mha.py 32.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
# Copyright (c) 2022, Tri Dao.

import math
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange

try:
Tri Dao's avatar
Tri Dao committed
13
14
    from flash_attn import flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func
    from flash_attn import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
15
except ImportError:
Tri Dao's avatar
Tri Dao committed
16
    flash_attn_varlen_qkvpacked_func, flash_attn_varlen_kvpacked_func = None, None
17
18
19
    flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None

try:
Tri Dao's avatar
Tri Dao committed
20
    from flash_attn.ops.fused_dense import FusedDense, ColumnParallelLinear, RowParallelLinear
21
except ImportError:
Tri Dao's avatar
Tri Dao committed
22
    FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
23
24
25
26
27
28

try:
    from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
    RotaryEmbedding = None

29
30
31
32
33
try:
    import ft_attention
except ImportError:
    ft_attention = None

34
35
36
37
38
39
40
41
42
43
44

class FlashSelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
45
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
46
        super().__init__()
Tri Dao's avatar
Tri Dao committed
47
48
        assert flash_attn_varlen_qkvpacked_func is not None, 'FlashAttention is not installed'
        assert flash_attn_qkvpacked_func is not None, 'FlashAttention is not installed'
49
50
        self.causal = causal
        self.softmax_scale = softmax_scale
51
        self.drop = nn.Dropout(attention_dropout)
52

Tri Dao's avatar
Tri Dao committed
53
    def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
54
55
56
        """Implements the multihead softmax attention.
        Arguments
        ---------
Tri Dao's avatar
Tri Dao committed
57
58
59
60
            qkv: The tensor containing the query, key, and value.
                If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
                If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
                (total, 3, H, D), where total is the sum of the sequence lengths in the batch.
Tri Dao's avatar
Tri Dao committed
61
            causal: if passed, will override self.causal
Tri Dao's avatar
Tri Dao committed
62
63
64
65
66
67
68
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into qkv.
            max_seqlen: int. Maximum sequence length in the batch.
        Returns:
        --------
            out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
                else (B, S, H, D).
69
70
71
        """
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda
Tri Dao's avatar
Tri Dao committed
72
        causal = self.causal if causal is None else causal
Tri Dao's avatar
Tri Dao committed
73
74
75
76
77
        unpadded = cu_seqlens is not None
        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
Tri Dao's avatar
Tri Dao committed
78
            return flash_attn_varlen_qkvpacked_func(
79
                qkv, cu_seqlens, max_seqlen, self.drop.p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
80
                softmax_scale=self.softmax_scale, causal=causal
81
            )
Tri Dao's avatar
Tri Dao committed
82
        else:
Tri Dao's avatar
Tri Dao committed
83
84
            return flash_attn_qkvpacked_func(qkv, self.drop.p if self.training else 0.0,
                                             softmax_scale=self.softmax_scale, causal=causal)
85
86
87
88
89
90
91
92
93
94
95
96


class FlashCrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
97
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
98
        super().__init__()
Tri Dao's avatar
Tri Dao committed
99
100
        assert flash_attn_varlen_kvpacked_func is not None, 'FlashAttention is not installed'
        assert flash_attn_kvpacked_func is not None, 'FlashAttention is not installed'
101
102
        self.causal = causal
        self.softmax_scale = softmax_scale
103
        self.drop = nn.Dropout(attention_dropout)
104

Tri Dao's avatar
Tri Dao committed
105
106
    def forward(self, q, kv, causal=None, cu_seqlens=None, max_seqlen=None,
                cu_seqlens_k=None, max_seqlen_k=None):
107
108
109
110
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
Tri Dao's avatar
Tri Dao committed
111
            kv: The tensor containing the key and value. (B, Sk, 2, H_k, D)
Tri Dao's avatar
Tri Dao committed
112
            causal: if passed, will override self.causal
113
114
115
116
117
118
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into q.
            max_seqlen: int. Maximum sequence length in the batch of q.
            cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into kv.
            max_seqlen_k: int. Maximum sequence length in the batch of k and v.
119
120
121
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda and kv.is_cuda
Tri Dao's avatar
Tri Dao committed
122
        causal = self.causal if causal is None else causal
123
124
125
126
127
128
129
130
131
        unpadded = cu_seqlens is not None
        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
            assert cu_seqlens_k is not None
            assert cu_seqlens_k.dtype == torch.int32
            assert max_seqlen_k is not None
            assert isinstance(max_seqlen, int)
Tri Dao's avatar
Tri Dao committed
132
            return flash_attn_varlen_kvpacked_func(
133
                q, kv, cu_seqlens, cu_seqlens_k, max_seqlen, max_seqlen_k,
134
                self.drop.p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
135
                softmax_scale=self.softmax_scale, causal=causal
136
            )
137
138
139
        else:
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            seqlen_k = kv.shape[1]
Tri Dao's avatar
Tri Dao committed
140
141
142
            assert kv.shape[0] == batch_size and kv.shape[4] == q.shape[3]
            return flash_attn_kvpacked_func(q, kv, self.drop.p if self.training else 0.0,
                                            causal=causal, softmax_scale=self.softmax_scale)
143
144
145
146
147
148
149
150
151
152
153
154


class SelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
155
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
156
157
158
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
159
        self.drop = nn.Dropout(attention_dropout)
160

Tri Dao's avatar
Tri Dao committed
161
    def forward(self, qkv, causal=None, key_padding_mask=None):
162
163
164
165
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
Tri Dao's avatar
Tri Dao committed
166
            causal: if passed, will override self.causal
Tri Dao's avatar
Tri Dao committed
167
168
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, S)
169
170
        """
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
171
        causal = self.causal if causal is None else causal
172
173
174
        q, k, v = qkv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
Tri Dao's avatar
Tri Dao committed
175
176
177
178
179
180
        if key_padding_mask is not None:
            padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
                                      device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
Tri Dao's avatar
Tri Dao committed
181
        if causal:
182
183
184
185
186
187
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
188
        attention_drop = self.drop(attention)
189
190
191
192
193
194
195
196
197
198
199
200
201
202
        output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        return output


class CrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
203
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
204
205
206
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
207
        self.drop = nn.Dropout(attention_dropout)
208

Tri Dao's avatar
Tri Dao committed
209
    def forward(self, q, kv, causal=None, key_padding_mask=None):
210
211
212
213
214
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H, D)
Tri Dao's avatar
Tri Dao committed
215
            causal: if passed, will override self.causal
216
217
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, Sk)
218
219
        """
        batch_size, seqlen_q = q.shape[0], q.shape[1]
Tri Dao's avatar
Tri Dao committed
220
        causal = self.causal if causal is None else causal
221
222
223
224
225
        seqlen_k = kv.shape[1]
        assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
        k, v = kv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
226
227
228
229
230
231
        if key_padding_mask is not None:
            padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
                                      device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
Tri Dao's avatar
Tri Dao committed
232
        if causal:
233
234
235
236
237
238
239
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
                                                device=scores.device), 1)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
240
        attention_drop = self.drop(attention)
241
242
243
244
245
        output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        return output


class LinearResidual(nn.Linear):
Tri Dao's avatar
Tri Dao committed
246
    """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense.
247
248
249
250
251
252
    """

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return super().forward(input), input


253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
def _update_kv_cache(kv, inference_params, layer_idx):
    """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
    """
    # Pre-allocate memory for key-values for inference.
    num_heads, head_dim = kv.shape[-2:]
    if layer_idx not in inference_params.key_value_memory_dict:
        kv_cache = torch.empty(
            inference_params.max_batch_size, inference_params.max_sequence_len, 2,
            num_heads, head_dim, dtype=kv.dtype, device=kv.device
        )
        inference_params.key_value_memory_dict[layer_idx] = kv_cache
    else:
        if not inference_params.fused_ft_kernel:
            kv_cache = inference_params.key_value_memory_dict[layer_idx]
        else:
            # For FT, k_cache has shape (b, h, headdim / packsize, s, packsize)
            # where packsize = 4 if fp32, 8 if fp16 or bf16.
            # v_cache has shape (b, h, s, headdim)
            k_cache, v_cache = inference_params.key_value_memory_dict[layer_idx]
            kv_cache = None
    # Adjust key and value for inference
    batch_start = inference_params.batch_size_offset
    batch_end = batch_start + kv.shape[0]
    sequence_start = inference_params.sequence_len_offset
    sequence_end = sequence_start + kv.shape[1]
    assert batch_end <= (kv_cache.shape[0] if kv_cache is not None else v_cache.shape[0])
    assert sequence_end <= (kv_cache.shape[1] if kv_cache is not None else v_cache.shape[2])
    # Copy key and values.
    if not inference_params.fused_ft_kernel:
        assert kv_cache is not None
        kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
        kv = kv_cache[batch_start:batch_end, :sequence_end, ...]
        return kv
    else:
        assert inference_params.sequence_len_offset == 0
        # FT kernel requires different layouts for the k_cache and v_cache.
        assert kv.dtype in [torch.float16, torch.bfloat16, torch.float32]
        packsize = 4 if kv.dtype == torch.float32 else 8
        if kv_cache is not None:
            kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
            k_cache = rearrange(kv_cache[:, :, 0], 'b s h (d packsize) -> b h d s packsize',
                                packsize=packsize).contiguous()
            v_cache = rearrange(kv_cache[:, :, 1], 'b s h d -> b h s d').contiguous()
            inference_params.key_value_memory_dict[layer_idx] = (k_cache, v_cache)
        else:
            k_cache[batch_start:batch_end, :, :, :sequence_end, :] = rearrange(
                kv[:, :, 0], 'b s h (d packsize) -> b h d s packsize', packsize=packsize
            )
            v_cache[batch_start:batch_end, :, :sequence_end, :] = rearrange(
                kv[:, :, 1], 'b s h d -> b h s d'
            )
        return kv


