flash_attn_triton.py 24.7 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
2
3
4
5
"""
Based on the FlashAttention implementation from Phil Tillet.
https://github.com/openai/triton/blob/master/python/tutorials/06-fused-attention.py

Changes:
6
7
- Implement both causal and non-causal attention.
- Implement cross-attention (not just self-attention).
8
- Support arbitrary seqlens (not just multiples of 128), for both forward and backward.
9
- Support all head dimensions up to 128 (not just 16, 32, 64, 128), in the forward pass.
10
- Speed up the forward pass a bit, and only store the LSE instead of m and l.
Tri Dao's avatar
Tri Dao committed
11
- Make the backward for d=128 much faster by reducing register spilling.
12
- Optionally parallelize the backward pass across seqlen_k, to deal with the case of
Tri Dao's avatar
Tri Dao committed
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
small batch size * nheads.
"""

import math

import torch

import triton
import triton.language as tl


@triton.autotune(
    configs=[
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128}, num_warps=8, num_stages=1),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64}, num_warps=4, num_stages=1),
    ],
    key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM']
)
@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
34
        "EVEN_N": lambda args: args["seqlen_k"] % args["BLOCK_N"] == 0,
35
        "EVEN_HEADDIM": lambda args: args["headdim"] == args["BLOCK_HEADDIM"],
Tri Dao's avatar
Tri Dao committed
36
37
38
39
40
41
42
43
44
45
46
    }
)
@triton.jit
def _fwd_kernel(
    Q, K, V, Out,
    Lse, TMP,  # NOTE: TMP is a scratchpad buffer to workaround a compiler bug
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_ob, stride_oh, stride_om,
47
    nheads, seqlen_q, seqlen_k, seqlen_q_rounded, headdim,
Tri Dao's avatar
Tri Dao committed
48
49
50
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
51
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr, EVEN_HEADDIM: tl.constexpr,
Tri Dao's avatar
Tri Dao committed
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # off_b = tl.program_id(1)
    # off_h = tl.program_id(2)
    # off_hb = off_b * nheads + off_h
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_n = tl.arange(0, BLOCK_N)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # Initialize pointers to Q, K, V
    # Adding parenthesis around indexing might use int32 math instead of int64 math?
    # https://github.com/openai/triton/issues/741
    # I'm seeing a tiny bit of difference (5-7us)
    q_ptrs = Q + off_b * stride_qb + off_h * stride_qh + (offs_m[:, None] * stride_qm + offs_d[None, :])
    k_ptrs = K + off_b * stride_kb + off_h * stride_kh + (offs_n[:, None] * stride_kn + offs_d[None, :])
    v_ptrs = V + off_b * stride_vb + off_h * stride_vh + (offs_n[:, None] * stride_vn + offs_d[None, :])
    # initialize pointer to m and l
73
    t_ptrs = TMP + off_hb * seqlen_q_rounded + offs_m
Tri Dao's avatar
Tri Dao committed
74
75
76
77
    lse_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    m_i = tl.zeros([BLOCK_M], dtype=tl.float32) - float("inf")
    acc_o = tl.zeros([BLOCK_M, BLOCK_HEADDIM], dtype=tl.float32)
    # load q: it will stay in SRAM throughout
78
79
80
    # [2022-10-30] TD: Idk why but in the case of EVEN_M=True and EVEN_N=False, if we just call
    # tl.load(q_ptrs), we get the wrong output! Could be a bug in the compiler?
    if EVEN_M & EVEN_N:
81
82
83
84
        if EVEN_HEADDIM:
            q = tl.load(q_ptrs)
        else:
            q = tl.load(q_ptrs, mask=offs_d[None, :] < headdim, other=0.0)
Tri Dao's avatar
Tri Dao committed
85
    else:
86
87
88
89
90
        if EVEN_HEADDIM:
            q = tl.load(q_ptrs, mask=offs_m[:, None] < seqlen_q, other=0.0)
        else:
            q = tl.load(q_ptrs, mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim),
                        other=0.0)
Tri Dao's avatar
Tri Dao committed
91
92
93
94
95
96
    # loop over k, v and update accumulator
    end_n = seqlen_k if not IS_CAUSAL else tl.minimum((start_m + 1) * BLOCK_M, seqlen_k)
    for start_n in range(0, end_n, BLOCK_N):
        start_n = tl.multiple_of(start_n, BLOCK_N)
        # -- compute qk ----
        if EVEN_N:
97
98
99
100
            if EVEN_HEADDIM:
                k = tl.load(k_ptrs + start_n * stride_kn)
            else:
                k = tl.load(k_ptrs + start_n * stride_kn, mask=offs_d[None, :] < headdim, other=0.0)
Tri Dao's avatar
Tri Dao committed
101
        else:
102
103
104
105
106
107
108
            if EVEN_HEADDIM:
                k = tl.load(k_ptrs + start_n * stride_kn, mask=(start_n + offs_n)[:, None] < seqlen_k,
                            other=0.0)
            else:
                k = tl.load(k_ptrs + start_n * stride_kn,
                            mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                            other=0.0)
Tri Dao's avatar
Tri Dao committed
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
        qk = tl.zeros([BLOCK_M, BLOCK_N], dtype=tl.float32)
        qk += tl.dot(q, k, trans_b=True)
        if not EVEN_N:
            qk += tl.where((start_n + offs_n)[None, :] < seqlen_k, 0, float("-inf"))
        if IS_CAUSAL:
            qk += tl.where(offs_m[:, None] >= (start_n + offs_n)[None, :], 0, float("-inf"))
        m_ij = tl.maximum(tl.max(qk, 1) * softmax_scale, lse_i)
        # Slightly faster to multiply the softmax_scale here since the compiler can then
        # fuse the mult and add into an fma instruction.
        p = tl.exp(qk * softmax_scale - m_ij[:, None])
        l_ij = tl.sum(p, 1)

