mha.py 40.9 KB
Newer Older
Tri Dao's avatar
Tri Dao committed
1
# Copyright (c) 2023, Tri Dao.
2
3
4
5
6
7

import math
from functools import partial

import torch
import torch.nn as nn
Tri Dao's avatar
Tri Dao committed
8
from einops import rearrange, repeat
9

10
11
from flash_attn.utils.distributed import get_dim_for_local_rank

12
try:
Tri Dao's avatar
Tri Dao committed
13
14
15
16
17
    from flash_attn import (
        flash_attn_kvpacked_func,
        flash_attn_qkvpacked_func,
        flash_attn_varlen_kvpacked_func,
        flash_attn_varlen_qkvpacked_func,
18
        flash_attn_with_kvcache,
Tri Dao's avatar
Tri Dao committed
19
    )
20
except ImportError:
Tri Dao's avatar
Tri Dao committed
21
    flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
22
    flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None
23
    flash_attn_with_kvcache = None
24
25

try:
Tri Dao's avatar
Tri Dao committed
26
    from flash_attn.ops.fused_dense import ColumnParallelLinear, FusedDense, RowParallelLinear
27
except ImportError:
Tri Dao's avatar
Tri Dao committed
28
    FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
29
30
31
32
33
34
35

try:
    from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
    RotaryEmbedding = None


36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
# From https://github.com/ofirpress/attention_with_linear_biases/blob/4b92f28a005ead2567abe2359f633e73e08f3833/fairseq/models/transformer.py#L742
def get_alibi_slopes(nheads):
    def get_slopes_power_of_2(nheads):
        start = 2 ** (-(2 ** -(math.log2(nheads) - 3)))
        ratio = start
        return [start * ratio**i for i in range(nheads)]

    if math.log2(nheads).is_integer():
        return get_slopes_power_of_2(nheads)
    else:
        closest_power_of_2 = 2 ** math.floor(math.log2(nheads))
        return (
            get_slopes_power_of_2(closest_power_of_2)
            + get_alibi_slopes(2 * closest_power_of_2)[0::2][: nheads - closest_power_of_2]
        )


53
54
55
56
57
58
59
60
61
62
class FlashSelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
63

64
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, alibi_slopes=None):
65
        super().__init__()
Tri Dao's avatar
Tri Dao committed
66
67
        assert flash_attn_varlen_qkvpacked_func is not None, "FlashAttention is not installed"
        assert flash_attn_qkvpacked_func is not None, "FlashAttention is not installed"
68
69
        self.causal = causal
        self.softmax_scale = softmax_scale
70
        self.drop = nn.Dropout(attention_dropout)
71
        self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
72

Tri Dao's avatar
Tri Dao committed
73
    def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
74
75
76
        """Implements the multihead softmax attention.
        Arguments
        ---------
Tri Dao's avatar
Tri Dao committed
77
78
79
80
            qkv: The tensor containing the query, key, and value.
                If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
                If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
                (total, 3, H, D), where total is the sum of the sequence lengths in the batch.
Tri Dao's avatar
Tri Dao committed
81
            causal: if passed, will override self.causal
Tri Dao's avatar
Tri Dao committed
82
83
84
85
86
87
88
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into qkv.
            max_seqlen: int. Maximum sequence length in the batch.
        Returns:
        --------
            out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
                else (B, S, H, D).
89
90
91
        """
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda
Tri Dao's avatar
Tri Dao committed
92
        causal = self.causal if causal is None else causal
Tri Dao's avatar
Tri Dao committed
93
94
95
96
97
        unpadded = cu_seqlens is not None
        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
Tri Dao's avatar
Tri Dao committed
98
            return flash_attn_varlen_qkvpacked_func(
Tri Dao's avatar
Tri Dao committed
99
100
101
102
103
104
                qkv,
                cu_seqlens,
                max_seqlen,
                self.drop.p if self.training else 0.0,
                softmax_scale=self.softmax_scale,
                causal=causal,
105
                alibi_slopes=self.alibi_slopes,
106
            )
Tri Dao's avatar
Tri Dao committed
107
        else:
Tri Dao's avatar
Tri Dao committed
108
109
110
111
112
            return flash_attn_qkvpacked_func(
                qkv,
                self.drop.p if self.training else 0.0,
                softmax_scale=self.softmax_scale,
                causal=causal,
113
                alibi_slopes=self.alibi_slopes,
Tri Dao's avatar
Tri Dao committed
114
            )
115
116
117
118
119
120
121
122
123
124
125
126


class FlashCrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
127

128
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0, alibi_slopes=None):
129
        super().__init__()
Tri Dao's avatar
Tri Dao committed
130
131
        assert flash_attn_varlen_kvpacked_func is not None, "FlashAttention is not installed"
        assert flash_attn_kvpacked_func is not None, "FlashAttention is not installed"
132
133
        self.causal = causal
        self.softmax_scale = softmax_scale
134
        self.drop = nn.Dropout(attention_dropout)
135
        self.register_buffer("alibi_slopes", alibi_slopes, persistent=False)
136