307
308
309
310
class MHA(nn.Module):
    """Multi-head self-attention and cross-attention
    """

Tri Dao's avatar
Tri Dao committed
311
312
313
    def __init__(self, embed_dim, num_heads, cross_attn=False,
                 qkv_proj_bias=True, out_proj_bias=True,
                 dropout=0.0, softmax_scale=None, causal=False, layer_idx=None, dwconv=False,
314
315
316
                 rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None,
                 rotary_emb_interleaved=False, fused_bias_fc=False, use_flash_attn=False,
                 return_residual=False, checkpointing=False, device=None, dtype=None) -> None:
317
318
319
320
321
322
323
324
325
326
        """
            return_residual: whether to return the input x along with the output. This is for
                performance reason: for post-norm architecture, returning the input allows us
                to fuse the backward of nn.Linear with the residual connection.
        """
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.embed_dim = embed_dim
        self.cross_attn = cross_attn
        self.causal = causal
Tri Dao's avatar
Tri Dao committed
327
        self.layer_idx = layer_idx
328
329
        self.dwconv = dwconv
        self.rotary_emb_dim = rotary_emb_dim
Tri Dao's avatar
Tri Dao committed
330
        self.use_flash_attn = use_flash_attn
331
332
333
334
335
336
337
338
339
340
        self.return_residual = return_residual
        self.checkpointing = checkpointing

        self.num_heads = num_heads
        assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
        self.head_dim = self.embed_dim // num_heads

        if self.rotary_emb_dim > 0:
            assert not cross_attn, 'MHA with rotary embedding does not support cross-attention yet'
            assert RotaryEmbedding is not None, 'rotary_emb is not installed'
341
342
            self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, base=rotary_emb_base,
                                              scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
343
                                              interleaved=rotary_emb_interleaved, device=device)
344

Tri Dao's avatar
Tri Dao committed
345
        if fused_bias_fc and FusedDense is None:
346
            raise ImportError('fused_dense is not installed')
Tri Dao's avatar
Tri Dao committed
347
348
349
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
        linear_resid_cls = (LinearResidual if not fused_bias_fc
                            else partial(FusedDense, return_residual=True))
Tri Dao's avatar
Tri Dao committed
350
351
        inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
        inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
352
353
        if not self.cross_attn:
            if not self.return_residual:
Tri Dao's avatar
Tri Dao committed
354
355
                self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=qkv_proj_bias,
                                       **factory_kwargs)
356
            else:
Tri Dao's avatar
Tri Dao committed
357
358
                self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=qkv_proj_bias,
                                             **factory_kwargs)
359
360
361
362
            if self.dwconv:
                self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2,
                                            groups=3 * embed_dim)
        else:
Tri Dao's avatar
Tri Dao committed
363
            self.Wq = linear_cls(embed_dim, embed_dim, bias=qkv_proj_bias, **factory_kwargs)
364
            if not self.return_residual:
Tri Dao's avatar
Tri Dao committed
365
366
                self.Wkv = linear_cls(embed_dim, 2 * embed_dim, bias=qkv_proj_bias,
                                      **factory_kwargs)
367
            else:
Tri Dao's avatar
Tri Dao committed
368
369
                self.Wkv = linear_resid_cls(embed_dim, 2 * embed_dim, bias=qkv_proj_bias,
                                            **factory_kwargs)
370
371
            if self.dwconv:
                self.dwconv_q = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, padding=2,
Tri Dao's avatar
Tri Dao committed
372
                                          groups=embed_dim)
373
                self.dwconv_kv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, kernel_size=3, padding=2,
Tri Dao's avatar
Tri Dao committed
374
                                          groups=2 * embed_dim)
375
        self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
Tri Dao's avatar
Tri Dao committed
376
                                         attention_dropout=dropout)
Tri Dao's avatar
Tri Dao committed
377
378
        self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
                                                     attention_dropout=dropout)
Tri Dao's avatar
Tri Dao committed
379
        self.out_proj = linear_cls(embed_dim, embed_dim, bias=out_proj_bias, **factory_kwargs)
380

