flash_attn_triton.py 21.2 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
"""
Based on the FlashAttention implementation from Phil Tillet.
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py

Changes:
- Support both causal and non-causal attention.
- Speed up the forward pass a bit (and only store the LSE instead of m and l).
- Make the backward for d=128 much faster by reducing register spilling.
- Add the option to parallelize the backward pass across seqlen_k, to deal with the case of
small batch size * nheads.
"""

import math

import torch

from einops import rearrange

import triton
import triton.language as tl


@triton.autotune(
    configs=[
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=8, num_stages=1),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
    ],
    key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM']
)
@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
        "EVEN_N": lambda args: args["seqlen_k"] % (args["BLOCK_N"]) == 0,
    }
)
@triton.jit
def _fwd_kernel(
    Q, K, V, Out,
    Lse, TMP,  # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_ob, stride_oh, stride_om,
    nheads, seqlen_q, seqlen_k,
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # off_b = tl.program_id(1)
    # off_h = tl.program_id(2)
    # off_hb = off_b * nheads + off_h
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # Initialize pointers to Q, K, V
    # Adding parenthesis around indexing might use int32 math instead of int64 math?
    # https://github.com/openai/triton/issues/741
    # I'm seeing a tiny bit of difference (5-7us)
    q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
    k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
    v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
    # initialize pointer to m and l
    t_ptrs = TMP + off_hb * seqlen_q + offs_m
    lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    # load q: it will stay in SRAM throughout
    if EVEN_M:
        q = tl.load(q_ptrs)
    else:
        q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
    # loop over k, v and update accumulator
    end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
    for start_n in range(0, end_n, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        # -- compute qk ----
        if EVEN_N:
            k = tl.load(k_ptrs + start_n * stride_kn)
        else:
            k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
                        other=0.0)
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k, trans_b=True)
        if not EVEN_N:
            qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
        if IS_CAUSAL:
            qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
        m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
        # Slightly faster to multiply the softmax_scale here since the compiler can then
        # fuse the mult and add into an fma instruction.
        p = tl.exp(qk * softmax_scale - m_ij[:, None])
        l_ij = tl.sum(p, 1)

        # scale acc_o
        acc_o_scale = tl.exp(m_i - m_ij)

        # # -- update output accumulator --
        # BUG: have to store and immediately load
        tl.store(t_ptrs, acc_o_scale)
        acc_o_scale = tl.load(t_ptrs)
        acc_o = acc_o * acc_o_scale[:, None]
        # update acc_o
        if EVEN_N:
            v = tl.load(v_ptrs + start_n * stride_vn)
        else:
            v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
                        other=0.0)
        p = p.to(v.dtype)
        acc_o += tl.dot(p, v)

        # -- update statistics
        m_i = m_ij
        l_i_new = tl.exp(lse_i - m_ij) + l_ij
        lse_i = m_ij + tl.log(l_i_new)

    o_scale = tl.exp(m_i - lse_i)
    # BUG: have to store and immediately load
    tl.store(t_ptrs, o_scale)
    o_scale = tl.load(t_ptrs)
    acc_o = acc_o * o_scale[:, None]
    # rematerialize offsets to save registers
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    # write back l and m
    lse_ptrs = Lse + off_hb * seqlen_q + offs_m
    tl.store(lse_ptrs, lse_i)
    # initialize pointers to output
    offs_n = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_n[None, :])
    if EVEN_M:
        tl.store(out_ptrs, acc_o)
    else:
        tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)


@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
    }
)
@triton.jit
def _bwd_preprocess_do_o_dot(
    Out, DO, Delta,
    stride_ob, stride_oh, stride_om,
    stride_dob, stride_doh, stride_dom,
    nheads, seqlen_q, seqlen_q_rounded,
    EVEN_M: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # load
    if EVEN_M:
        o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :]).to(tl.float32)
        do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :]).to(tl.float32)
    else:
        o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
                    mask=offs_m[:, None] < seqlen_q, other=0.0).to(tl.float32)
        do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
                     mask=offs_m[:, None] < seqlen_q, other=0.0).to(tl.float32)
    delta = tl.sum(o * do, axis=1)
    # write-back
    tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)


