mha.py 26.3 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
# Copyright (c) 2022, Tri Dao.

import math
from functools import partial

import torch
import torch.nn as nn
import torch.nn.functional as F

from einops import rearrange

try:
    from flash_attn.flash_attn_interface import flash_attn_unpadded_qkvpacked_func
    from flash_attn.flash_attn_interface import flash_attn_unpadded_kvpacked_func
except ImportError:
    flash_attn_unpadded_qkvpacked_func, flash_attn_unpadded_kvpacked_func = None, None

try:
    from flash_attn.ops.flash_attn_triton import flash_attn_qkvpacked_func, flash_attn_kvpacked_func
except ImportError:
    flash_attn_qkvpacked_func, flash_attn_kvpacked_func = None, None

try:
Tri Dao's avatar
Tri Dao committed
24
    from flash_attn.ops.fused_dense import FusedDense, ColumnParallelLinear, RowParallelLinear
25
except ImportError:
Tri Dao's avatar
Tri Dao committed
26
    FusedDense, ColumnParallelLinear, RowParallelLinear = None, None, None
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

try:
    from flash_attn.layers.rotary import RotaryEmbedding
except ImportError:
    RotaryEmbedding = None


class FlashSelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
Tri Dao's avatar
Tri Dao committed
45
                 triton=False):
46
47
48
49
50
51
52
53
54
55
        super().__init__()
        if attention_dropout != 0.0 or not triton:
            assert flash_attn_unpadded_qkvpacked_func is not None, 'FlashAttention is not installed'
        if attention_dropout == 0.0 and triton:
            assert flash_attn_qkvpacked_func is not None, 'FlashAttention Triton is not installed'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout
        self.triton = triton

Tri Dao's avatar
Tri Dao committed
56
    def forward(self, qkv, causal=None, cu_seqlens=None, max_seqlen=None):
57
58
59
        """Implements the multihead softmax attention.
        Arguments
        ---------
Tri Dao's avatar
Tri Dao committed
60
61
62
63
            qkv: The tensor containing the query, key, and value.
                If cu_seqlens is None and max_seqlen is None, then qkv has shape (B, S, 3, H, D).
                If cu_seqlens is not None and max_seqlen is not None, then qkv has shape
                (total, 3, H, D), where total is the sum of the sequence lengths in the batch.
Tri Dao's avatar
Tri Dao committed
64
            causal: if passed, will override self.causal
Tri Dao's avatar
Tri Dao committed
65
66
67
68
69
70
71
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into qkv.
            max_seqlen: int. Maximum sequence length in the batch.
        Returns:
        --------
            out: (total, H, D) if cu_seqlens is not None and max_seqlen is not None,
                else (B, S, H, D).
72
73
74
        """
        assert qkv.dtype in [torch.float16, torch.bfloat16]
        assert qkv.is_cuda
Tri Dao's avatar
Tri Dao committed
75
        causal = self.causal if causal is None else causal
Tri Dao's avatar
Tri Dao committed
76
77
78
79
80
81
82
        unpadded = cu_seqlens is not None
        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
            return flash_attn_unpadded_qkvpacked_func(
                qkv, cu_seqlens, max_seqlen, self.dropout_p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
83
                softmax_scale=self.softmax_scale, causal=causal
84
            )
Tri Dao's avatar
Tri Dao committed
85
86
87
88
        else:
            batch_size, seqlen = qkv.shape[0], qkv.shape[1]
            # Triton version doesn't support dropout
            if self.triton and (self.dropout_p == 0 or not self.training):
Tri Dao's avatar
Tri Dao committed
89
                output = flash_attn_qkvpacked_func(qkv, None, causal, self.softmax_scale)
Tri Dao's avatar
Tri Dao committed
90
91
92
93
94
95
96
            else:
                qkv = rearrange(qkv, 'b s ... -> (b s) ...')
                max_seqlen = seqlen
                cu_seqlens = torch.arange(0, (batch_size + 1) * seqlen, step=seqlen, dtype=torch.int32,
                                        device=qkv.device)
                output = flash_attn_unpadded_qkvpacked_func(
                    qkv, cu_seqlens, max_seqlen, self.dropout_p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
97
                    softmax_scale=self.softmax_scale, causal=causal
Tri Dao's avatar
Tri Dao committed
98
99
100
                )
                output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
            return output
101
102
103
104
105
106
107
108
109
110
111
112
113


class FlashCrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0,
Tri Dao's avatar
Tri Dao committed
114
                 triton=False):
115
116
117
118
119
120
121
122
123
124
        super().__init__()
        if attention_dropout != 0.0 or not triton:
            assert flash_attn_unpadded_kvpacked_func is not None, 'FlashAttention is not installed'
        if attention_dropout == 0.0 and triton:
            assert flash_attn_kvpacked_func is not None, 'FlashAttention Triton is not installed'
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout
        self.triton = triton