Tri Dao's avatar
Tri Dao committed
137
138
139
140
141
142
143
144
145
146
    def forward(
        self,
        q,
        kv,
        causal=None,
        cu_seqlens=None,
        max_seqlen=None,
        cu_seqlens_k=None,
        max_seqlen_k=None,
    ):
147
148
149
150
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
Tri Dao's avatar
Tri Dao committed
151
            kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
Tri Dao's avatar
Tri Dao committed
152
            causal: if passed, will override self.causal
153
154
155
156
157
158
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into q.
            max_seqlen: int. Maximum sequence length in the batch of q.
            cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into kv.
            max_seqlen_k: int. Maximum sequence length in the batch of k and v.
159
160
161
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda and kv.is_cuda
Tri Dao's avatar
Tri Dao committed
162
        causal = self.causal if causal is None else causal
163
164
165
166
167
168
169
170
171
        unpadded = cu_seqlens is not None
        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
            assert cu_seqlens_k is not None
            assert cu_seqlens_k.dtype == torch.int32
            assert max_seqlen_k is not None
            assert isinstance(max_seqlen, int)
Tri Dao's avatar
Tri Dao committed
172
            return flash_attn_varlen_kvpacked_func(
Tri Dao's avatar
Tri Dao committed
173
174
175
176
177
178
                q,
                kv,
                cu_seqlens,
                cu_seqlens_k,
                max_seqlen,
                max_seqlen_k,
179
                self.drop.p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
180
181
                softmax_scale=self.softmax_scale,
                causal=causal,
182
                alibi_slopes=self.alibi_slopes,
183
            )
184
185
186
        else:
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            seqlen_k = kv.shape[1]
Tri Dao's avatar
Tri Dao committed
187
            assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
Tri Dao's avatar
Tri Dao committed
188
189
190
191
192
193
            return flash_attn_kvpacked_func(
                q,
                kv,
                self.drop.p if self.training else 0.0,
                causal=causal,
                softmax_scale=self.softmax_scale,
194
                alibi_slopes=self.alibi_slopes,
Tri Dao's avatar
Tri Dao committed
195
            )
196
197
198
199
200
201
202
203
204
205
206
207


class SelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
208

Tri Dao's avatar
Tri Dao committed
209
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
210
211
212
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
213
        self.drop = nn.Dropout(attention_dropout)
214

Tri Dao's avatar
Tri Dao committed
215
    def forward(self, qkv, causal=None, key_padding_mask=None):
216
217
218
219
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
Tri Dao's avatar
Tri Dao committed
220
            causal: if passed, will override self.causal
Tri Dao's avatar
Tri Dao committed
221
222
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, S)
223
224
        """
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
225
        causal = self.causal if causal is None else causal
226
227
        q, k, v = qkv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
Tri Dao's avatar
Tri Dao committed
228
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
Tri Dao's avatar
Tri Dao committed
229
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
230
231
232
            padding_mask = torch.full(
                (batch_size, seqlen), -10000.0, dtype=scores.dtype, device=scores.device
            )
Tri Dao's avatar
Tri Dao committed
233
234
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
Tri Dao's avatar
Tri Dao committed
235
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
Tri Dao's avatar
Tri Dao committed
236
        if causal:
237
238
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
Tri Dao's avatar
Tri Dao committed
239
240
241
            causal_mask = torch.triu(
                torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1
            )
242
243
244
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
245
        attention_drop = self.drop(attention)
Tri Dao's avatar
Tri Dao committed
246
        output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
247
248
249
250
251
252
253
254
255
256
257
258
259
        return output


class CrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
260

Tri Dao's avatar
Tri Dao committed
261
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
262
263
264
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
265
        self.drop = nn.Dropout(attention_dropout)
266

Tri Dao's avatar
Tri Dao committed
267
    def forward(self, q, kv, causal=None, key_padding_mask=None):
268
269
270
271
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
Tri Dao's avatar
Tri Dao committed
272
            kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
Tri Dao's avatar
Tri Dao committed
273
            causal: if passed, will override self.causal
274
275
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, Sk)
276
277
        """
        batch_size, seqlen_q = q.shape[0], q.shape[1]
Tri Dao's avatar
Tri Dao committed
278
        causal = self.causal if causal is None else causal
279
        seqlen_k = kv.shape[1]
Tri Dao's avatar
Tri Dao committed
280
281
282
        assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
        if kv.shape[3] != q.shape[2]:  # MQA/GQA
            kv = repeat(kv, "... hkv d -> ... (hkv g) d", g=q.shape[2] // kv.shape[3])
283
284
        k, v = kv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
Tri Dao's avatar
Tri Dao committed
285
        scores = torch.einsum("bthd,bshd->bhts", q, k * softmax_scale)
286
        if key_padding_mask is not None:
Tri Dao's avatar
Tri Dao committed
287
288
289
            padding_mask = torch.full(
                (batch_size, seqlen_k), -10000.0, dtype=scores.dtype, device=scores.device
            )
290
291
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
Tri Dao's avatar
Tri Dao committed
292
            scores = scores + rearrange(padding_mask, "b s -> b 1 1 s")
Tri Dao's avatar
Tri Dao committed
293
        if causal:
294
295
296
            # causal mask needs to take into account the difference between seqlen_q and seqlen_k
            row_idx = rearrange(
                torch.arange(seqlen_q, device=q.device, dtype=torch.long), "s -> s 1"
Tri Dao's avatar
Tri Dao committed
297
            )
298
299
300
301
302
303
304
305
            col_idx = torch.arange(seqlen_k, device=kv.device, dtype=torch.long)
            sk = (
                seqlen_k
                if key_padding_mask is None
                else rearrange(key_padding_mask.sum(-1), "b -> b 1 1 1")
            )
            causal_mask = col_idx > row_idx + sk - seqlen_q
            scores = scores.masked_fill(causal_mask, -10000.0)
306
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
307
        attention_drop = self.drop(attention)
Tri Dao's avatar
Tri Dao committed
308
        output = torch.einsum("bhts,bshd->bthd", attention_drop, v)
309
310
311
312
        return output


class LinearResidual(nn.Linear):
Tri Dao's avatar
Tri Dao committed
313
    """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense."""
314
315
316
317
318

