flash_attn_triton.py 28.5 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
"""
Based on the FlashAttention implementation from Phil Tillet.
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py

Changes:
6
7
- Implement both causal and non-causal attention.
- Implement cross-attention (not just self-attention).
8
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
9
10
11
- [WIP] Support all head dimensions up to 128 (not just 16, 32, 64, 128), for both the forward pass
and backward pass. For the backward pass, head dims that are not 16, 32, 64, 128 will require
more testing since there seems to be some race conditions due to the Triton compiler.
12
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
Tri Dao's avatar
Tri Dao committed
13
- Make the backward for d=128 much faster by reducing register spilling.
14
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
Tri Dao's avatar
Tri Dao committed
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
small batch size * nheads.
"""

import math

import torch

import triton
import triton.language as tl


@triton.autotune(
    configs=[
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=8, num_stages=1),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
    ],
    key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM']
)
@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
36
        "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
37
        "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
Tri Dao's avatar
Tri Dao committed
38
39
40
41
42
43
44
45
46
47
48
    }
)
@triton.jit
def _fwd_kernel(
    Q, K, V, Out,
    Lse, TMP,  # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_ob, stride_oh, stride_om,
49
    nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
Tri Dao's avatar
Tri Dao committed
50
51
52
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
53
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
Tri Dao's avatar
Tri Dao committed
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # off_b = tl.program_id(1)
    # off_h = tl.program_id(2)
    # off_hb = off_b * nheads + off_h
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # Initialize pointers to Q, K, V
    # Adding parenthesis around indexing might use int32 math instead of int64 math?
    # https://github.com/openai/triton/issues/741
    # I'm seeing a tiny bit of difference (5-7us)
    q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
    k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
    v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
    # initialize pointer to m and l
75
    t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
Tri Dao's avatar
Tri Dao committed
76
77
78
79
    lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    # load q: it will stay in SRAM throughout
80
81
82
    # [2022-10-30] TD: Idk why but in the case of EVEN_M=True and EVEN_N=False, if we just call
    # tl.load(q_ptrs), we get the wrong output! Could be a bug in the compiler?
    if EVEN_M & EVEN_N:
83
84
85
86
        if EVEN_HEADDIM:
            q = tl.load(q_ptrs)
        else:
            q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
Tri Dao's avatar
Tri Dao committed
87
    else:
88
89
90
91
92
        if EVEN_HEADDIM:
            q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
        else:
            q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
                        other=0.0)
Tri Dao's avatar
Tri Dao committed
93
94
95
96
97
98
    # loop over k, v and update accumulator
    end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
    for start_n in range(0, end_n, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        # -- compute qk ----
        if EVEN_N:
99
100
101
102
            if EVEN_HEADDIM:
                k = tl.load(k_ptrs + start_n * stride_kn)
            else:
                k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
Tri Dao's avatar
Tri Dao committed
103
        else:
104
105
106
107
108
109
110
            if EVEN_HEADDIM:
                k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
                            other=0.0)
            else:
                k = tl.load(k_ptrs + start_n * stride_kn,
                            mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                            other=0.0)
Tri Dao's avatar
Tri Dao committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k, trans_b=True)
        if not EVEN_N:
            qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
        if IS_CAUSAL:
            qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
        m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
        # Slightly faster to multiply the softmax_scale here since the compiler can then
        # fuse the mult and add into an fma instruction.
        p = tl.exp(qk * softmax_scale - m_ij[:, None])
        l_ij = tl.sum(p, 1)

        # scale acc_o
        acc_o_scale = tl.exp(m_i - m_ij)

        # # -- update output accumulator --
        # BUG: have to store and immediately load
        tl.store(t_ptrs, acc_o_scale)
        acc_o_scale = tl.load(t_ptrs)
        acc_o = acc_o * acc_o_scale[:, None]
        # update acc_o
        if EVEN_N:
133
134
135
136
            if EVEN_HEADDIM:
                v = tl.load(v_ptrs + start_n * stride_vn)
            else:
                v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
Tri Dao's avatar
Tri Dao committed
137
        else:
138
139
140
141
142
143
144
            if EVEN_HEADDIM:
                v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
                            other=0.0)
            else:
                v = tl.load(v_ptrs + start_n * stride_vn,
                            mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                            other=0.0)
Tri Dao's avatar
Tri Dao committed
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
        p = p.to(v.dtype)
        acc_o += tl.dot(p, v)