Tri Dao's avatar
Tri Dao committed
125
126
    def forward(self, q, kv, causal=None, cu_seqlens=None, max_seqlen=None,
                cu_seqlens_k=None, max_seqlen_k=None):
127
128
129
130
131
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H, D)
Tri Dao's avatar
Tri Dao committed
132
            causal: if passed, will override self.causal
133
134
135
136
137
138
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into q.
            max_seqlen: int. Maximum sequence length in the batch of q.
            cu_seqlens_k: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into kv.
            max_seqlen_k: int. Maximum sequence length in the batch of k and v.
139
140
141
        """
        assert q.dtype in [torch.float16, torch.bfloat16]
        assert q.is_cuda and kv.is_cuda
Tri Dao's avatar
Tri Dao committed
142
        causal = self.causal if causal is None else causal
143
144
145
146
147
148
149
150
151
152
153
        unpadded = cu_seqlens is not None
        if unpadded:
            assert cu_seqlens.dtype == torch.int32
            assert max_seqlen is not None
            assert isinstance(max_seqlen, int)
            assert cu_seqlens_k is not None
            assert cu_seqlens_k.dtype == torch.int32
            assert max_seqlen_k is not None
            assert isinstance(max_seqlen, int)
            return flash_attn_unpadded_kvpacked_func(
                q, kv, cu_seqlens, cu_seqlens_k, max_seqlen, max_seqlen_k,
154
                self.dropout_p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
155
                softmax_scale=self.softmax_scale, causal=causal
156
            )
157
158
159
160
161
        else:
            batch_size, seqlen_q = q.shape[0], q.shape[1]
            seqlen_k = kv.shape[1]
            assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
            if self.triton and (self.dropout_p == 0.0 or not self.training):  # Triton version doesn't support dropout
Tri Dao's avatar
Tri Dao committed
162
                output = flash_attn_kvpacked_func(q, kv, None, causal, self.softmax_scale)
163
164
165
166
167
168
169
170
171
172
            else:
                q = rearrange(q, 'b s ... -> (b s) ...')
                kv = rearrange(kv, 'b s ... -> (b s) ...')
                cu_seqlens_q = torch.arange(0, (batch_size + 1) * seqlen_q, step=seqlen_q,
                                            dtype=torch.int32, device=q.device)
                cu_seqlens_k = torch.arange(0, (batch_size + 1) * seqlen_k, step=seqlen_k,
                                            dtype=torch.int32, device=kv.device)
                output = flash_attn_unpadded_kvpacked_func(
                    q, kv, cu_seqlens_q, cu_seqlens_k, seqlen_q, seqlen_k,
                    self.dropout_p if self.training else 0.0,
Tri Dao's avatar
Tri Dao committed
173
                    softmax_scale=self.softmax_scale, causal=causal
174
175
176
                )
                output = rearrange(output, '(b s) ... -> b s ...', b=batch_size)
            return output
177
178
179
180
181
182
183
184
185
186
187
188


class SelfAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
189
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
190
191
192
193
194
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

Tri Dao's avatar
Tri Dao committed
195
    def forward(self, qkv, causal=None, key_padding_mask=None):
196
197
198
199
        """Implements the multihead softmax attention.
        Arguments
        ---------
            qkv: The tensor containing the query, key, and value. (B, S, 3, H, D)
Tri Dao's avatar
Tri Dao committed
200
            causal: if passed, will override self.causal
Tri Dao's avatar
Tri Dao committed
201
202
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, S)
203
204
        """
        batch_size, seqlen = qkv.shape[0], qkv.shape[1]
Tri Dao's avatar
Tri Dao committed
205
        causal = self.causal if causal is None else causal
206
207
208
        q, k, v = qkv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
Tri Dao's avatar
Tri Dao committed
209
210
211
212
213
214
        if key_padding_mask is not None:
            padding_mask = torch.full((batch_size, seqlen), -10000.0, dtype=scores.dtype,
                                      device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
Tri Dao's avatar
Tri Dao committed
215
        if causal:
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(torch.full((seqlen, seqlen), -10000.0, device=scores.device), 1)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
        attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0)
        output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        return output