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return super().forward(input), input


319
def _update_kv_cache(kv, inference_params, layer_idx):
Tri Dao's avatar
Tri Dao committed
320
    """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
321
322
323
324
    # Pre-allocate memory for key-values for inference.
    num_heads, head_dim = kv.shape[-2:]
    if layer_idx not in inference_params.key_value_memory_dict:
        kv_cache = torch.empty(
Tri Dao's avatar
Tri Dao committed
325
            inference_params.max_batch_size,
326
            inference_params.max_seqlen,
Tri Dao's avatar
Tri Dao committed
327
328
329
330
331
            2,
            num_heads,
            head_dim,
            dtype=kv.dtype,
            device=kv.device,
332
333
334
        )
        inference_params.key_value_memory_dict[layer_idx] = kv_cache
    else:
335
        kv_cache = inference_params.key_value_memory_dict[layer_idx]
336
337
338
    # Adjust key and value for inference
    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + kv.shape[0]
339
    sequence_start = inference_params.seqlen_offset
340
    sequence_end = sequence_start + kv.shape[1]
341
342
    assert batch_end <= kv_cache.shape[0]
    assert sequence_end <= kv_cache.shape[1]
343
344
345
    assert kv_cache is not None
    kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
    return kv_cache[batch_start:batch_end, :sequence_end, ...]
Tri Dao's avatar
Tri Dao committed
346
347


348
class MHA(nn.Module):
Tri Dao's avatar
Tri Dao committed
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
    """Multi-head self-attention and cross-attention"""

    def __init__(
        self,
        embed_dim,
        num_heads,
        num_heads_kv=None,
        cross_attn=False,
        qkv_proj_bias=True,
        out_proj_bias=True,
        dropout=0.0,
        softmax_scale=None,
        causal=False,
        layer_idx=None,
        dwconv=False,
        rotary_emb_dim=0,
        rotary_emb_base=10000.0,
        rotary_emb_scale_base=None,
        rotary_emb_interleaved=False,
368
        use_alibi=False,
Tri Dao's avatar
Tri Dao committed
369
370
371
372
373
374
375
        fused_bias_fc=False,
        use_flash_attn=False,
        return_residual=False,
        checkpointing=False,
        device=None,
        dtype=None,
    ) -> None:
376
        """
Tri Dao's avatar
Tri Dao committed
377
378
379
380
        num_heads_kv: can be used to toggle MQA / GQA. If None, use num_heads.
        return_residual: whether to return the input x along with the output. This is for
            performance reason: for post-norm architecture, returning the input allows us
            to fuse the backward of nn.Linear with the residual connection.
381
        """
Tri Dao's avatar
Tri Dao committed
382
        factory_kwargs = {"device": device, "dtype": dtype}
383
384
385
386
        super().__init__()
        self.embed_dim = embed_dim
        self.cross_attn = cross_attn
        self.causal = causal
Tri Dao's avatar
Tri Dao committed
387
        self.layer_idx = layer_idx
388
389
        self.dwconv = dwconv
        self.rotary_emb_dim = rotary_emb_dim
Tri Dao's avatar
Tri Dao committed
390
        self.use_flash_attn = use_flash_attn
391
392
        self.return_residual = return_residual
        self.checkpointing = checkpointing
393
394
395
396
397
        if use_alibi:
            assert use_flash_attn, "ALiBi code path requires flash_attn"
            alibi_slopes = torch.tensor(get_alibi_slopes(num_heads), device=device)
        else:
            alibi_slopes = None
398
399

        self.num_heads = num_heads
Tri Dao's avatar
Tri Dao committed
400
        self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
Tri Dao's avatar
Tri Dao committed
401
402
403
        assert (
            self.num_heads % self.num_heads_kv == 0
        ), "num_heads must be divisible by num_heads_kv"
Tri Dao's avatar
Tri Dao committed
404
        assert self.embed_dim % num_heads == 0, "embed_dim must be divisible by num_heads"
405
        self.head_dim = self.embed_dim // num_heads
Tri Dao's avatar
Tri Dao committed
406
407
        qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
        kv_dim = 2 * self.head_dim * self.num_heads_kv
408
409

        if self.rotary_emb_dim > 0:
Tri Dao's avatar
Tri Dao committed
410
411
412
413
414
415
416
417
418
            assert not cross_attn, "MHA with rotary embedding does not support cross-attention yet"
            assert RotaryEmbedding is not None, "rotary_emb is not installed"
            self.rotary_emb = RotaryEmbedding(
                self.rotary_emb_dim,
                base=rotary_emb_base,
                scale_base=rotary_emb_scale_base,
                interleaved=rotary_emb_interleaved,
                device=device,
            )
419