        # scale acc_o
        acc_o_scale = tl.exp(m_i - m_ij)

        # # -- update output accumulator --
        # BUG: have to store and immediately load
        tl.store(t_ptrs, acc_o_scale)
        acc_o_scale = tl.load(t_ptrs)
        acc_o = acc_o * acc_o_scale[:, None]
        # update acc_o
        if EVEN_N:
131
132
133
134
            if EVEN_HEADDIM:
                v = tl.load(v_ptrs + start_n * stride_vn)
            else:
                v = tl.load(v_ptrs + start_n * stride_vn, mask=offs_d[None, :] < headdim, other=0.0)
Tri Dao's avatar
Tri Dao committed
135
        else:
136
137
138
139
140
141
142
            if EVEN_HEADDIM:
                v = tl.load(v_ptrs + start_n * stride_vn, mask=(start_n + offs_n)[:, None] < seqlen_k,
                            other=0.0)
            else:
                v = tl.load(v_ptrs + start_n * stride_vn,
                            mask=((start_n + offs_n)[:, None] < seqlen_k) & (offs_d[None, :] < headdim),
                            other=0.0)
Tri Dao's avatar
Tri Dao committed
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
        p = p.to(v.dtype)
        acc_o += tl.dot(p, v)

        # -- update statistics
        m_i = m_ij
        l_i_new = tl.exp(lse_i - m_ij) + l_ij
        lse_i = m_ij + tl.log(l_i_new)

    o_scale = tl.exp(m_i - lse_i)
    # BUG: have to store and immediately load
    tl.store(t_ptrs, o_scale)
    o_scale = tl.load(t_ptrs)
    acc_o = acc_o * o_scale[:, None]
    # rematerialize offsets to save registers
    start_m = tl.program_id(0)
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    # write back l and m
160
    lse_ptrs = Lse + off_hb * seqlen_q_rounded + offs_m
Tri Dao's avatar
Tri Dao committed
161
162
163
164
165
    tl.store(lse_ptrs, lse_i)
    # initialize pointers to output
    offs_n = tl.arange(0, BLOCK_HEADDIM)
    out_ptrs = Out + off_b * stride_ob + off_h * stride_oh + (offs_m[:, None] * stride_om + offs_n[None, :])
    if EVEN_M:
166
167
168
169
        if EVEN_HEADDIM:
            tl.store(out_ptrs, acc_o)
        else:
            tl.store(out_ptrs, acc_o, mask=offs_d[None, :] < headdim)
Tri Dao's avatar
Tri Dao committed
170
    else:
171
172
173
174
175
        if EVEN_HEADDIM:
            tl.store(out_ptrs, acc_o, mask=offs_m[:, None] < seqlen_q)
        else:
            tl.store(out_ptrs, acc_o,
                     mask=(offs_m[:, None] < seqlen_q) & (offs_d[None, :] < headdim))
Tri Dao's avatar
Tri Dao committed
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223


