fmha_fprop_fp16_kernel.sm80.cu 11 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
/******************************************************************************
 * Copyright (c) 2011-2021, NVIDIA CORPORATION.  All rights reserved.
 * 
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *     * Redistributions of source code must retain the above copyright
 *       notice, this list of conditions and the following disclaimer.
 *     * Redistributions in binary form must reproduce the above copyright
 *       notice, this list of conditions and the following disclaimer in the
 *       documentation and/or other materials provided with the distribution.
 *     * Neither the name of the NVIDIA CORPORATION nor the
 *       names of its contributors may be used to endorse or promote products
 *       derived from this software without specific prior written permission.
 * 
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
 * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
 * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
 * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
 * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 *
 ******************************************************************************/

Tri Dao's avatar
Tri Dao committed
28
29
30
31
#include <cuda_fp16.h>
#include <cuda_bf16.h>

#include "static_switch.h"
Tri Dao's avatar
Tri Dao committed
32
33
34
35
#include "fmha.h"
#include "fmha_fprop_kernel_1xN.h"

template<typename Kernel_traits, bool Is_dropout, bool Is_causal, bool Return_softmax>
Tri Dao's avatar
Tri Dao committed
36
__global__ void fmha_fprop_fp16_sm80_loop_kernel(FMHA_fprop_params params) {
Tri Dao's avatar
Tri Dao committed
37
38
39
40
    fmha::device_1xN_loop<Kernel_traits, Is_dropout, Is_causal, Return_softmax>(params);
}

template<typename Kernel_traits>
Tri Dao's avatar
Tri Dao committed
41
void run_fmha_fp16_sm80_loop_(Launch_params<FMHA_fprop_params> &launch_params,
Tri Dao's avatar
Tri Dao committed
42
                              const bool configure) {
Tri Dao's avatar
Tri Dao committed
43
44
    constexpr int blocksize_c = Kernel_traits::Cta_tile_p::N;
    const int loop_steps = (launch_params.params.seqlen_k + blocksize_c - 1) / blocksize_c;
Tri Dao's avatar
Tri Dao committed
45
46
47
48

    if (configure) {
        using Mma_tile_p = fmha::Hmma_tile<typename Kernel_traits::Cta_tile_p>;
        constexpr int M = Kernel_traits::Cta_tile_p::M;
Tri Dao's avatar
Tri Dao committed
49
        size_t STEPS = (launch_params.params.seqlen_q + M - 1) / M;
Tri Dao's avatar
Tri Dao committed
50
51
52
53
54
55
56
        constexpr size_t MMAS_M = Mma_tile_p::MMAS_M;
        constexpr size_t MMAS_N = Mma_tile_p::MMAS_N;
        size_t elts_per_head = STEPS * MMAS_M * MMAS_N * 8 * loop_steps;
        launch_params.elts_per_thread = elts_per_head;
        return;
    }

Tri Dao's avatar
Tri Dao committed
57
58
59
60
    constexpr int smem_size_softmax_lse = Kernel_traits::Smem_dp_sum::BYTES_PER_TILE;
    // Don't need smem_size_softmax_lse if we're not looping
    const int smem_size = fmha::get_dynamic_smem_size<Kernel_traits>()
        + (loop_steps > 1 ? smem_size_softmax_lse : 0);
Tri Dao's avatar
Tri Dao committed
61

Tri Dao's avatar
Tri Dao committed
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
    BOOL_SWITCH(launch_params.is_dropout, IsDropoutConst, [&] {
        BOOL_SWITCH(launch_params.params.is_causal, IsCausalConst, [&] {
            BOOL_SWITCH(launch_params.return_softmax, ReturnSoftmaxConst, [&] {
                auto kernel = &fmha_fprop_fp16_sm80_loop_kernel<
                    Kernel_traits, IsDropoutConst, IsCausalConst, ReturnSoftmaxConst>;
                if( smem_size >= 48 * 1024 ) {
                    FMHA_CHECK_CUDA(cudaFuncSetAttribute(
                        kernel, cudaFuncAttributeMaxDynamicSharedMemorySize, smem_size));
                }
                dim3 grid(launch_params.params.b, launch_params.params.h);
                kernel<<<grid, Kernel_traits::THREADS, smem_size, launch_params.stream>>>(
                    launch_params.params);
                FMHA_CHECK_CUDA(cudaPeekAtLastError());
            });
        });
    });
Tri Dao's avatar
Tri Dao committed
78
79
}