Tri Dao's avatar
Tri Dao committed
420
        if fused_bias_fc and FusedDense is None:
Tri Dao's avatar
Tri Dao committed
421
            raise ImportError("fused_dense is not installed")
Tri Dao's avatar
Tri Dao committed
422
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
Tri Dao's avatar
Tri Dao committed
423
424
425
        linear_resid_cls = (
            LinearResidual if not fused_bias_fc else partial(FusedDense, return_residual=True)
        )
Tri Dao's avatar
Tri Dao committed
426
        wqkv_cls = linear_cls if not self.return_residual else linear_resid_cls
427
428
429
430
431
432
433
434
435
436
        inner_attn_cls = (
            partial(FlashSelfAttention, alibi_slopes=alibi_slopes)
            if use_flash_attn
            else SelfAttention
        )
        inner_cross_attn_cls = (
            partial(FlashCrossAttention, alibi_slopes=alibi_slopes)
            if use_flash_attn
            else CrossAttention
        )
437
        if not self.cross_attn:
Tri Dao's avatar
Tri Dao committed
438
            self.Wqkv = wqkv_cls(embed_dim, qkv_dim, bias=qkv_proj_bias, **factory_kwargs)
439
        else:
Tri Dao's avatar
Tri Dao committed
440
            self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
441
442
443
            self.Wkv = wqkv_cls(embed_dim, kv_dim, bias=qkv_proj_bias, **factory_kwargs)
        if self.dwconv:
            if self.num_heads_kv == self.num_heads:
Tri Dao's avatar
Tri Dao committed
444
445
446
                self.dwconv_qkv = nn.Conv1d(
                    qkv_dim, qkv_dim, kernel_size=3, padding=2, groups=qkv_dim
                )
447
            else:
Tri Dao's avatar
Tri Dao committed
448
449
450
451
452
                self.dwconv_q = nn.Conv1d(
                    embed_dim, embed_dim, kernel_size=3, padding=2, groups=embed_dim
                )
                self.dwconv_kv = nn.Conv1d(kv_dim, kv_dim, kernel_size=3, padding=2, groups=kv_dim)
        self.inner_attn = inner_attn_cls(
453
454
455
            causal=causal,
            softmax_scale=softmax_scale,
            attention_dropout=dropout,
Tri Dao's avatar
Tri Dao committed
456
457
458
459
        )
        self.inner_cross_attn = inner_cross_attn_cls(
            causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
        )
Tri Dao's avatar
Tri Dao committed
460
        self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
461

462
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
463
464
        dtype = self.out_proj.weight.dtype if dtype is None else dtype
        device = self.out_proj.weight.device
465
466
467
468
469
470
471
472
473
        return torch.empty(
            batch_size,
            max_seqlen,
            2,
            self.num_heads_kv,
            self.head_dim,
            dtype=dtype,
            device=device,
        )
474

Tri Dao's avatar
Tri Dao committed
475
    def _update_kv_cache(self, kv, inference_params):
Tri Dao's avatar
Tri Dao committed
476
477
478
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
        assert not self.dwconv, "Generation does not support dwconv yet"
        assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
479
        return _update_kv_cache(kv, inference_params, self.layer_idx)
Tri Dao's avatar
Tri Dao committed
480

481
    def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
Tri Dao's avatar
Tri Dao committed
482
        """
483
484
485
        Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
        q: (batch_size, seqlen_q, nheads, head_dim)
        kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
Tri Dao's avatar
Tri Dao committed
486
        """
487
        assert inference_params is not None and inference_params.seqlen_offset > 0
488
489
490
491
        assert self.use_flash_attn
        if self.rotary_emb_dim > 0:
            assert self.rotary_emb.scale is None, "This code path does not support xPos"
            self.rotary_emb._update_cos_sin_cache(
492
                inference_params.max_seqlen, device=q.device, dtype=q.dtype
493
494
495
496
497
498
499
500
501
            )
            rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
        else:
            rotary_cos, rotary_sin = None, None
        batch = q.shape[0]
        kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
        cache_seqlens = (
            inference_params.lengths_per_sample[:batch]
            if inference_params.lengths_per_sample is not None
502
            else inference_params.seqlen_offset
Tri Dao's avatar
Tri Dao committed
503
        )
504
        alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
505
506
507
508
509
510
511
512
513
514
515
516
        context = flash_attn_with_kvcache(
            q,
            kv_cache[:, :, 0],
            kv_cache[:, :, 1],
            kv[:, :, 0],
            kv[:, :, 1],
            rotary_cos=rotary_cos,
            rotary_sin=rotary_sin,
            cache_seqlens=cache_seqlens,
            softmax_scale=self.inner_cross_attn.softmax_scale,
            causal=self.inner_cross_attn.causal,
            rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
517
            alibi_slopes=alibi_slopes,
518
519
        )
        return context
Tri Dao's avatar
Tri Dao committed
520