class CrossAttention(nn.Module):
    """Implement the scaled dot product attention with softmax.
    Arguments
    ---------
        softmax_scale: The temperature to use for the softmax attention.
                      (default: 1/sqrt(d_keys) where d_keys is computed at
                      runtime)
        attention_dropout: The dropout rate to apply to the attention
                           (default: 0.0)
    """
Tri Dao's avatar
Tri Dao committed
237
    def __init__(self, causal=False, softmax_scale=None, attention_dropout=0.0):
238
239
240
241
242
        super().__init__()
        self.causal = causal
        self.softmax_scale = softmax_scale
        self.dropout_p = attention_dropout

Tri Dao's avatar
Tri Dao committed
243
    def forward(self, q, kv, causal=None, key_padding_mask=None):
244
245
246
247
248
        """Implements the multihead softmax attention.
        Arguments
        ---------
            q: The tensor containing the query. (B, Sq, H, D)
            kv: The tensor containing the key and value. (B, Sk, 2, H, D)
Tri Dao's avatar
Tri Dao committed
249
            causal: if passed, will override self.causal
250
251
            key_padding_mask: boolean mask to apply to the attention weights. True means to keep,
                False means to mask out. (B, Sk)
252
253
        """
        batch_size, seqlen_q = q.shape[0], q.shape[1]
Tri Dao's avatar
Tri Dao committed
254
        causal = self.causal if causal is None else causal
255
256
257
258
259
        seqlen_k = kv.shape[1]
        assert kv.shape[0] == batch_size and kv.shape[3] == q.shape[2] and kv.shape[4] == q.shape[3]
        k, v = kv.unbind(dim=2)
        softmax_scale = self.softmax_scale or 1.0 / math.sqrt(q.shape[-1])
        scores = torch.einsum('bthd,bshd->bhts', q, k * softmax_scale)
260
261
262
263
264
265
        if key_padding_mask is not None:
            padding_mask = torch.full((batch_size, seqlen_k), -10000.0, dtype=scores.dtype,
                                      device=scores.device)
            padding_mask.masked_fill_(key_padding_mask, 0.0)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + rearrange(padding_mask, 'b s -> b 1 1 s')
Tri Dao's avatar
Tri Dao committed
266
        if causal:
267
268
269
270
271
272
273
274
275
276
277
278
279
            # "triu_tril_cuda_template" not implemented for 'BFloat16'
            # So we have to construct the mask in float
            causal_mask = torch.triu(torch.full((seqlen_q, seqlen_k), -10000.0,
                                                device=scores.device), 1)
            # TD [2022-09-30]: Adding is faster than masked_fill_ (idk why, just better kernel I guess)
            scores = scores + causal_mask.to(dtype=scores.dtype)
        attention = torch.softmax(scores, dim=-1, dtype=v.dtype)
        attention_drop = F.dropout(attention, self.dropout_p if self.training else 0.0)
        output = torch.einsum('bhts,bshd->bthd', attention_drop, v)
        return output


class LinearResidual(nn.Linear):
Tri Dao's avatar
Tri Dao committed
280
    """Wrap nn.Linear to return the residual as well. For compatibility with FusedDense.
281
282
283
284
285
286
287
288
289
290
291
    """

    def forward(self, input: torch.Tensor) -> torch.Tensor:
        return super().forward(input), input


class MHA(nn.Module):
    """Multi-head self-attention and cross-attention
    """

    def __init__(self, embed_dim, num_heads, cross_attn=False, bias=True, dropout=0.0,
Tri Dao's avatar
Tri Dao committed
292
                 softmax_scale=None, causal=False, layer_idx=None, dwconv=False, rotary_emb_dim=0,
Tri Dao's avatar
Tri Dao committed
293
                 rotary_emb_scale_base=0,
294
295
296
297
298
299
300
301
302
303
304
305
                 fused_bias_fc=False, use_flash_attn=False, return_residual=False,
                 checkpointing=False, device=None, dtype=None) -> None:
        """
            return_residual: whether to return the input x along with the output. This is for
                performance reason: for post-norm architecture, returning the input allows us
                to fuse the backward of nn.Linear with the residual connection.
        """
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.embed_dim = embed_dim
        self.cross_attn = cross_attn
        self.causal = causal
Tri Dao's avatar
Tri Dao committed
306
        self.layer_idx = layer_idx
307
308
        self.dwconv = dwconv
        self.rotary_emb_dim = rotary_emb_dim
Tri Dao's avatar
Tri Dao committed
309
        self.use_flash_attn = use_flash_attn
310
311
312
313
314
315
316
317
318
319
        self.return_residual = return_residual
        self.checkpointing = checkpointing