@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
    }
)
@triton.jit
def _bwd_preprocess_do_o_dot(
    Out, DO, Delta,
    stride_ob, stride_oh, stride_om,
    stride_dob, stride_doh, stride_dom,
    nheads, seqlen_q, seqlen_q_rounded,
    EVEN_M: tl.constexpr,
    BLOCK_M: tl.constexpr, BLOCK_HEADDIM: tl.constexpr,
):
    start_m = tl.program_id(0)
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # initialize offsets
    offs_m = start_m * BLOCK_M + tl.arange(0, BLOCK_M)
    offs_d = tl.arange(0, BLOCK_HEADDIM)
    # load
    if EVEN_M:
        o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :]).to(tl.float32)
        do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :]).to(tl.float32)
    else:
        o = tl.load(Out + off_b * stride_ob + off_h * stride_oh + offs_m[:, None] * stride_om + offs_d[None, :],
                    mask=offs_m[:, None] < seqlen_q, other=0.0).to(tl.float32)
        do = tl.load(DO + off_b * stride_dob + off_h * stride_doh + offs_m[:, None] * stride_dom + offs_d[None, :],
                     mask=offs_m[:, None] < seqlen_q, other=0.0).to(tl.float32)
    delta = tl.sum(o * do, axis=1)
    # write-back
    tl.store(Delta + off_hb * seqlen_q_rounded + offs_m, delta)