Tri Dao's avatar
Tri Dao committed
80
void run_fmha_fp16_sm80(Launch_params<FMHA_fprop_params> &launch_params,
Tri Dao's avatar
Tri Dao committed
81
                        const bool configure) {
Tri Dao's avatar
Tri Dao committed
82
83
84
85
86
87
    BOOL_SWITCH(launch_params.params.is_bf16, IsBf16Const, [&] {
        using elem_type = std::conditional<IsBf16Const, __nv_bfloat16, __half>::type;
        auto dprops = at::cuda::getCurrentDeviceProperties();
        if (launch_params.params.d == 16) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 16, 16, 1, 4, 0x08u, elem_type>;
Tri Dao's avatar
Tri Dao committed
88
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
Tri Dao's avatar
Tri Dao committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
            } else if( launch_params.params.seqlen_k == 256 ) {
                using Kernel_traits = FMHA_kernel_traits<256, 16, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else {
                // TD [2022-05-15] 512 gives wrong results rn
                // using Kernel_traits = FMHA_kernel_traits<512, 16, 16, 1, 4, 0x08u, elem_type>;
                using Kernel_traits = FMHA_kernel_traits<256, 16, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            }
        } else if (launch_params.params.d == 32) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 32, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else if( launch_params.params.seqlen_k == 256 ) {
                using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else {
                using Kernel_traits = FMHA_kernel_traits<256, 32, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            }
        } else if (launch_params.params.d == 64) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
            } else if( launch_params.params.seqlen_k >= 256 ) {
                if (dprops->major == 8 && dprops->minor >= 0) {
                    using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
116
                    run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
Tri Dao's avatar
Tri Dao committed
117
118
119
120
121
122
123
124
                } else if (dprops->major == 7 && dprops->minor == 5) {
                    if (launch_params.is_dropout) { // Need to use the same block size as backward
                        using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
                        run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                    } else {
                        using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
                        run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                    }
125
                }
Tri Dao's avatar
Tri Dao committed
126
            }
Tri Dao's avatar
Tri Dao committed
127
128
129
        } else if (launch_params.params.d == 128) {
            if( launch_params.params.seqlen_k == 128 ) {
                using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
Tri Dao's avatar
Tri Dao committed
130
                run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
Tri Dao's avatar
Tri Dao committed
131
132
133
134
135
136
137
138
139
140
            } else {
                if (dprops->major == 8 && dprops->minor >= 0 && !launch_params.is_dropout) {
                    // TD [2022-06-05] Keep K in registers to reduce register spilling
                    // Gives about 6% speedup compared to using block size 128.
                    using Kernel_traits = FMHA_kernel_traits<256, 128, 16, 1, 4, 0x18u, elem_type>;
                    run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                } else {  // Need to use the same block size as backward
                    using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
                    run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
                }
Tri Dao's avatar
Tri Dao committed
141
142
            }
        }
Tri Dao's avatar
Tri Dao committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
        // if (launch_params.params.d == 64) {
        //     // using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //     // using Kernel_traits = FMHA_kernel_traits<64, 64, 16, 1, 4, 0x08u, elem_type>;
        //     // using Kernel_traits = FMHA_kernel_traits<512, 64, 16, 1, 8, 0x08u, elem_type>;
        //     using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //     run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        // }
        // if (launch_params.params.d == 64) {
        //     if( launch_params.params.seqlen_k == 128 ) {
        //         using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //         run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //     } else if( launch_params.params.seqlen_k >= 256 ) {
        //         if (dprops->major == 8 && dprops->minor >= 0) {
        //             using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
        //             run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //         } else if (dprops->major == 7 && dprops->minor == 5) {
        //             if (launch_params.is_dropout) { // Need to use the same block size as backward
        //                 using Kernel_traits = FMHA_kernel_traits<128, 64, 16, 1, 4, 0x08u, elem_type>;
        //                 run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //             } else {
        //                 using Kernel_traits = FMHA_kernel_traits<256, 64, 16, 1, 4, 0x08u, elem_type>;
        //                 run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //             }
        //         }
        //     }
        // }
        // if (launch_params.params.d == 128) {
        //     if( launch_params.params.seqlen_k == 128 ) {
        //         using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
        //         run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //     } else {
        //         if (dprops->major == 8 && dprops->minor >= 0 && !launch_params.is_dropout) {
        //             // TD [2022-06-05] Keep K in registers to reduce register spilling
        //             // Gives about 6% speedup compared to using block size 128.
        //             using Kernel_traits = FMHA_kernel_traits<256, 128, 16, 1, 4, 0x18u, elem_type>;
        //             run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //         } else {  // Need to use the same block size as backward
        //             using Kernel_traits = FMHA_kernel_traits<128, 128, 16, 1, 4, 0x08u, elem_type>;
        //             run_fmha_fp16_sm80_loop_<Kernel_traits>(launch_params, configure);
        //         }
        //     }
        // }
    });
Tri Dao's avatar
Tri Dao committed
186
}