        # -- update statistics
        m_i = m_ij
        l_i_new = tl.exp(lse_i - m_ij) + l_ij
        lse_i = m_ij + tl.log(l_i_new)

    o_scale = tl.exp(m_i - lse_i)
    # BUG: have to store and immediately load
    tl.store(t_ptrs, o_scale)
    o_scale = tl.load(t_ptrs)
    acc_o = acc_o * o_scale[:, None]
    # rematerialize offsets to save registers
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    # write back l and m
162
    lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
Tri Dao's avatar
Tri Dao committed
163
164
165
166
167
    tl.store(lse_ptrs, lse_i)
    # initialize pointers to output
    offs_n = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_n[None, :])
    if EVEN_M:
168
169
170
171
        if EVEN_HEADDIM:
            tl.store(out_ptrs, acc_o)
        else:
            tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
Tri Dao's avatar
Tri Dao committed
172
    else:
173
174
175
176
177
        if EVEN_HEADDIM:
            tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
        else:
            tl.store(out_ptrs, acc_o,
                     mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
Tri Dao's avatar
Tri Dao committed
178
179
180
181
182
183
184


@triton.jit
def _bwd_preprocess_do_o_dot(
    Out, DO, Delta,
    stride_ob, stride_oh, stride_om,
    stride_dob, stride_doh, stride_dom,
185
    nheads, seqlen_q, seqlen_q_rounded, headdim,
Tri Dao's avatar
Tri Dao committed
186
187
188
189
190
191
192
193
194
195
    BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # load
196
197
198
199
    o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
                mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
    do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
                 mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim), other=0.0).to(tl.float32)
Tri Dao's avatar
Tri Dao committed
200
201
202
203
204
205
206
207
208
209
210
211
    delta = tl.sum(o * do, axis=1)
    # write-back
    tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)