        self.num_heads = num_heads
        assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
        self.head_dim = self.embed_dim // num_heads

        if self.rotary_emb_dim > 0:
            assert not cross_attn, 'MHA with rotary embedding does not support cross-attention yet'
            assert RotaryEmbedding is not None, 'rotary_emb is not installed'
Tri Dao's avatar
Tri Dao committed
320
321
            self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base,
                                              device=device)
322

Tri Dao's avatar
Tri Dao committed
323
        if fused_bias_fc and FusedDense is None:
324
            raise ImportError('fused_dense is not installed')
Tri Dao's avatar
Tri Dao committed
325
326
327
        linear_cls = nn.Linear if not fused_bias_fc else FusedDense
        linear_resid_cls = (LinearResidual if not fused_bias_fc
                            else partial(FusedDense, return_residual=True))
Tri Dao's avatar
Tri Dao committed
328
329
        inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
        inner_cross_attn_cls = FlashCrossAttention if use_flash_attn else CrossAttention
330
331
332
333
334
335
336
337
338
339
        if not self.cross_attn:
            if not self.return_residual:
                self.Wqkv = linear_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs)
            else:
                self.Wqkv = linear_resid_cls(embed_dim, 3 * embed_dim, bias=bias, **factory_kwargs)
            if self.dwconv:
                self.dwconv_qkv = nn.Conv1d(3 * embed_dim, 3 * embed_dim, kernel_size=3, padding=2,
                                            groups=3 * embed_dim)
        else:
            self.Wq = linear_cls(embed_dim, embed_dim, bias=bias, **factory_kwargs)
340
341
342
343
            if not self.return_residual:
                self.Wkv = linear_cls(embed_dim, 2 * embed_dim, bias=bias, **factory_kwargs)
            else:
                self.Wkv = linear_resid_cls(embed_dim, 2 * embed_dim, bias=bias, **factory_kwargs)
344
345
346
347
348
349
            if self.dwconv:
                self.dwconv_q = nn.Conv1d(embed_dim, embed_dim, kernel_size=3, padding=2,
                                        groups=embed_dim)
                self.dwconv_kv = nn.Conv1d(2 * embed_dim, 2 * embed_dim, kernel_size=3, padding=2,
                                        groups=2 * embed_dim)
        self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
Tri Dao's avatar
Tri Dao committed
350
                                         attention_dropout=dropout)
Tri Dao's avatar
Tri Dao committed
351
352
        self.inner_cross_attn = inner_cross_attn_cls(causal=causal, softmax_scale=softmax_scale,
                                                     attention_dropout=dropout)
353
354
355
        # output projection always have the bias (for now)
        self.out_proj = linear_cls(embed_dim, embed_dim, **factory_kwargs)

Tri Dao's avatar
Tri Dao committed
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
    def _update_kv_cache(self, kv, inference_params):
        """kv: (batch_size, 1, nheads, head_dim)
        """
        assert not self.dwconv, 'Generation does not support dwconv yet'
        assert self.layer_idx is not None, 'Generation requires layer_idx in the constructor'
        # Pre-allocate memory for key-values for inference.
        if self.layer_idx not in inference_params.key_value_memory_dict:
            inference_kv_cache = torch.empty(
                inference_params.max_batch_size, inference_params.max_sequence_len, 2,
                self.num_heads, self.head_dim, dtype=kv.dtype, device=kv.device
            )
            inference_params.key_value_memory_dict[self.layer_idx] = inference_kv_cache
        else:
            inference_kv_cache = inference_params.key_value_memory_dict[self.layer_idx]
        # Adjust key and value for inference
        batch_start = inference_params.batch_size_offset
        batch_end = batch_start + kv.shape[0]
        assert batch_end <= inference_kv_cache.shape[0]
        sequence_start = inference_params.sequence_len_offset
        sequence_end = sequence_start + kv.shape[1]
        assert sequence_end <= inference_kv_cache.shape[1]
        # Copy key and values.
        inference_kv_cache[batch_start:batch_end, sequence_start:sequence_end, ...] = kv
        kv = inference_kv_cache[batch_start:batch_end, :sequence_end, ...]
        return kv