521
    def _update_kvcache_attention(self, q, kv, inference_params):
522
        """Write kv to inference_params, then do attention"""
523
        if (
524
            inference_params.seqlen_offset == 0
525
526
527
            or flash_attn_with_kvcache is None
            or not self.use_flash_attn
        ):
528
            # TODO: this only uses seqlen_offset and not lengths_per_sample.
529
530
531
532
533
534
535
536
            kv = self._update_kv_cache(kv, inference_params)
            return self.inner_cross_attn(q, kv)
        else:
            batch = q.shape[0]
            kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
            cache_seqlens = (
                inference_params.lengths_per_sample[:batch]
                if inference_params.lengths_per_sample is not None
537
                else inference_params.seqlen_offset
538
            )
539
            alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
540
541
542
543
544
545
546
547
548
            return flash_attn_with_kvcache(
                q,
                kv_cache[:, :, 0],
                kv_cache[:, :, 1],
                kv[:, :, 0],
                kv[:, :, 1],
                cache_seqlens=cache_seqlens,
                softmax_scale=self.inner_cross_attn.softmax_scale,
                causal=self.inner_cross_attn.causal,
549
                alibi_slopes=alibi_slopes,
550
551
            )

Tri Dao's avatar
Tri Dao committed
552
553
554
555
556
557
558
559
560
561
562
    def forward(
        self,
        x,
        x_kv=None,
        key_padding_mask=None,
        cu_seqlens=None,
        max_seqlen=None,
        mixer_subset=None,
        inference_params=None,
        **kwargs,
    ):
563
564
        """
        Arguments:
Tri Dao's avatar
Tri Dao committed
565
566
567
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
                cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
                is the is the sum of the sequence lengths in the batch.
568
            x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
Tri Dao's avatar
Tri Dao committed
569
570
571
572
573
574
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into x. Only applicable when using
                FlashAttention.
            max_seqlen: int. Maximum sequence length in the batch.
            key_padding_mask: boolean mask, True means to keep, False means to mask out.
                (batch, seqlen). Only applicable when not using FlashAttention.
575
576
577
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
Tri Dao's avatar
Tri Dao committed
578
579
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
580
        """
Tri Dao's avatar
Tri Dao committed
581
582
583
584
585
586
587
588
589
590
        if cu_seqlens is not None:
            assert max_seqlen is not None
            assert key_padding_mask is None
            assert self.use_flash_attn
            assert not self.dwconv
            assert self.rotary_emb_dim == 0
        if key_padding_mask is not None:
            assert cu_seqlens is None
            assert max_seqlen is None
            assert not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
591
592
593
594
        if inference_params is not None:
            assert key_padding_mask is None
            assert cu_seqlens is None and max_seqlen is None
            assert not self.dwconv
Tri Dao's avatar
Tri Dao committed
595

Tri Dao's avatar
Tri Dao committed
596
597
598
599
600
        kwargs = (
            {"cu_seqlens": cu_seqlens, "max_seqlen": max_seqlen, **kwargs}
            if self.use_flash_attn
            else {"key_padding_mask": key_padding_mask, **kwargs}
        )
601
602
603
604
605
606
        seqlen_offset = (
            0
            if inference_params is None
            else (
                inference_params.lengths_per_sample
                if inference_params.lengths_per_sample is not None
607
                else inference_params.seqlen_offset
608
609
            )
        )
610
        rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
611
        batch, seqlen = x.shape[:2]
Tri Dao's avatar
Tri Dao committed
612
        if not self.cross_attn and self.num_heads_kv == self.num_heads:
613
            assert x_kv is None and mixer_subset is None
614
615
616
617
618
            if not self.return_residual:
                qkv = self.Wqkv(x)
            else:
                qkv, x = self.Wqkv(x)
            if self.dwconv:
Tri Dao's avatar
Tri Dao committed
619
620
621
                qkv = rearrange(
                    self.dwconv_qkv(rearrange(qkv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
                ).contiguous()
622
            qkv = rearrange(qkv, "... (three h d) -> ... three h d", three=3, d=self.head_dim)
Tri Dao's avatar
Tri Dao committed
623
624
            if (
                inference_params is None
625
                or inference_params.seqlen_offset == 0
626
627
                or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
                or not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
628
            ):
Tri Dao's avatar
Tri Dao committed
629
                if self.rotary_emb_dim > 0:
630
631
632
                    qkv = self.rotary_emb(
                        qkv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
                    )
Tri Dao's avatar
Tri Dao committed
633
634
635
636
                if inference_params is None:
                    if not self.checkpointing:
                        context = self.inner_attn(qkv, **kwargs)
                    else:
Tri Dao's avatar
Tri Dao committed
637
                        context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
Tri Dao's avatar
Tri Dao committed
638
                else:
639
640
641
                    context = self._update_kvcache_attention(
                        qkv[:, :, 0], qkv[:, :, 1:], inference_params
                    )
Tri Dao's avatar
Tri Dao committed
642
            else:
643
644
645
                context = self._apply_rotary_update_kvcache_attention(
                    qkv[:, :, 0], qkv[:, :, 1:], inference_params
                )
646
        else:
Tri Dao's avatar
Tri Dao committed
647
648
649
650
651
652
653
654
655
656
            if self.cross_attn:
                if not self.return_residual:
                    q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
                    kv = self.Wkv(x_kv if x_kv is not None else x)
                else:
                    if x_kv is not None:
                        kv, x_kv = self.Wkv(x_kv)
                    else:
                        kv, x = self.Wkv(x)
                    q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
657
            else:
Tri Dao's avatar
Tri Dao committed
658
659
660
                assert self.num_heads_kv != self.num_heads
                if not self.return_residual:
                    qkv = self.Wqkv(x)
661
                else:
Tri Dao's avatar
Tri Dao committed
662
                    qkv, x = self.Wqkv(x)
Tri Dao's avatar
Tri Dao committed
663
664
                q = qkv[..., : self.num_heads * self.head_dim]
                kv = qkv[..., self.num_heads * self.head_dim :]
665
666
            q = rearrange(q, "... (h d) -> ... h d", d=self.head_dim)
            kv = rearrange(kv, "... (two hkv d) -> ... two hkv d", two=2, d=self.head_dim)
667
            if self.dwconv:
Tri Dao's avatar
Tri Dao committed
668
669
670
671
672
673
674
675
                q = rearrange(
                    self.dwconv_q(rearrange(q, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
                ).contiguous()
                kv = rearrange(
                    self.dwconv_kv(rearrange(kv, "b s d -> b d s"))[..., :-2], "b d s -> b s d"
                ).contiguous()
            if (
                inference_params is None
676
                or inference_params.seqlen_offset == 0
677
678
                or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
                or not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
679
            ):
Tri Dao's avatar
Tri Dao committed
680
                if self.rotary_emb_dim > 0:
681
682
683
                    q, kv = self.rotary_emb(
                        q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
                    )
Tri Dao's avatar
Tri Dao committed
684
685
686
687
                if inference_params is None:
                    if not self.checkpointing:
                        context = self.inner_cross_attn(q, kv, **kwargs)
                    else:
Tri Dao's avatar
Tri Dao committed
688
689
690
                        context = torch.utils.checkpoint.checkpoint(
                            self.inner_cross_attn, q, kv, **kwargs
                        )
Tri Dao's avatar
Tri Dao committed
691
                else:
692
                    context = self._update_kvcache_attention(q, kv, inference_params)
693
            else:
694
                context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
695
        out = self.out_proj(rearrange(context, "... h d -> ... (h d)"))
696
        return out if not self.return_residual else (out, x)
Tri Dao's avatar
Tri Dao committed
697
698
699