@triton.jit
def _bwd_kernel_one_col_block(
    start_n,
    Q, K, V, softmax_scale,
    DO, DQ, DK, DV,
    LSE, D,
    stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
    seqlen_q, seqlen_k,
    ATOMIC_ADD: tl.constexpr,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
    begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
    # initialize row/col offsets
    offs_qm = begin_m + tl.arange(0, BLOCK_M)
    offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
    offs_m = tl.arange(0, BLOCK_M)
    offs_k = tl.arange(0, BLOCK_HEADDIM)
    # initialize pointers to value-like data
    q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :])
    k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :])
    v_ptrs = V + (offs_n[:, None] * stride_vn + offs_k[None, :])
    do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_k[None, :])
    dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_k[None, :])
    # initialize dv amd dk
    dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    # k and v stay in SRAM throughout
    k = tl.load(k_ptrs)
    v = tl.load(v_ptrs)
    # loop over rows
    num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
    for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
        start_m = tl.multiple_of(start_m, BLOCK_M)
        offs_m_curr = start_m + offs_m
        # load q, k, v, do on-chip
        q = tl.load(q_ptrs)
        # recompute p = softmax(qk, dim=-1).T
        qk = tl.dot(q, k, trans_b=True)
        if IS_CAUSAL:
            qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
        lse_i = tl.load(LSE + offs_m_curr)
        p = tl.exp(qk * softmax_scale - lse_i[:, None])
        # compute dv
        do = tl.load(do_ptrs)
        dv += tl.dot(p.to(do.dtype), do, trans_a=True)
        # compute dp = dot(v, do)
        dp = tl.dot(do, v, trans_b=True)
        # compute ds = p * (dp - delta[:, None])
        # Putting the subtraction after the dp matmul (instead of before) is slightly faster
        Di = tl.load(D + offs_m_curr)
        # Converting ds to q.dtype here reduces register pressure and makes it much faster
        # for BLOCK_HEADDIM=128
        ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
        # compute dk = dot(ds.T, q)
        dk += tl.dot(ds, q, trans_a=True)
        # compute dq
        if not ATOMIC_ADD:
            dq = tl.load(dq_ptrs, eviction_policy="evict_last")
            dq += tl.dot(ds, k)
            tl.store(dq_ptrs, dq, eviction_policy="evict_last")
        else:  # If we're parallelizing across the seqlen_k dimension
            dq = tl.dot(ds, k)
            tl.atomic_add(dq_ptrs, dq)
        # increment pointers
        dq_ptrs += BLOCK_M * stride_dqm
        q_ptrs += BLOCK_M * stride_qm
        do_ptrs += BLOCK_M * stride_dom
    # write-back
    dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_k[None, :])
    dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_k[None, :])
    tl.store(dv_ptrs, dv)
    tl.store(dk_ptrs, dk)


def init_to_zero(name):
    # def fn(nargs):
    #     with torch.no_grad():
    #         nargs[name].zero_()
    # return fn
    return lambda nargs: nargs[name].zero_()

@triton.autotune(
    configs=[
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
    ],
    key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
    # reset_to_zero=['DQ']
)
@triton.jit
def _bwd_kernel(
    Q, K, V,
    DO, DQ, DK, DV,
    LSE, D,
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_dob, stride_doh, stride_dom,
    stride_dqb, stride_dqh, stride_dqm,
    stride_dkb, stride_dkh, stride_dkn,
    stride_dvb, stride_dvh, stride_dvn,
    nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
    SEQUENCE_PARALLEL: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # offset pointers for batch/head
    Q += off_b * stride_qb + off_h * stride_qh
    K += off_b * stride_kb + off_h * stride_kh
    V += off_b * stride_vb + off_h * stride_vh
    DO += off_b * stride_dob + off_h * stride_doh
    DQ += off_b * stride_dqb + off_h * stride_dqh
    DK += off_b * stride_dkb + off_h * stride_dkh
    DV += off_b * stride_dvb + off_h * stride_dvh
    # pointer to row-wise quantities in value-like data
    D += off_hb * seqlen_q_rounded
    LSE += off_hb * seqlen_q_rounded
    if not SEQUENCE_PARALLEL:
        num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
        for start_n in range(0, num_block_n):
            _bwd_kernel_one_col_block(
                start_n,
                Q, K, V, softmax_scale,
                DO, DQ, DK, DV,
                LSE, D,
                stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
                seqlen_q, seqlen_k,
                ATOMIC_ADD=False,
                IS_CAUSAL=IS_CAUSAL,
                BLOCK_HEADDIM=BLOCK_HEADDIM,
                BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
            )
    else:
        start_n = tl.program_id(0)
        _bwd_kernel_one_col_block(
            start_n,
            Q, K, V, softmax_scale,
            DO, DQ, DK, DV,
            LSE, D,
            stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
            seqlen_q, seqlen_k,
            ATOMIC_ADD=True,
            IS_CAUSAL=IS_CAUSAL,
            BLOCK_HEADDIM=BLOCK_HEADDIM,
            BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
        )


def _flash_attn_forward(q, k, v, causal=False, softmax_scale=None):
    # shape constraints
    batch, seqlen_q, nheads, d = q.shape
    _, seqlen_k, _, _ = k.shape
    assert k.shape == (batch, seqlen_k, nheads, d)
    assert v.shape == (batch, seqlen_k, nheads, d)
    assert d in {16, 32, 64, 128}
    assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
    assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
    assert q.is_cuda and k.is_cuda and v.is_cuda
    softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
    seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
    lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    # lse = torch.full((batch, nheads, seqlen_q_rounded), float('inf'), device=q.device,
                     # dtype=torch.float32)
    tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    o = torch.empty_like(q)