382
    def forward(self, x, x_kv=None, key_padding_mask=None, cu_seqlens=None, max_seqlen=None,
Tri Dao's avatar
Tri Dao committed
383
                inference_params=None, **kwargs):
384
385
        """
        Arguments:
Tri Dao's avatar
Tri Dao committed
386
387
388
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if
                cu_seqlens is None and max_seqlen is None, else (total, hidden_dim) where total
                is the is the sum of the sequence lengths in the batch.
389
            x_kv: (batch, seqlen, hidden_dim), only applicable for cross-attention. If None, use x.
Tri Dao's avatar
Tri Dao committed
390
391
392
393
394
395
            cu_seqlens: (batch_size + 1,), dtype torch.int32. The cumulative sequence lengths
                of the sequences in the batch, used to index into x. Only applicable when using
                FlashAttention.
            max_seqlen: int. Maximum sequence length in the batch.
            key_padding_mask: boolean mask, True means to keep, False means to mask out.
                (batch, seqlen). Only applicable when not using FlashAttention.
Tri Dao's avatar
Tri Dao committed
396
397
            inference_params: for generation. Adapted from Megatron-LM (and Apex)
            https://github.com/NVIDIA/apex/blob/3ff1a10f72ec07067c4e44759442329804ac5162/apex/transformer/testing/standalone_transformer_lm.py#L470
398
        """
Tri Dao's avatar
Tri Dao committed
399
400
401
402
403
404
405
406
407
408
        if cu_seqlens is not None:
            assert max_seqlen is not None
            assert key_padding_mask is None
            assert self.use_flash_attn
            assert not self.dwconv
            assert self.rotary_emb_dim == 0
        if key_padding_mask is not None:
            assert cu_seqlens is None
            assert max_seqlen is None
            assert not self.use_flash_attn
Tri Dao's avatar
Tri Dao committed
409
410
411
412
        if inference_params is not None:
            assert key_padding_mask is None
            assert cu_seqlens is None and max_seqlen is None
            assert not self.dwconv
Tri Dao's avatar
Tri Dao committed
413

414
415
        kwargs = ({'cu_seqlens': cu_seqlens, 'max_seqlen': max_seqlen, **kwargs}
                  if self.use_flash_attn else {'key_padding_mask': key_padding_mask, **kwargs})
416
417
418
419
420
421
422
423
        if not self.cross_attn:
            if not self.return_residual:
                qkv = self.Wqkv(x)
            else:
                qkv, x = self.Wqkv(x)
            if self.dwconv:
                qkv = rearrange(self.dwconv_qkv(rearrange(qkv, 'b s d -> b d s'))[..., :-2],
                                'b d s -> b s d').contiguous()
Tri Dao's avatar
Tri Dao committed
424
            qkv = rearrange(qkv, '... (three h d) -> ... three h d', three=3, d=self.head_dim)
Tri Dao's avatar
Tri Dao committed
425
426
427
428
429
430
431
            if inference_params is None:
                if self.rotary_emb_dim > 0:
                    qkv = self.rotary_emb(qkv)
                if not self.checkpointing:
                    context = self.inner_attn(qkv, **kwargs)
                else:
                    context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
432
            else:
Tri Dao's avatar
Tri Dao committed
433
434
435
436
437
438
                if self.rotary_emb_dim > 0:
                    qkv = self.rotary_emb(qkv, seqlen_offset=inference_params.sequence_len_offset)
                q = qkv[:, :, 0]
                kv = self._update_kv_cache(qkv[:, :, 1:], inference_params)
                # If we're processing the prompt, causal=None (use self.causal).
                # If we're decoding, then causal=False.
Tri Dao's avatar
Tri Dao committed
439
                causal = None if inference_params.sequence_len_offset == 0 else False
Tri Dao's avatar
Tri Dao committed
440
                context = self.inner_cross_attn(q, kv, causal=causal)
441
        else:
442
443
444
445
446
447
448
449
450
            if not self.return_residual:
                q = self.Wq(x)
                kv = self.Wkv(x_kv if x_kv is not None else x)
            else:
                if x_kv is not None:
                    kv, x_kv = self.Wkv(x_kv)
                else:
                    kv, x = self.Wkv(x)
                q = self.Wq(x)
Tri Dao's avatar
Tri Dao committed
451
452
            q = rearrange(q, '... (h d) -> ... h d', d=self.head_dim)
            kv = rearrange(kv, '... (two h d) -> ... two h d', two=2, d=self.head_dim)
453
454
455
456
457
            if self.dwconv:
                q = rearrange(self.dwconv_q(rearrange(q, 'b s d -> b d s'))[..., :-2],
                              'b d s -> b s d').contiguous()
                kv = rearrange(self.dwconv_kv(rearrange(kv, 'b s d -> b d s'))[..., :-2],
                               'b d s -> b s d').contiguous()
Tri Dao's avatar
Tri Dao committed
458
459
460
461
462
            if inference_params is None:
                if not self.checkpointing:
                    context = self.inner_attn(q, kv, **kwargs)
                else:
                    context = torch.utils.checkpoint.checkpoint(self.inner_attn, q, kv, **kwargs)
463
            else:
Tri Dao's avatar
Tri Dao committed
464
465
                kv = self._update_kv_cache(kv)
                context = self.inner_cross_attn(q, kv, causal=False)
Tri Dao's avatar
Tri Dao committed
466
        out = self.out_proj(rearrange(context, '... h d -> ... (h d)'))
467
        return out if not self.return_residual else (out, x)
Tri Dao's avatar
Tri Dao committed
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530