381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
    def allocate_inference_cache(self, batch_size, max_seqlen, dtype=None, fused_ft_kernel=True):
        dtype = self.out_proj.weight.dtype if dtype is None else dtype
        device = self.out_proj.weight.device
        if not fused_ft_kernel:
            return torch.empty(batch_size, max_seqlen, 2, self.num_heads, self.head_dim,
                               dtype=dtype, device=device)
        else:
            assert dtype in [torch.float16, torch.bfloat16, torch.float32]
            packsize = 4 if dtype == torch.float32 else 8
            assert self.head_dim % packsize == 0
            k_cache = torch.empty(batch_size, self.num_heads, self.head_dim // packsize, max_seqlen,
                                  packsize, dtype=dtype, device=device)
            v_cache = torch.empty(batch_size, self.num_heads, max_seqlen, self.head_dim,
                                  dtype=dtype, device=device)
            return k_cache, v_cache

Tri Dao's avatar
Tri Dao committed
397
    def _update_kv_cache(self, kv, inference_params):
398
        """kv: (batch_size, seqlen, 2, nheads, head_dim) or (batch_size, 1, 2, nheads, head_dim)
Tri Dao's avatar
Tri Dao committed
399
400
401
        """
        assert not self.dwconv, 'Generation does not support dwconv yet'
        assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
402
        return _update_kv_cache(kv, inference_params, self.layer_idx)
Tri Dao's avatar
Tri Dao committed
403

404
    def forward(self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None,
405
                mixer_subset=None, inference_params=None, **kwargs):
406
407
        """
        Arguments:
Tri Dao's avatar
Tri Dao committed
408
409
410
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
                cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
                is the is the sum of the sequence lengths in the batch.
411
            x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
Tri Dao's avatar
Tri Dao committed
412
413
414
415
416
417
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into x. Only applicable when using
                FlashAttention.
            max_seqlen: int. Maximum sequence length in the batch.
            key_padding_mask: boolean mask, True means to keep, False means to mask out.
                (batch, seqlen). Only applicable when not using FlashAttention.
418
419
420
            mixer_subset: for cross-attention only. If not None, will take a subset of x
                before applying the query projection. Useful for e.g., ViT where we only care
                about the CLS token in the last layer.
Tri Dao's avatar
Tri Dao committed
421
422
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
423
        """
Tri Dao's avatar
Tri Dao committed
424
425
426
427
428
429
430
431
432
433
        if cu_seqlens is not None:
            assert max_seqlen is not None
            assert key_padding_mask is None
            assert self.use_flash_attn
            assert not self.dwconv
            assert self.rotary_emb_dim == 0
        if key_padding_mask is not None:
            assert cu_seqlens is None
            assert max_seqlen is None
            assert not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
434
435
436
437
        if inference_params is not None:
            assert key_padding_mask is None
            assert cu_seqlens is None and max_seqlen is None
            assert not self.dwconv
Tri Dao's avatar
Tri Dao committed
438