@triton.jit
def _bwd_kernel_one_col_block(
    start_n,
    Q, K, V, softmax_scale,
    DO, DQ, DK, DV,
    LSE, D,
    stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
212
    seqlen_q, seqlen_k, headdim,
Tri Dao's avatar
Tri Dao committed
213
214
215
    ATOMIC_ADD: tl.constexpr,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
216
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
Tri Dao's avatar
Tri Dao committed
217
218
219
220
221
222
223
224
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
    begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
    # initialize row/col offsets
    offs_qm = begin_m + tl.arange(0, BLOCK_M)
    offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
    offs_m = tl.arange(0, BLOCK_M)
225
    offs_d = tl.arange(0, BLOCK_HEADDIM)
Tri Dao's avatar
Tri Dao committed
226
    # initialize pointers to value-like data
227
228
229
230
231
    q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_d[None, :])
    k_ptrs = K + (offs_n[:, None] * stride_kn + offs_d[None, :])
    v_ptrs = V + (offs_n[:, None] * stride_vn + offs_d[None, :])
    do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_d[None, :])
    dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_d[None, :])
Tri Dao's avatar
Tri Dao committed
232
233
234
235
    # initialize dv amd dk
    dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    # k and v stay in SRAM throughout
236
237
    # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
    # if we just call tl.load(k_ptrs), we get the wrong output!
238
    if EVEN_N & EVEN_M:
239
240
241
242
243
244
        if EVEN_HEADDIM:
            k = tl.load(k_ptrs)
            v = tl.load(v_ptrs)
        else:
            k = tl.load(k_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
            v = tl.load(v_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
245
    else:
246
247
248
249
250
251
252
253
        if EVEN_HEADDIM:
            k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
            v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
        else:
            k = tl.load(k_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                        other=0.0)
            v = tl.load(v_ptrs, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                        other=0.0)
Tri Dao's avatar
Tri Dao committed
254
255
256
257
258
259
    # loop over rows
    num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
    for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
        start_m = tl.multiple_of(start_m, BLOCK_M)
        offs_m_curr = start_m + offs_m
        # load q, k, v, do on-chip
260
261
262
        # Same bug as below. Otherwise gives wrong result for headdim=40, seqlen=(128, 117)
        if EVEN_M & EVEN_HEADDIM:
            q = tl.load(q_ptrs)
263
        else:
264
265
266
267
268
            if EVEN_HEADDIM:
                q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
            else:
                q = tl.load(q_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
                                         & (offs_d[None, :] < headdim), other=0.0)
Tri Dao's avatar
Tri Dao committed
269
270
        # recompute p = softmax(qk, dim=-1).T
        qk = tl.dot(q, k, trans_b=True)
271
272
        if not EVEN_N:  # Need to mask out otherwise the softmax is wrong
            qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
Tri Dao's avatar
Tri Dao committed
273
274
        if IS_CAUSAL:
            qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
275
276
277
        # There seems to be a race condition when headdim=48/96, and dq, dk, dv are wrong.
        if not EVEN_HEADDIM:
            tl.debug_barrier()
Tri Dao's avatar
Tri Dao committed
278
279
280
        lse_i = tl.load(LSE + offs_m_curr)
        p = tl.exp(qk * softmax_scale - lse_i[:, None])
        # compute dv
281
282
283
284
285
        # [2022-10-30] TD: A Triton bug: if EVEN_M=True and EVEN_HEADDIM=False, if we call
        # do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0), we get wrong outputs
        # in the case of headdim=48/96, seqlen_q & seqlen_k >= 512. If headdim=40 or seqlen < 512,
        # the output is correct.
        if EVEN_M & EVEN_HEADDIM:
286
            do = tl.load(do_ptrs)
287
288
289
290
291
        # if EVEN_M:
        #     if EVEN_HEADDIM:
        #         do = tl.load(do_ptrs)
        #     else:
        #         do = tl.load(do_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
292
        else:
293
294