class ParallelMHA(nn.Module):
    """Multi-head self-attention and cross-attention
    """

    def __init__(self, embed_dim, num_heads, process_group, bias=True, dropout=0.0,
                 softmax_scale=None, causal=False, rotary_emb_dim=0, rotary_emb_scale_base=0,
                 use_flash_attn=False, checkpointing=False, device=None, dtype=None) -> None:
        factory_kwargs = {'device': device, 'dtype': dtype}
        super().__init__()
        self.process_group = process_group
        self.embed_dim = embed_dim
        self.causal = causal
        self.rotary_emb_dim = rotary_emb_dim
        self.use_flash_attn = use_flash_attn
        self.checkpointing = checkpointing

        self.num_heads = num_heads
        assert self.embed_dim % num_heads == 0, "self.kdim must be divisible by num_heads"
        self.head_dim = self.embed_dim // num_heads

        if self.rotary_emb_dim > 0:
            assert RotaryEmbedding is not None, 'rotary_emb is not installed'
            self.rotary_emb = RotaryEmbedding(self.rotary_emb_dim, scale_base=rotary_emb_scale_base,
                                              device=device)

        if ColumnParallelLinear is None or RowParallelLinear is None:
            raise ImportError('fused_dense is not installed')
        self.Wqkv = ColumnParallelLinear(embed_dim, 3 * embed_dim, process_group, bias=bias,
                                         **factory_kwargs)
        inner_attn_cls = FlashSelfAttention if use_flash_attn else SelfAttention
        self.inner_attn = inner_attn_cls(causal=causal, softmax_scale=softmax_scale,
                                         attention_dropout=dropout)
        # output projection always have the bias (for now)
        self.out_proj = RowParallelLinear(embed_dim, embed_dim, process_group, **factory_kwargs)

    def forward(self, x, seqlen=None, **kwargs):
        """
        Arguments:
            x: (batch, seqlen, hidden_dim) (where hidden_dim = num heads * head dim) if seqlen=None.
                If seqlen is not None, x is (batch * seqlen, hidden_dim). This is so that when we
                split x during sequence parallel, we split the batch * seqlen dimension
                (in case batch is small).
        """
        qkv = self.Wqkv(x)
        if seqlen is None:
            qkv = rearrange(qkv, 'b s (three h d) -> b s three h d', three=3, d=self.head_dim)
        else:
            qkv = rearrange(qkv, '(b s) (three h d) -> b s three h d', s=seqlen, three=3,
                            d=self.head_dim)
        if self.rotary_emb_dim > 0:
            qkv = self.rotary_emb(qkv)
        if not self.checkpointing:
            context = self.inner_attn(qkv, **kwargs)
        else:
            context = torch.utils.checkpoint.checkpoint(self.inner_attn, qkv, **kwargs)
        if seqlen is None:
            context = rearrange(context, 'b s h d -> b s (h d)')
        else:
            context = rearrange(context, 'b s h d -> (b s) (h d)')
        out = self.out_proj(context)
        return out