@triton.jit
def _bwd_kernel_one_col_block(
    start_n,
    Q, K, V, softmax_scale,
    DO, DQ, DK, DV,
    LSE, D,
    stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
    seqlen_q, seqlen_k,
    ATOMIC_ADD: tl.constexpr,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
224
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
Tri Dao's avatar
Tri Dao committed
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    # We need to make sure begin_m is a multiple of BLOCK_M (not BLOCK_N)
    begin_m = 0 if not IS_CAUSAL else ((start_n * BLOCK_N) // BLOCK_M) * BLOCK_M
    # initialize row/col offsets
    offs_qm = begin_m + tl.arange(0, BLOCK_M)
    offs_n = start_n * BLOCK_N + tl.arange(0, BLOCK_N)
    offs_m = tl.arange(0, BLOCK_M)
    offs_k = tl.arange(0, BLOCK_HEADDIM)
    # initialize pointers to value-like data
    q_ptrs = Q + (offs_qm[:, None] * stride_qm + offs_k[None, :])
    k_ptrs = K + (offs_n[:, None] * stride_kn + offs_k[None, :])
    v_ptrs = V + (offs_n[:, None] * stride_vn + offs_k[None, :])
    do_ptrs = DO + (offs_qm[:, None] * stride_dom + offs_k[None, :])
    dq_ptrs = DQ + (offs_qm[:, None] * stride_dqm + offs_k[None, :])
    # initialize dv amd dk
    dv = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    dk = tl.zeros([BLOCK_N, BLOCK_HEADDIM], dtype=tl.float32)
    # k and v stay in SRAM throughout
244
245
    # [2022-10-30] TD: Same bug as the fwd. In the case of EVEN_N=True and EVEN_M=False,
    # if we just call tl.load(k_ptrs), we get the wrong output!
246
    if EVEN_N & EVEN_M:
247
248
249
250
251
        k = tl.load(k_ptrs)
        v = tl.load(v_ptrs)
    else:
        k = tl.load(k_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
        v = tl.load(v_ptrs, mask=offs_n[:, None] < seqlen_k, other=0.0)
Tri Dao's avatar
Tri Dao committed
252
253
254
255
256
257
    # loop over rows
    num_block_m = tl.cdiv(seqlen_q, BLOCK_M)
    for start_m in range(begin_m, num_block_m * BLOCK_M, BLOCK_M):
        start_m = tl.multiple_of(start_m, BLOCK_M)
        offs_m_curr = start_m + offs_m
        # load q, k, v, do on-chip
258
259
260
261
        if EVEN_M:
            q = tl.load(q_ptrs)
        else:
            q = tl.load(q_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
Tri Dao's avatar
Tri Dao committed
262
263
        # recompute p = softmax(qk, dim=-1).T
        qk = tl.dot(q, k, trans_b=True)
264
265
        if not EVEN_N:  # Need to mask out otherwise the softmax is wrong
            qk = tl.where(offs_n[None, :] < seqlen_k, qk, float("-inf"))
Tri Dao's avatar
Tri Dao committed
266
267
268
269
270
        if IS_CAUSAL:
            qk = tl.where(offs_m_curr[:, None] >= (offs_n[None, :]), qk, float("-inf"))
        lse_i = tl.load(LSE + offs_m_curr)
        p = tl.exp(qk * softmax_scale - lse_i[:, None])
        # compute dv
271
272
273
274
        if EVEN_M:
            do = tl.load(do_ptrs)
        else:
            do = tl.load(do_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0)
Tri Dao's avatar
Tri Dao committed
275
276
277
278
279
280
281
282
283
284
285
286
287
        dv += tl.dot(p.to(do.dtype), do, trans_a=True)
        # compute dp = dot(v, do)
        dp = tl.dot(do, v, trans_b=True)
        # compute ds = p * (dp - delta[:, None])
        # Putting the subtraction after the dp matmul (instead of before) is slightly faster
        Di = tl.load(D + offs_m_curr)
        # Converting ds to q.dtype here reduces register pressure and makes it much faster
        # for BLOCK_HEADDIM=128
        ds = (p * (dp - Di[:, None]) * softmax_scale).to(q.dtype)
        # compute dk = dot(ds.T, q)
        dk += tl.dot(ds, q, trans_a=True)
        # compute dq
        if not ATOMIC_ADD:
288
289
290
291
292
293
294
295
296
297
            if EVEN_M:
                dq = tl.load(dq_ptrs, eviction_policy="evict_last")
                dq += tl.dot(ds, k)
                tl.store(dq_ptrs, dq, eviction_policy="evict_last")
            else:
                dq = tl.load(dq_ptrs, mask=offs_m_curr[:, None] < seqlen_q, other=0.0,
                             eviction_policy="evict_last")
                dq += tl.dot(ds, k)
                tl.store(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q,
                         eviction_policy="evict_last")
Tri Dao's avatar
Tri Dao committed
298
299
        else:  # If we're parallelizing across the seqlen_k dimension
            dq = tl.dot(ds, k)
300
301
302
303
            if EVEN_M:
                tl.atomic_add(dq_ptrs, dq)
            else:
                tl.atomic_add(dq_ptrs, dq, mask=offs_m_curr[:, None] < seqlen_q)
Tri Dao's avatar
Tri Dao committed
304
305
306
307
308
309
310
        # increment pointers
        dq_ptrs += BLOCK_M * stride_dqm
        q_ptrs += BLOCK_M * stride_qm
        do_ptrs += BLOCK_M * stride_dom
    # write-back
    dv_ptrs = DV + (offs_n[:, None] * stride_dvn + offs_k[None, :])
    dk_ptrs = DK + (offs_n[:, None] * stride_dkn + offs_k[None, :])
311
312
313
314
315
316
    if EVEN_N:
        tl.store(dv_ptrs, dv)
        tl.store(dk_ptrs, dk)
    else:
        tl.store(dv_ptrs, dv, mask=offs_n[:, None] < seqlen_k)
        tl.store(dk_ptrs, dk, mask=offs_n[:, None] < seqlen_k)
Tri Dao's avatar
Tri Dao committed
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344


def init_to_zero(name):
    # def fn(nargs):
    #     with torch.no_grad():
    #         nargs[name].zero_()
    # return fn
    return lambda nargs: nargs[name].zero_()