class ParallelMHA(nn.Module):
Tri Dao's avatar
Tri Dao committed
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
    """Multi-head self-attention and cross-attention"""

    def __init__(
        self,
        embed_dim,
        num_heads,
        process_group,
        num_heads_kv=None,
        qkv_proj_bias=True,
        out_proj_bias=True,
        dropout=0.0,
        softmax_scale=None,
        causal=False,
        layer_idx=None,
        rotary_emb_dim=0,
        rotary_emb_base=10000.0,
        rotary_emb_scale_base=None,
        rotary_emb_interleaved=False,
718
        use_alibi=False,
Tri Dao's avatar
Tri Dao committed
719
720
721
722
723
724
725
        use_flash_attn=False,
        checkpointing=False,
        sequence_parallel=True,
        device=None,
        dtype=None,
    ) -> None:
        factory_kwargs = {"device": device, "dtype": dtype}
Tri Dao's avatar
Tri Dao committed
726
727
728
        super().__init__()
        self.embed_dim = embed_dim
        self.causal = causal
729
        self.layer_idx = layer_idx
Tri Dao's avatar
Tri Dao committed
730
731
732
        self.rotary_emb_dim = rotary_emb_dim
        self.use_flash_attn = use_flash_attn
        self.checkpointing = checkpointing
Tri Dao's avatar
Tri Dao committed
733
        self.process_group = process_group
734
735
        self.world_size = process_group.size()
        self.local_rank = torch.distributed.get_rank(process_group)
Tri Dao's avatar
Tri Dao committed
736
737

        self.num_heads = num_heads
738
739
        assert self.embed_dim % self.num_heads == 0, "embed_dim must be divisible by num_heads"

Tri Dao's avatar
Tri Dao committed
740
        self.num_heads_kv = num_heads_kv if num_heads_kv is not None else num_heads
Tri Dao's avatar
Tri Dao committed
741
742
743
        assert (
            self.num_heads % self.num_heads_kv == 0
        ), "num_heads must be divisible by num_heads_kv"
744

Tri Dao's avatar
Tri Dao committed
745
746
747
748
        self.num_heads_per_rank = get_dim_for_local_rank(
            self.num_heads, self.world_size, self.local_rank
        )
        self.num_heads_kv_per_rank = get_dim_for_local_rank(
749
            self.num_heads_kv, self.world_size, self.local_rank
Tri Dao's avatar
Tri Dao committed
750
        )
Tri Dao's avatar
Tri Dao committed
751
        self.head_dim = self.embed_dim // num_heads
Tri Dao's avatar
Tri Dao committed
752
        qkv_dim = self.head_dim * (self.num_heads + 2 * self.num_heads_kv)
Tri Dao's avatar
Tri Dao committed
753

754
755
756
757
758
759
760
761
762
763
764
765
        if use_alibi:
            assert use_flash_attn, "ALiBi code path requires flash_attn"
            num_heads_local = math.ceil(self.num_heads / self.world_size)
            alibi_slopes = torch.tensor(
                get_alibi_slopes(num_heads)[
                    self.local_rank * num_heads_local : (self.local_rank + 1) * num_heads_local
                ],
                device=device,
            )
        else:
            alibi_slopes = None