295
296
297
            if EVEN_HEADDIM:
                do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
            else:
                do = tl.load(do_ptrs, mask=(offs_m_curr[:, None] < seqlen_q)
                                           & (offs_d[None, :] < headdim), other=0.0)
Tri Dao's avatar
Tri Dao committed
298
299
        dv += tl.dot(p.to(do.dtype), do, trans_a=True)
        # compute dp = dot(v, do)
300
        # There seems to be a race condition when headdim=48/96, and dq, dk are wrong.
301
302
        # Also wrong for headdim=128, seqlen=(108, 256), and ATOMIC_ADD=True
        tl.debug_barrier()
Tri Dao's avatar
Tri Dao committed
303
304
305
306
307
308
309
310
311
312
313
        dp = tl.dot(do, v, trans_b=True)
        # compute ds = p * (dp - delta[:, None])
        # Putting the subtraction after the dp matmul (instead of before) is slightly faster
        Di = tl.load(D + offs_m_curr)
        # Converting ds to q.dtype here reduces register pressure and makes it much faster
        # for BLOCK_HEADDIM=128
        ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
        # compute dk = dot(ds.T, q)
        dk += tl.dot(ds, q, trans_a=True)
        # compute dq
        if not ATOMIC_ADD:
314
            if EVEN_M:
315
316
317
318
319
320
321
322
323
                if EVEN_HEADDIM:
                    dq = tl.load(dq_ptrs, eviction_policy="evict_last")
                    dq += tl.dot(ds, k)
                    tl.store(dq_ptrs, dq, eviction_policy="evict_last")
                else:
                    dq = tl.load(dq_ptrs, mask=offs_d[None, :] < headdim, other=0.0,
                                 eviction_policy="evict_last")
                    dq += tl.dot(ds, k)
                    tl.store(dq_ptrs, dq, mask=offs_d[None, :] < headdim, eviction_policy="evict_last")
324
            else:
325
326
327
328
329
330
331
332
333
334
335
336
337
                if EVEN_HEADDIM:
                    dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
                                eviction_policy="evict_last")
                    dq += tl.dot(ds, k)
                    tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
                            eviction_policy="evict_last")
                else:
                    dq = tl.load(dq_ptrs,
                                 mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
                                 other=0.0, eviction_policy="evict_last")
                    dq += tl.dot(ds, k)
                    tl.store(dq_ptrs, dq,
                             mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
338
                             eviction_policy="evict_last")
Tri Dao's avatar
Tri Dao committed
339
340
        else:  # If we're parallelizing across the seqlen_k dimension
            dq = tl.dot(ds, k)
341
            if EVEN_M:
342
343
344
345
                if EVEN_HEADDIM:
                    tl.atomic_add(dq_ptrs, dq)
                else:
                    tl.atomic_add(dq_ptrs, dq, mask=offs_d[None, :] < headdim)
346
            else:
347
348
349
350
351
                if EVEN_HEADDIM:
                    tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
                else:
                    tl.atomic_add(dq_ptrs, dq,
                                  mask=(offs_m_curr[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
Tri Dao's avatar
Tri Dao committed
352
353
354
355
356
        # increment pointers
        dq_ptrs += BLOCK_M * stride_dqm
        q_ptrs += BLOCK_M * stride_qm
        do_ptrs += BLOCK_M * stride_dom
    # write-back
357
358
    dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_d[None, :])
    dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_d[None, :])
359
    if EVEN_N:
360
361
362
363
364
365
        if EVEN_HEADDIM:
            tl.store(dv_ptrs, dv)
            tl.store(dk_ptrs, dk)
        else:
            tl.store(dv_ptrs, dv, mask=offs_d[None, :] < headdim)
            tl.store(dk_ptrs, dk, mask=offs_d[None, :] < headdim)
366
    else:
367
368
369
370
371
372
        if EVEN_HEADDIM:
            tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
            tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
        else:
            tl.store(dv_ptrs, dv, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
            tl.store(dk_ptrs, dk, mask=(offs_n[:, None] < seqlen_k) & (offs_d[None, :] < headdim))
Tri Dao's avatar
Tri Dao committed
373
374
375
376
377
378
379
380
381
382
383
384
385