@triton.autotune(
    configs=[
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        # Kernel is buggy (give wrong result) if we set BLOCK_m=128, BLOCK_n=64, num_warps=*4*
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
        triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1, pre_hook=init_to_zero('DQ')),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": False}, num_warps=8, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 128, "SEQUENCE_PARALLEL": True}, num_warps=8, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 128, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": False}, num_warps=4, num_stages=1),
        # triton.Config({"BLOCK_M": 64, "BLOCK_N": 64, "SEQUENCE_PARALLEL": True}, num_warps=4, num_stages=1),
    ],
    key=['CACHE_KEY_SEQLEN_Q', 'CACHE_KEY_SEQLEN_K', 'IS_CAUSAL', 'BLOCK_HEADDIM'],
    # reset_to_zero=['DQ']
)
345
346
347
348
349
350
@triton.heuristics(
    {
        "EVEN_M": lambda args: args["seqlen_q"] % args["BLOCK_M"] == 0,
        "EVEN_N": lambda args: args["seqlen_k"] % (args["BLOCK_N"]) == 0,
    }
)
Tri Dao's avatar
Tri Dao committed
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
@triton.jit
def _bwd_kernel(
    Q, K, V,
    DO, DQ, DK, DV,
    LSE, D,
    softmax_scale,
    stride_qb, stride_qh, stride_qm,
    stride_kb, stride_kh, stride_kn,
    stride_vb, stride_vh, stride_vn,
    stride_dob, stride_doh, stride_dom,
    stride_dqb, stride_dqh, stride_dqm,
    stride_dkb, stride_dkh, stride_dkn,
    stride_dvb, stride_dvh, stride_dvn,
    nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
    CACHE_KEY_SEQLEN_Q, CACHE_KEY_SEQLEN_K,
    IS_CAUSAL: tl.constexpr,
    BLOCK_HEADDIM: tl.constexpr,
    SEQUENCE_PARALLEL: tl.constexpr,
369
    EVEN_M: tl.constexpr, EVEN_N: tl.constexpr,
Tri Dao's avatar
Tri Dao committed
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
    BLOCK_M: tl.constexpr, BLOCK_N: tl.constexpr,
):
    off_hb = tl.program_id(1)
    off_b = off_hb // nheads
    off_h = off_hb % nheads
    # offset pointers for batch/head
    Q += off_b * stride_qb + off_h * stride_qh
    K += off_b * stride_kb + off_h * stride_kh
    V += off_b * stride_vb + off_h * stride_vh
    DO += off_b * stride_dob + off_h * stride_doh
    DQ += off_b * stride_dqb + off_h * stride_dqh
    DK += off_b * stride_dkb + off_h * stride_dkh
    DV += off_b * stride_dvb + off_h * stride_dvh
    # pointer to row-wise quantities in value-like data
    D += off_hb * seqlen_q_rounded
    LSE += off_hb * seqlen_q_rounded
    if not SEQUENCE_PARALLEL:
        num_block_n = tl.cdiv(seqlen_k, BLOCK_N)
        for start_n in range(0, num_block_n):
            _bwd_kernel_one_col_block(
                start_n,
                Q, K, V, softmax_scale,
                DO, DQ, DK, DV,
                LSE, D,
                stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
                seqlen_q, seqlen_k,
                ATOMIC_ADD=False,
                IS_CAUSAL=IS_CAUSAL,
                BLOCK_HEADDIM=BLOCK_HEADDIM,
399
                EVEN_M=EVEN_M, EVEN_N=EVEN_N,
Tri Dao's avatar
Tri Dao committed
400
401
402
403
404
405
406
407
408
409
410
411
412
413
                BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
            )
    else:
        start_n = tl.program_id(0)
        _bwd_kernel_one_col_block(
            start_n,
            Q, K, V, softmax_scale,
            DO, DQ, DK, DV,
            LSE, D,
            stride_qm, stride_kn, stride_vn, stride_dom, stride_dqm, stride_dkn, stride_dvn,
            seqlen_q, seqlen_k,
            ATOMIC_ADD=True,
            IS_CAUSAL=IS_CAUSAL,
            BLOCK_HEADDIM=BLOCK_HEADDIM,
414
            EVEN_M=EVEN_M, EVEN_N=EVEN_N,
Tri Dao's avatar
Tri Dao committed
415
416
417
418
419
420
421
422
423
424
            BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N
        )