Tri Dao's avatar
Tri Dao committed
766
        if self.rotary_emb_dim > 0:
Tri Dao's avatar
Tri Dao committed
767
768
769
770
771
772
773
774
            assert RotaryEmbedding is not None, "rotary_emb is not installed"
            self.rotary_emb = RotaryEmbedding(
                self.rotary_emb_dim,
                base=rotary_emb_base,
                scale_base=rotary_emb_scale_base,
                interleaved=rotary_emb_interleaved,
                device=device,
            )
Tri Dao's avatar
Tri Dao committed
775
776

        if ColumnParallelLinear is None or RowParallelLinear is None:
Tri Dao's avatar
Tri Dao committed
777
778
779
780
781
782
783
            raise ImportError("fused_dense is not installed")
        self.Wqkv = ColumnParallelLinear(
            embed_dim,
            qkv_dim,
            process_group,
            bias=qkv_proj_bias,
            sequence_parallel=sequence_parallel,
784
            multiple_of=self.head_dim * (self.num_heads // self.num_heads_kv + 2),
Tri Dao's avatar
Tri Dao committed
785
786
            **factory_kwargs,
        )
787
788
789
790
791
792
793
794
795
796
        inner_attn_cls = (
            partial(FlashSelfAttention, alibi_slopes=alibi_slopes)
            if use_flash_attn
            else SelfAttention
        )
        inner_cross_attn_cls = (
            partial(FlashCrossAttention, alibi_slopes=alibi_slopes)
            if use_flash_attn
            else CrossAttention
        )
Tri Dao's avatar
Tri Dao committed
797
798
799
800
801
802
803
804
805
806
807
808
        self.inner_attn = inner_attn_cls(
            causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
        )
        self.inner_cross_attn = inner_cross_attn_cls(
            causal=causal, softmax_scale=softmax_scale, attention_dropout=dropout
        )
        self.out_proj = RowParallelLinear(
            embed_dim,
            embed_dim,
            process_group,
            bias=out_proj_bias,
            sequence_parallel=sequence_parallel,
809
            multiple_of=self.head_dim,
Tri Dao's avatar
Tri Dao committed
810
811
            **factory_kwargs,
        )
Tri Dao's avatar
Tri Dao committed
812

813
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None):
Tri Dao's avatar
Tri Dao committed
814
815
        dtype = self.out_proj.weight.dtype if dtype is None else dtype
        device = self.out_proj.weight.device
816
817
818
819
820
821
822
823
824
        return torch.empty(
            batch_size,
            max_seqlen,
            2,
            self.num_heads_kv_per_rank,
            self.head_dim,
            dtype=dtype,
            device=device,
        )
Tri Dao's avatar
Tri Dao committed
825
826

    def _update_kv_cache(self, kv, inference_params):
Tri Dao's avatar
Tri Dao committed
827
828
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)"""
        assert self.layer_idx is not None, "Generation requires layer_idx in the constructor"
Tri Dao's avatar
Tri Dao committed
829
830
        return _update_kv_cache(kv, inference_params, self.layer_idx)

831
    def _apply_rotary_update_kvcache_attention(self, q, kv, inference_params):
Tri Dao's avatar
Tri Dao committed
832
        """
833
834
835
        Fast path that combine 3 steps: apply rotary to Q and K, update kv cache, and apply attention.
        q: (batch_size, seqlen_q, nheads, head_dim)
        kv: (batch_size, seqlen_k, 2, nheads_kv, head_dim)
Tri Dao's avatar
Tri Dao committed
836
        """
837
        assert inference_params is not None and inference_params.seqlen_offset > 0
838
839
840
841
        assert self.use_flash_attn
        if self.rotary_emb_dim > 0:
            assert self.rotary_emb.scale is None, "This code path does not support xPos"
            self.rotary_emb._update_cos_sin_cache(
842
                inference_params.max_seqlen, device=q.device, dtype=q.dtype
843
844
845
846
847
848
849
850
851
            )
            rotary_cos, rotary_sin = self.rotary_emb._cos_cached, self.rotary_emb._sin_cached
        else:
            rotary_cos, rotary_sin = None, None
        batch = q.shape[0]
        kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
        cache_seqlens = (
            inference_params.lengths_per_sample[:batch]
            if inference_params.lengths_per_sample is not None
852
            else inference_params.seqlen_offset
853
        )
854
        alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
855
856
857
858
859
860
861
862
863
864
865
866
        context = flash_attn_with_kvcache(
            q,
            kv_cache[:, :, 0],
            kv_cache[:, :, 1],
            kv[:, :, 0],
            kv[:, :, 1],
            rotary_cos=rotary_cos,
            rotary_sin=rotary_sin,
            cache_seqlens=cache_seqlens,
            softmax_scale=self.inner_cross_attn.softmax_scale,
            causal=self.inner_cross_attn.causal,
            rotary_interleaved=self.rotary_emb.interleaved if self.rotary_emb_dim > 0 else False,
867
            alibi_slopes=alibi_slopes,
Tri Dao's avatar
Tri Dao committed
868
        )
869
        return context
Tri Dao's avatar
Tri Dao committed
870

