smem_size_softmax_lse if we're not looping
    const int smem_size = fmha::get_dynamic_smem_size<Kernel_traits>()
        + (loop_steps > 1 ? smem_size_softmax_lse : 0);
Tri Dao's avatar
Tri Dao committed
61

62
63
64
    // Work-around for gcc 7. It doesn't like nested BOOL_SWITCH.
    // https://github.com/kokkos/kokkos-kernels/issues/349
    // https://github.com/HazyResearch/flash-attention/issues/21
Tri Dao's avatar
Tri Dao committed
65
    BOOL_SWITCH(launch_params.is_dropout, IsDropoutConst, [&] {
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
        auto kernel = launch_params.params.is_causal
            ? (launch_params.return_softmax
               ? &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, true, true>
               : &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, true, false>)
            : (launch_params.return_softmax
               ? &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, false, true>
               : &fmha_fprop_fp16_sm80_loop_kernel<Kernel_traits, IsDropoutConst, false, false>);
        if( smem_size >= 48 * 1024 ) {
            FMHA_CHECK_CUDA(cudaFuncSetAttribute(
                kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
        }
        dim3 grid(launch_params.params.b, launch_params.params.h);
        kernel<<<grid, Kernel_traits::THREADS, smem_size, launch_params.stream>>>(
            launch_params.params);
        FMHA_CHECK_CUDA(cudaPeekAtLastError());
Tri Dao's avatar
Tri Dao committed
81
    });
Tri Dao's avatar
Tri Dao committed
82
83
}

Tri Dao's avatar
Tri Dao committed
84
void run_fmha_fp16_sm80(Launch_params<FMHA_fprop_params> &launch_params,
Tri Dao's avatar
Tri Dao committed
85
                        const bool configure) {
Tri Dao's avatar
Tri Dao committed
86
87
88
89
90
91
    BOOL_SWITCH(launch_params.params.is_bf16, IsBf16Const, [&] {
        using elem_type = std::conditional<IsBf16Const, __nv_bfloat16, __half>::type;
        auto dprops = at::cuda::getCurrentDeviceProperties();
        if (launch_params.params.d == 16) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 16, 16, 1, 4, 0x08u, elem_type>;
Tri Dao's avatar
Tri Dao committed
92
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
Tri Dao's avatar
Tri Dao committed
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
            } else if( launch_params.params.seqlen_k == 256 ) {
                using Kernel_traits = FMHA_kernel_traits<256, 16, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else {
                // TD [2022-05-15] 512 gives wrong results rn
                // using Kernel_traits = FMHA_kernel_traits<512, 16, 16, 1, 4, 0x08u, elem_type>;
                using Kernel_traits = FMHA_kernel_traits<256, 16, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            }
        } else if (launch_params.params.d == 32) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else if( launch_params.params.seqlen_k == 256 ) {
                using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else {
                using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            }
        } else if (launch_params.params.d == 64) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else if( launch_params.params.seqlen_k >= 256 ) {
                if (dprops->major == 8 && dprops->minor >= 0) {
                    using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
120
                    run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
Tri Dao's avatar
Tri Dao committed
121
122
123
124
125
126
127
128
                } else if (dprops->major == 7 && dprops->minor == 5) {
                    if (launch_params.is_dropout) { // Need to use the same block size as backward
                        using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
                        run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                    } else {
                        using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
                        run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                    }
129
                }
Tri Dao's avatar
Tri Dao committed
130
            }
Tri Dao's avatar
Tri Dao committed
131
132
133
        } else if (launch_params.params.d == 128) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
Tri Dao's avatar
Tri Dao committed
134
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
Tri Dao's avatar
Tri Dao committed
135
            } else {
136
                if (dprops->major == 8 && dprops->minor == 0 && !launch_params.is_dropout) {
Tri Dao's avatar
Tri Dao committed
137
138
139
140
141
142
143
144
                    // TD [2022-06-05] Keep K in registers to reduce register spilling
                    // Gives about 6% speedup compared to using block size 128.
                    using Kernel_traits = FMHA_kernel_traits<256, 128, 16, 1, 4, 0x18u, elem_type>;
                    run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                } else {  // Need to use the same block size as backward
                    using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
                    run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                }
Tri Dao's avatar
Tri Dao committed
145
146
            }
        }
Tri Dao's avatar
Tri Dao committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
        // if (launch_params.params.d == 64) {
        //     // using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //     // using Kernel_traits = FMHA_kernel_traits<64, 64, 16, 1, 4, 0x08u, elem_type>;
        //     // using Kernel_traits = FMHA_kernel_traits<512, 64, 16, 1, 8, 0x08u, elem_type>;
        //     using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //     run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        // }
        // if (launch_params.params.d == 64) {
        //     if( launch_params.params.seqlen_k == 128 ) {
        //         using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //         run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //     } else if( launch_params.params.seqlen_k >= 256 ) {
        //         if (dprops->major == 8 && dprops->minor >= 0) {
        //             using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
        //             run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //         } else if (dprops->major == 7 && dprops->minor == 5) {
        //             if (launch_params.is_dropout) { // Need to use the same block size as backward
        //                 using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //                 run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //             } else {
        //                 using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
        //                 run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //             }
        //         }
        //     }
        // }
        // if (launch_params.params.d == 128) {
        //     if( launch_params.params.seqlen_k == 128 ) {
        //         using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
        //         run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //     } else {
        //         if (dprops->major == 8 && dprops->minor >= 0 && !launch_params.is_dropout) {
        //             // TD [2022-06-05] Keep K in registers to reduce register spilling
        //             // Gives about 6% speedup compared to using block size 128.
        //             using Kernel_traits = FMHA_kernel_traits<256, 128, 16, 1, 4, 0x18u, elem_type>;
        //             run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //         } else {  // Need to use the same block size as backward
        //             using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
        //             run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //         }
        //     }
        // }
    });
Tri Dao's avatar
Tri Dao committed
190
}