def init_to_zero(name):
    # def fn(nargs):
    #     with torch.no_grad():
    #         nargs[name].zero_()
    # return fn
    return lambda nargs: nargs[name].zero_()

@triton.autotune(
    configs=[
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
386
387
388
389
390
391
        # Other configs seem to give wrong results when seqlen_q % 128 != 0, disabling them for now
        # # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
Tri Dao's avatar
Tri Dao committed
392
393
394
395
396
397
398
399
400
401
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
    ],
    key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
    # reset_to_zero=['DQ']
)
402
403
404
@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
405
406
        "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
        "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
407
408
    }
)
Tri Dao's avatar
Tri Dao committed
409
410
411
412
413
414
415
416
417
418
419
420
421
@triton.jit
def _bwd_kernel(
    Q, K, V,
    DO, DQ, DK, DV,
    LSE, D,
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_dob, stride_doh, stride_dom,
    stride_dqb, stride_dqh, stride_dqm,
    stride_dkb, stride_dkh, stride_dkn,
    stride_dvb, stride_dvh, stride_dvn,
422
    nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
Tri Dao's avatar
Tri Dao committed
423
424
425
426
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
    SEQUENCE_PARALLEL: tl.constexpr,
427
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
Tri Dao's avatar
Tri Dao committed
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # offset pointers for batch/head
    Q += off_b * stride_qb + off_h * stride_qh
    K += off_b * stride_kb + off_h * stride_kh
    V += off_b * stride_vb + off_h * stride_vh
    DO += off_b * stride_dob + off_h * stride_doh
    DQ += off_b * stride_dqb + off_h * stride_dqh
    DK += off_b * stride_dkb + off_h * stride_dkh
    DV += off_b * stride_dvb + off_h * stride_dvh
    # pointer to row-wise quantities in value-like data
    D += off_hb * seqlen_q_rounded
    LSE += off_hb * seqlen_q_rounded
    if not SEQUENCE_PARALLEL:
        num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
        for start_n in range(0, num_block_n):
            _bwd_kernel_one_col_block(
                start_n,
                Q, K, V, softmax_scale,
                DO, DQ, DK, DV,
                LSE, D,
                stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
453
                seqlen_q, seqlen_k, headdim,
Tri Dao's avatar
Tri Dao committed
454
455
456
                ATOMIC_ADD=False,
                IS_CAUSAL=IS_CAUSAL,
                BLOCK_HEADDIM=BLOCK_HEADDIM,
457
                EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
Tri Dao's avatar
Tri Dao committed
458
459
460
461
462
463
464
465
466
467
                BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
            )
    else:
        start_n = tl.program_id(0)
        _bwd_kernel_one_col_block(
            start_n,
            Q, K, V, softmax_scale,
            DO, DQ, DK, DV,
            LSE, D,
            stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
468
            seqlen_q, seqlen_k, headdim,
Tri Dao's avatar
Tri Dao committed
469
470
471
            ATOMIC_ADD=True,
            IS_CAUSAL=IS_CAUSAL,
            BLOCK_HEADDIM=BLOCK_HEADDIM,
472
            EVEN_M=EVEN_M, EVEN_N=EVEN_N, EVEN_HEADDIM=EVEN_HEADDIM,
Tri Dao's avatar
Tri Dao committed
473
474
475
476
477
478
479
480
481
482
            BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
        )


def _flash_attn_forward(q, k, v, causal=False, softmax_scale=None):
    # shape constraints
    batch, seqlen_q, nheads, d = q.shape
    _, seqlen_k, _, _ = k.shape
    assert k.shape == (batch, seqlen_k, nheads, d)
    assert v.shape == (batch, seqlen_k, nheads, d)
483
    assert d <= 128, 'FlashAttention only support head dimensions up to 128'
Tri Dao's avatar
Tri Dao committed
484
485
486
487
488
489
490
491
492
493
494
    assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
    assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
    assert q.is_cuda and k.is_cuda and v.is_cuda
    softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
    seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
    lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    # lse = torch.full((batch, nheads, seqlen_q_rounded), float('inf'), device=q.device,
                     # dtype=torch.float32)
    tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    o = torch.empty_like(q)

495
    BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
Tri Dao's avatar
Tri Dao committed
496
497
498
499
500
501
502
503
504
505
506
    # BLOCK = 128
    # num_warps = 4 if d <= 64 else 8
    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _fwd_kernel[grid](
        q, k, v, o,
        lse, tmp,
        softmax_scale,
        q.stride(0), q.stride(2), q.stride(1),
        k.stride(0), k.stride(2), k.stride(1),
        v.stride(0), v.stride(2), v.stride(1),
        o.stride(0), o.stride(2), o.stride(1),
507
        nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
Tri Dao's avatar
Tri Dao committed
508
509
510
        seqlen_q // 32,  seqlen_k // 32, # key for triton cache (limit number of compilations)
        # Can't use kwargs here because triton autotune expects key to be args, not kwargs
        # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
511
        causal, BLOCK_HEADDIM,
Tri Dao's avatar
Tri Dao committed
512
513
514
515
516
517
518
519
520
521
522
523
524
        # BLOCK_M=BLOCK, BLOCK_N=BLOCK,
        # num_warps=num_warps,
        # num_stages=1,
    )
    return o, lse, softmax_scale  # softmax_scale could have been updated