871
    def _update_kvcache_attention(self, q, kv, inference_params):
872
        """Write kv to inference_params, then do attention"""
873
874
        if inference_params.seqlen_offset == 0 or not self.use_flash_attn:
            # TODO: this only uses seqlen_offset and not lengths_per_sample.
875
876
877
878
879
880
881
882
            kv = self._update_kv_cache(kv, inference_params)
            return self.inner_cross_attn(q, kv)
        else:
            batch = q.shape[0]
            kv_cache = inference_params.key_value_memory_dict[self.layer_idx][:batch]
            cache_seqlens = (
                inference_params.lengths_per_sample[:batch]
                if inference_params.lengths_per_sample is not None
883
                else inference_params.seqlen_offset
884
            )
885
            alibi_slopes = getattr(self.inner_cross_attn, "alibi_slopes", None)
886
887
888
889
890
891
892
893
894
            context = flash_attn_with_kvcache(
                q,
                kv_cache[:, :, 0],
                kv_cache[:, :, 1],
                kv[:, :, 0],
                kv[:, :, 1],
                cache_seqlens=cache_seqlens,
                softmax_scale=self.inner_cross_attn.softmax_scale,
                causal=self.inner_cross_attn.causal,
895
                alibi_slopes=alibi_slopes,
896
897
898
            )
            return context

899
    def forward(self, x, seqlen=None, inference_params=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
900
901
902
903
904
905
906
907
        """
        Arguments:
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None.
                If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we
                split x during sequence parallel, we split the batch * seqlen dimension
                (in case batch is small).
        """
        qkv = self.Wqkv(x)
Tri Dao's avatar
Tri Dao committed
908
909
        if seqlen is not None:
            qkv = rearrange(qkv, "(b s) ... -> b s ...", s=seqlen)
910
911
912
913
914
915
        seqlen_offset = (
            0
            if inference_params is None
            else (
                inference_params.lengths_per_sample
                if inference_params.lengths_per_sample is not None
916
                else inference_params.seqlen_offset
917
918
            )
        )
919
        rotary_max_seqlen = inference_params.max_seqlen if inference_params is not None else None
Tri Dao's avatar
Tri Dao committed
920
        if self.num_heads_kv == self.num_heads:
Tri Dao's avatar
Tri Dao committed
921
922
923
            qkv = rearrange(qkv, "b s (three h d) -> b s three h d", three=3, d=self.head_dim)
            if (
                inference_params is None
924
                or inference_params.seqlen_offset == 0
925
926
                or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
                or not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
927
            ):
Tri Dao's avatar
Tri Dao committed
928
                if self.rotary_emb_dim > 0:
929
930
931
                    qkv = self.rotary_emb(
                        qkv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
                    )
Tri Dao's avatar
Tri Dao committed
932
933
934
935
936
937
                if inference_params is None:
                    if not self.checkpointing:
                        context = self.inner_attn(qkv, **kwargs)
                    else:
                        context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
                else:
938
939
940
                    context = self._update_kvcache_attention(
                        qkv[:, :, 0], qkv[:, :, 1:], inference_params
                    )
941
            else:
942
943
944
                context = self._apply_rotary_update_kvcache_attention(
                    qkv[:, :, 0], qkv[:, :, 1:], inference_params
                )
Tri Dao's avatar
Tri Dao committed
945
        else:
Tri Dao's avatar
Tri Dao committed
946
947
948
949
950
951
952
953
954
955
956
957
958
            q = rearrange(
                qkv[..., : self.num_heads_per_rank * self.head_dim],
                "... (h d) -> ... h d",
                d=self.head_dim,
            )
            kv = rearrange(
                qkv[..., self.num_heads_per_rank * self.head_dim :],
                "... (two hkv d) -> ... two hkv d",
                two=2,
                d=self.head_dim,
            )
            if (
                inference_params is None
959
                or inference_params.seqlen_offset == 0
960
961
                or (self.rotary_emb_dim == 0 or self.rotary_emb_dim % 16 != 0)
                or not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
962
            ):
963
                if self.rotary_emb_dim > 0:
964
965
966
                    q, kv = self.rotary_emb(
                        q, kv, seqlen_offset=seqlen_offset, max_seqlen=rotary_max_seqlen
                    )
Tri Dao's avatar
Tri Dao committed
967
968
969
970
                if inference_params is None:
                    if not self.checkpointing:
                        context = self.inner_cross_attn(q, kv, **kwargs)
                    else:
Tri Dao's avatar
Tri Dao committed
971
972
973
                        context = torch.utils.checkpoint.checkpoint(
                            self.inner_cross_attn, q, kv, **kwargs
                        )
Tri Dao's avatar
Tri Dao committed
974
                else:
975
                    context = self._update_kvcache_attention(q, kv, inference_params)
976
            else:
977
                context = self._apply_rotary_update_kvcache_attention(q, kv, inference_params)
Tri Dao's avatar
Tri Dao committed
978
        context = rearrange(context, "b s h d -> b s (h d)")
Tri Dao's avatar
Tri Dao committed
979
        if seqlen is not None:
Tri Dao's avatar
Tri Dao committed
980
            context = rearrange(context, "b s d -> (b s) d")
Tri Dao's avatar
Tri Dao committed
981
982
        out = self.out_proj(context)
        return out