def _flash_attn_forward(q, k, v, causal=False, softmax_scale=None):
    # shape constraints
    batch, seqlen_q, nheads, d = q.shape
    _, seqlen_k, _, _ = k.shape
    assert k.shape == (batch, seqlen_k, nheads, d)
    assert v.shape == (batch, seqlen_k, nheads, d)
425
426
    assert d <= 128, 'FlashAttention only support head dimensions up to 128'
    BLOCK_HEADDIM = max(triton.next_power_of_2(d), 16)
Tri Dao's avatar
Tri Dao committed
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
    assert q.dtype == k.dtype == v.dtype, 'All tensors must have the same type'
    assert q.dtype in [torch.float16, torch.bfloat16], 'Only support fp16 and bf16'
    assert q.is_cuda and k.is_cuda and v.is_cuda
    softmax_scale = softmax_scale or 1.0 / math.sqrt(d)
    seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
    lse = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    # lse = torch.full((batch, nheads, seqlen_q_rounded), float('inf'), device=q.device,
                     # dtype=torch.float32)
    tmp = torch.empty((batch, nheads, seqlen_q_rounded), device=q.device, dtype=torch.float32)
    o = torch.empty_like(q)

    # BLOCK = 128
    # num_warps = 4 if d <= 64 else 8
    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _fwd_kernel[grid](
        q, k, v, o,
        lse, tmp,
        softmax_scale,
        q.stride(0), q.stride(2), q.stride(1),
        k.stride(0), k.stride(2), k.stride(1),
        v.stride(0), v.stride(2), v.stride(1),
        o.stride(0), o.stride(2), o.stride(1),
449
        nheads, seqlen_q, seqlen_k, seqlen_q_rounded, d,
Tri Dao's avatar
Tri Dao committed
450
451
452
        seqlen_q // 32,  seqlen_k // 32, # key for triton cache (limit number of compilations)
        # Can't use kwargs here because triton autotune expects key to be args, not kwargs
        # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
453
        causal, BLOCK_HEADDIM,
Tri Dao's avatar
Tri Dao committed
454
455
456
457
458
459
460
461
462
463
464
465
466
        # BLOCK_M=BLOCK, BLOCK_N=BLOCK,
        # num_warps=num_warps,
        # num_stages=1,
    )
    return o, lse, softmax_scale  # softmax_scale could have been updated


def _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv, causal=False, softmax_scale=None):
    # Make sure that the last dimension is contiguous
    if do.stride(-1) != 1:
        do = do.contiguous()
    batch, seqlen_q, nheads, d = q.shape
    _, seqlen_k, _, _ = k.shape
467
    assert d in {16, 32, 64, 128}
Tri Dao's avatar
Tri Dao committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
    seqlen_q_rounded = math.ceil(seqlen_q / 128) * 128
    assert lse.shape == (batch, nheads, seqlen_q_rounded)
    # dq_accum = torch.zeros_like(q, dtype=torch.float32)
    dq_accum = torch.empty_like(q, dtype=torch.float32)
    delta = torch.empty_like(lse)
    # delta = torch.zeros_like(lse)
    grid = lambda META: (triton.cdiv(seqlen_q, META["BLOCK_M"]), batch * nheads)
    _bwd_preprocess_do_o_dot[grid](
        o, do, delta,
        o.stride(0), o.stride(2), o.stride(1),
        do.stride(0), do.stride(2), do.stride(1),
        nheads, seqlen_q, seqlen_q_rounded,
        BLOCK_M=128, BLOCK_HEADDIM=d,
    )