def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, causal=False, softmax_scale=None):
    # Make sure that the last dimension is contiguous
    if do.stride(-1) != 1:
        do = do.contiguous()
    batch, seqlen_q, nheads, d = q.shape
    _, seqlen_k, _, _ = k.shape
525
526
    # assert d in {16, 32, 64, 128}
    assert d <= 128
Tri Dao's avatar
Tri Dao committed
527
528
529
530
531
532
    seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
    assert lse.shape == (batch, nheads, seqlen_q_rounded)
    # dq_accum = torch.zeros_like(q, dtype=torch.float32)
    dq_accum = torch.empty_like(q, dtype=torch.float32)
    delta = torch.empty_like(lse)
    # delta = torch.zeros_like(lse)
533
534

    BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
Tri Dao's avatar
Tri Dao committed
535
536
537
538
539
    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _bwd_preprocess_do_o_dot[grid](
        o, do, delta,
        o.stride(0), o.stride(2), o.stride(1),
        do.stride(0), do.stride(2), do.stride(1),
540
541
        nheads, seqlen_q, seqlen_q_rounded, d,
        BLOCK_M=128, BLOCK_HEADDIM=BLOCK_HEADDIM,
Tri Dao's avatar
Tri Dao committed
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
    )

    # TODO: There are 2 Memcpy DtoD when I use the autotuner.
    # BLOCK_M = 128
    # BLOCK_N = 64
    # num_warps = 4
    grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
                    batch * nheads)
    _bwd_kernel[grid](
        q, k, v,
        do, dq_accum, dk, dv,
        lse, delta,
        softmax_scale,
        q.stride(0), q.stride(2), q.stride(1),
        k.stride(0), k.stride(2), k.stride(1),
        v.stride(0), v.stride(2), v.stride(1),
        do.stride(0), do.stride(2), do.stride(1),
        dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
        dk.stride(0), dk.stride(2), dk.stride(1),
        dv.stride(0), dv.stride(2), dv.stride(1),
562
        nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
Tri Dao's avatar
Tri Dao committed
563
564
565
        seqlen_q // 32,  seqlen_k // 32, # key for triton cache (limit number of compilations)
        # Can't use kwargs here because triton autotune expects key to be args, not kwargs
        # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
566
        causal, BLOCK_HEADDIM,
Tri Dao's avatar
Tri Dao committed
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
        # SEQUENCE_PARALLEL=False,
        # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
        # num_warps=num_warps,
        # num_stages=1,
    )
    dq.copy_(dq_accum)


class FlashAttnQKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, causal=False, softmax_scale=None):
        """
            qkv: (batch, seqlen, 3, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        if qkv.stride(-1) != 1:
            qkv = qkv.contiguous()
        o, lse, ctx.softmax_scale = _flash_attn_forward(
            qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], causal=causal, softmax_scale=softmax_scale
        )
        ctx.save_for_backward(qkv, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        qkv, o, lse = ctx.saved_tensors
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
                             dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dqkv, None, None


flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply


class FlashAttnKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, kv, causal=False, softmax_scale=None):
        """
            q: (batch, seqlen, nheads, headdim)
            kv: (batch, seqlen, 2, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
        o, lse, ctx.softmax_scale = _flash_attn_forward(
            q, kv[:, :, 0], kv[:, :, 1], causal=causal, softmax_scale=softmax_scale
        )
        ctx.save_for_backward(q, kv, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, kv, o, lse = ctx.saved_tensors
        dq = torch.empty_like(q)
        dkv = torch.empty_like(kv)
        _flash_attn_backward(do, q, qkv[:, :, 0], qkv[:, :, 1], o, lse,
                             dq, dkv[:, :, 0], dkv[:, :, 1],
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dq, dkv, None, None


flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply


class FlashAttnFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal=False, softmax_scale=None):
        """
            q, k, v: (batch_size, seqlen, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
        o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, causal=causal,
                                                        softmax_scale=softmax_scale)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
        dq = torch.empty_like(q)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)
        _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dq, dk, dv, None, None


flash_attn_func = FlashAttnFunc.apply