439
440
        kwargs = ({'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen, **kwargs}
                  if self.use_flash_attn else {'key_padding_mask': key_padding_mask, **kwargs})
441
        if not self.cross_attn:
442
            assert x_kv is None and mixer_subset is None
443
444
445
446
447
448
449
            if not self.return_residual:
                qkv = self.Wqkv(x)
            else:
                qkv, x = self.Wqkv(x)
            if self.dwconv:
                qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2],
                                'b d s -> b s d').contiguous()
Tri Dao's avatar
Tri Dao committed
450
            qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim)
Tri Dao's avatar
Tri Dao committed
451
452
453
454
455
456
457
            if inference_params is None:
                if self.rotary_emb_dim > 0:
                    qkv = self.rotary_emb(qkv)
                if not self.checkpointing:
                    context = self.inner_attn(qkv, **kwargs)
                else:
                    context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
458
            else:
459
460
461
462
463
464
465
466
467
468
                if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0:
                    if self.rotary_emb_dim > 0:
                        qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
                    q = qkv[:, :, 0]
                    kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
                    # If we're processing the prompt, causal=None (use self.causal).
                    # If we're decoding, then causal=False.
                    causal = None if inference_params.sequence_len_offset == 0 else False
                    context = self.inner_cross_attn(q, kv, causal=causal)
                else:
469
                    assert inference_params.fused_ft_kernel
470
                    assert ft_attention is not None
471
472
473
474
475
                    batch_start = inference_params.batch_size_offset
                    batch_end = batch_start + qkv.shape[0]
                    k_cache, v_cache = inference_params.key_value_memory_dict[self.layer_idx]
                    lengths_per_sample = (inference_params.lengths_per_sample[batch_start:batch_end]
                                          if inference_params.lengths_per_sample is not None else None)
476
                    rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
477
478
                    context = ft_attention.single_query_attention(
                        *rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1),
479
480
481
482
483
484
485
                        k_cache[batch_start:batch_end],
                        v_cache[batch_start:batch_end],
                        lengths_per_sample,
                        None,  # rotary_cos_
                        None,  # rotary_sin_
                        None,  # nnz_head_idx
                        inference_params.sequence_len_offset,
486
                        self.rotary_emb_dim, rotary_emb_base,
Tri Dao's avatar
Tri Dao committed
487
488
                        # neox_rotary_style
                        (not self.rotary_emb.interleaved) if self.rotary_emb_dim > 0 else True
489
490
                    )
                    context = rearrange(context, 'b h d -> b 1 h d')
491
        else:
492
            if not self.return_residual:
493
                q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
494
495
496
497
498
499
                kv = self.Wkv(x_kv if x_kv is not None else x)
            else:
                if x_kv is not None:
                    kv, x_kv = self.Wkv(x_kv)
                else:
                    kv, x = self.Wkv(x)
500
                q = self.Wq(x if mixer_subset is None else x[:, mixer_subset])
Tri Dao's avatar
Tri Dao committed
501
502
            q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
            kv = rearrange(kv, '... (two h d) -> ... two h d', two=2, d=self.head_dim)
503
504
505
506
507
            if self.dwconv:
                q = rearrange(self.dwconv_q(rearrange(q, 'b s d -> b d s'))[..., :-2],
                              'b d s -> b s d').contiguous()
                kv = rearrange(self.dwconv_kv(rearrange(kv, 'b s d -> b d s'))[..., :-2],
                               'b d s -> b s d').contiguous()
Tri Dao's avatar
Tri Dao committed
508
509
            if inference_params is None:
                if not self.checkpointing:
510
                    context = self.inner_cross_attn(q, kv, **kwargs)
Tri Dao's avatar
Tri Dao committed
511
                else:
512
                    context = torch.utils.checkpoint.checkpoint(self.inner_cross_attn, q, kv, **kwargs)
513
            else:
Tri Dao's avatar
Tri Dao committed
514
515
                kv = self._update_kv_cache(kv)
                context = self.inner_cross_attn(q, kv, causal=False)
Tri Dao's avatar
Tri Dao committed
516
        out = self.out_proj(rearrange(context, '... h d -> ... (h d)'))
517
        return out if not self.return_residual else (out, x)
Tri Dao's avatar
Tri Dao committed
518
519
520
521
522
523


class ParallelMHA(nn.Module):
    """Multi-head self-attention and cross-attention
    """

Tri Dao's avatar
Tri Dao committed
524
525
    def __init__(self, embed_dim, num_heads, process_group, qkv_proj_bias=True, out_proj_bias=True,
                 dropout=0.0, softmax_scale=None, causal=False, layer_idx=None,
526
527
                 rotary_emb_dim=0, rotary_emb_base=10000.0, rotary_emb_scale_base=None,
                 rotary_emb_interleaved=False, use_flash_attn=False, checkpointing=False,
528
                 sequence_parallel=True, device=None, dtype=None) -> None:
Tri Dao's avatar
Tri Dao committed
529
530
531
532
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.embed_dim = embed_dim
        self.causal = causal
533
        self.layer_idx = layer_idx
Tri Dao's avatar
Tri Dao committed
534
535
536
537
538
539
540
541
542
543
        self.rotary_emb_dim = rotary_emb_dim
        self.use_flash_attn = use_flash_attn
        self.checkpointing = checkpointing

        self.num_heads = num_heads
        assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
        self.head_dim = self.embed_dim // num_heads