    # TODO: There are 2 Memcpy DtoD when I use the autotuner.
    # BLOCK_M = 128
    # BLOCK_N = 64
    # num_warps = 4
    grid = lambda META: (triton.cdiv(seqlen_k, META["BLOCK_N"]) if META["SEQUENCE_PARALLEL"] else 1,
                    batch * nheads)
    _bwd_kernel[grid](
        q, k, v,
        do, dq_accum, dk, dv,
        lse, delta,
        softmax_scale,
        q.stride(0), q.stride(2), q.stride(1),
        k.stride(0), k.stride(2), k.stride(1),
        v.stride(0), v.stride(2), v.stride(1),
        do.stride(0), do.stride(2), do.stride(1),
        dq_accum.stride(0), dq_accum.stride(2), dq_accum.stride(1),
        dk.stride(0), dk.stride(2), dk.stride(1),
        dv.stride(0), dv.stride(2), dv.stride(1),
        nheads, seqlen_q, seqlen_k, seqlen_q_rounded,
        seqlen_q // 32,  seqlen_k // 32, # key for triton cache (limit number of compilations)
        # Can't use kwargs here because triton autotune expects key to be args, not kwargs
        # IS_CAUSAL=causal, BLOCK_HEADDIM=d,
        causal, d,
        # SEQUENCE_PARALLEL=False,
        # BLOCK_M=BLOCK_M, BLOCK_N=BLOCK_N,
        # num_warps=num_warps,
        # num_stages=1,
    )
    dq.copy_(dq_accum)


class FlashAttnQKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, qkv, causal=False, softmax_scale=None):
        """
            qkv: (batch, seqlen, 3, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        if qkv.stride(-1) != 1:
            qkv = qkv.contiguous()
        o, lse, ctx.softmax_scale = _flash_attn_forward(
            qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], causal=causal, softmax_scale=softmax_scale
        )
        ctx.save_for_backward(qkv, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        qkv, o, lse = ctx.saved_tensors
        dqkv = torch.empty_like(qkv)
        _flash_attn_backward(do, qkv[:, :, 0], qkv[:, :, 1], qkv[:, :, 2], o, lse,
                             dqkv[:, :, 0], dqkv[:, :, 1], dqkv[:, :, 2],
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dqkv, None, None


flash_attn_qkvpacked_func = FlashAttnQKVPackedFunc.apply


class FlashAttnKVPackedFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, kv, causal=False, softmax_scale=None):
        """
            q: (batch, seqlen, nheads, headdim)
            kv: (batch, seqlen, 2, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        q, kv = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, kv]]
        o, lse, ctx.softmax_scale = _flash_attn_forward(
            q, kv[:, :, 0], kv[:, :, 1], causal=causal, softmax_scale=softmax_scale
        )
        ctx.save_for_backward(q, kv, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, kv, o, lse = ctx.saved_tensors
        dq = torch.empty_like(q)
        dkv = torch.empty_like(kv)
        _flash_attn_backward(do, q, qkv[:, :, 0], qkv[:, :, 1], o, lse,
                             dq, dkv[:, :, 0], dkv[:, :, 1],
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dq, dkv, None, None


flash_attn_kvpacked_func = FlashAttnKVPackedFunc.apply


class FlashAttnFunc(torch.autograd.Function):

    @staticmethod
    def forward(ctx, q, k, v, causal=False, softmax_scale=None):
        """
            q, k, v: (batch_size, seqlen, nheads, headdim)
        """
        # Make sure that the last dimension is contiguous
        q, k, v = [x if x.stride(-1) == 1 else x.contiguous() for x in [q, k, v]]
        o, lse, ctx.softmax_scale = _flash_attn_forward(q, k, v, causal=causal,
                                                        softmax_scale=softmax_scale)
        ctx.save_for_backward(q, k, v, o, lse)
        ctx.causal = causal
        return o

    @staticmethod
    def backward(ctx, do):
        q, k, v, o, lse = ctx.saved_tensors
        dq = torch.empty_like(q)
        dk = torch.empty_like(k)
        dv = torch.empty_like(v)
        _flash_attn_backward(do, q, k, v, o, lse, dq, dk, dv,
                             causal=ctx.causal, softmax_scale=ctx.softmax_scale)
        return dq, dk, dv, None, None


flash_attn_func = FlashAttnFunc.apply