    # BLOCK = 128
    # num_warps = 4 if d <= 64 else 8
    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _fwd_kernel[grid](
        q, k, v, o,
        lse, tmp,
        softmax_scale,
        q.stride(0), q.stride(2), q.stride(1),
        k.stride(0), k.stride(2), k.stride(1),
        v.stride(0), v.stride(2), v.stride(1),
        o.stride(0), o.stride(2), o.stride(1),
        nheads, seqlen_q, seqlen_k,
        seqlen_q // 32,  seqlen_k // 32, # key for triton cache (limit number of compilations)
        # Can't use kwargs here because triton autotune expects key to be args, not kwargs
        # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
        causal, d,
        # BLOCK_M=BLOCK, BLOCK_N=BLOCK,
        # num_warps=num_warps,
        # num_stages=1,
    )
    return o, lse, softmax_scale  # softmax_scale could have been updated


def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, causal=False, softmax_scale=None):
    # Make sure that the last dimension is contiguous
    if do.stride(-1) != 1:
        do = do.contiguous()
    batch, seqlen_q, nheads, d = q.shape
    _, seqlen_k, _, _ = k.shape
    assert seqlen_q % 128 == 0, 'Backward pass currently only support seqlen that are multiples of 128'
    assert seqlen_k % 128 == 0, 'Backward pass currently only support seqlen that are multiples of 128'
    seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
    assert lse.shape == (batch, nheads, seqlen_q_rounded)
    # dq_accum = torch.zeros_like(q, dtype=torch.float32)
    dq_accum = torch.empty_like(q, dtype=torch.float32)
    delta = torch.empty_like(lse)
    # delta = torch.zeros_like(lse)
    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _bwd_preprocess_do_o_dot[grid](
        o, do, delta,
        o.stride(0), o.stride(2), o.stride(1),
        do.stride(0), do.stride(2), do.stride(1),
        nheads, seqlen_q, seqlen_q_rounded,
        BLOCK_M=128, BLOCK_HEADDIM=d,
    )

    # TODO: There are 2 Memcpy DtoD when I use the autotuner.
    # BLOCK_M = 128
    # BLOCK_N = 64
    # num_warps = 4
    grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
                    batch * nheads)
    _bwd_kernel[grid](
        q, k, v,
        do, dq_accum, dk, dv,
        lse, delta,
        softmax_scale,
        q.stride(0), q.stride(2), q.stride(1),
        k.stride(0), k.stride(2), k.stride(1),
        v.stride(0), v.stride(2), v.stride(1),
        do.stride(0), do.stride(2), do.stride(1),
        dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
        dk.stride(0), dk.stride(2), dk.stride(1),
        dv.stride(0), dv.stride(2), dv.stride(1),
        nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
        seqlen_q // 32,  seqlen_k // 32, # key for triton cache (limit number of compilations)
        # Can't use kwargs here because triton autotune expects key to be args, not kwargs
        # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
        causal, d,
        # SEQUENCE_PARALLEL=False,
        # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
        # num_warps=num_warps,
        # num_stages=1,
    )
    dq.copy_(dq_accum)


class FlashAttnQKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, causal=False, softmax_scale=None):
        """
            qkv: (batch, seqlen, 3, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        if qkv.stride(-1) != 1:
            qkv = qkv.contiguous()
        o, lse, ctx.softmax_scale = _flash_attn_forward(
            qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], causal=causal, softmax_scale=softmax_scale
        )
        ctx.save_for_backward(qkv, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        qkv, o, lse = ctx.saved_tensors
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
                             dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dqkv, None, None


flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply


class FlashAttnKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, kv, causal=False, softmax_scale=None):
        """
            q: (batch, seqlen, nheads, headdim)
            kv: (batch, seqlen, 2, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
        o, lse, ctx.softmax_scale = _flash_attn_forward(
            q, kv[:, :, 0], kv[:, :, 1], causal=causal, softmax_scale=softmax_scale
        )
        ctx.save_for_backward(q, kv, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, kv, o, lse = ctx.saved_tensors
        dq = torch.empty_like(q)
        dkv = torch.empty_like(kv)
        _flash_attn_backward(do, q, qkv[:, :, 0], qkv[:, :, 1], o, lse,
                             dq, dkv[:, :, 0], dkv[:, :, 1],
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dq, dkv, None, None


flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply


class FlashAttnFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal=False, softmax_scale=None):
        """
            q, k, v: (batch_size, seqlen, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
        o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, causal=causal,
                                                        softmax_scale=softmax_scale)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
        dq = torch.empty_like(q)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)
        _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dq, dk, dv, None, None


flash_attn_func = FlashAttnFunc.apply