        if self.rotary_emb_dim > 0:
            assert RotaryEmbedding is not None, 'rotary_emb is not installed'
544
545
            self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, base=rotary_emb_base,
                                              scale_base=rotary_emb_scale_base,
Tri Dao's avatar
Tri Dao committed
546
                                              interleaved=rotary_emb_interleaved, device=device)
Tri Dao's avatar
Tri Dao committed
547
548
549

        if ColumnParallelLinear is None or RowParallelLinear is None:
            raise ImportError('fused_dense is not installed')
Tri Dao's avatar
Tri Dao committed
550
551
        self.Wqkv = ColumnParallelLinear(embed_dim, 3 * embed_dim, process_group,
                                         bias=qkv_proj_bias,
552
                                         sequence_parallel=sequence_parallel, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
553
        inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
554
        inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
Tri Dao's avatar
Tri Dao committed
555
556
        self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
                                         attention_dropout=dropout)
557
558
        self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
                                                     attention_dropout=dropout)
559
        self.out_proj = RowParallelLinear(embed_dim, embed_dim, process_group,
Tri Dao's avatar
Tri Dao committed
560
                                          bias=out_proj_bias,
561
                                          sequence_parallel=sequence_parallel, **factory_kwargs)
Tri Dao's avatar
Tri Dao committed
562

563
    def forward(self, x, seqlen=None, inference_params=None, **kwargs):
Tri Dao's avatar
Tri Dao committed
564
565
566
567
568
569
570
571
572
573
574
575
576
        """
        Arguments:
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None.
                If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we
                split x during sequence parallel, we split the batch * seqlen dimension
                (in case batch is small).
        """
        qkv = self.Wqkv(x)
        if seqlen is None:
            qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, d=self.head_dim)
        else:
            qkv = rearrange(qkv, '(b s) (three h d) -> b s three h d', s=seqlen, three=3,
                            d=self.head_dim)
577
578
579
580
581
582
583
        if inference_params is None:
            if self.rotary_emb_dim > 0:
                qkv = self.rotary_emb(qkv)
            if not self.checkpointing:
                context = self.inner_attn(qkv, **kwargs)
            else:
                context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
Tri Dao's avatar
Tri Dao committed
584
        else:
585
586
587
588
589
590
591
592
593
594
595
596
597
            if (not inference_params.fused_ft_kernel) or inference_params.sequence_len_offset == 0:
                if self.rotary_emb_dim > 0:
                    qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
                q = qkv[:, :, 0]
                assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
                kv = _update_kv_cache(qkv[:, :, 1:], inference_params, self.layer_idx)
                # If we're processing the prompt, causal=None (use self.causal).
                # If we're decoding, then causal=False.
                causal = None if inference_params.sequence_len_offset == 0 else False
                context = self.inner_cross_attn(q, kv, causal=causal)
            else:
                assert inference_params.fused_ft_kernel
                assert ft_attention is not None
598
599
600
601
602
                batch_start = inference_params.batch_size_offset
                batch_end = batch_start + qkv.shape[0]
                k_cache, v_cache = inference_params.key_value_memory_dict[self.layer_idx]
                lengths_per_sample = (inference_params.lengths_per_sample[batch_start:batch_end]
                                      if inference_params.lengths_per_sample is not None else None)
603
                rotary_emb_base = self.rotary_emb.base if self.rotary_emb_dim > 0 else 0
604
605
                context = ft_attention.single_query_attention(
                    *rearrange(qkv, 'b 1 three h d -> b three h d').unbind(dim=1),
606
607
608
609
610
611
612
                    k_cache[batch_start:batch_end],
                    v_cache[batch_start:batch_end],
                    lengths_per_sample,
                    None,  # rotary_cos_
                    None,  # rotary_sin_
                    None,  # nnz_head_idx
                    inference_params.sequence_len_offset,
613
                    self.rotary_emb_dim, rotary_emb_base,
Tri Dao's avatar
Tri Dao committed
614
615
                    # neox_rotary_style
                    (not self.rotary_emb.interleaved) if self.rotary_emb_dim > 0 else True
616
617
                )
                context = rearrange(context, 'b h d -> b 1 h d')
Tri Dao's avatar
Tri Dao committed
618
619
620
621
622
623
        if seqlen is None:
            context = rearrange(context, 'b s h d -> b s (h d)')
        else:
            context = rearrange(context, 'b s h d -> (b s) (h d)')
        out = self.out_proj(context)
        return out