conv.cu 17.5 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "constant_tensor_descriptor.cuh"
Chao Liu's avatar
Chao Liu committed
8
#include "conv_common.cuh"
Chao Liu's avatar
rename  
Chao Liu committed
9
10
#include "device_direct_convolution_1.cuh"
#include "device_direct_convolution_2.cuh"
11
//#include "device_implicit_gemm_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
12
//#include "device_winograd_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
13

Chao Liu's avatar
Chao Liu committed
14
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
15
16
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
17
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
18
    {
Chao Liu's avatar
Chao Liu committed
19
#if 0
Chao Liu's avatar
Chao Liu committed
20
        return double(std::rand()) / double(RAND_MAX);
Chao Liu's avatar
Chao Liu committed
21
#elif 1
Chao Liu's avatar
Chao Liu committed
22
23
        return 1;
#elif 0
Chao Liu's avatar
Chao Liu committed
24
25
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
26
27
28
29
30
31
32
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
33
34
35
36
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
37
38
39
40
41
42
43
44
45
46
47
48
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

Chao Liu's avatar
Chao Liu committed
49
50
51
52
53
54
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
55
56
57
58
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
59
60
61
62
63
64
65
66
67
68
69
70
71
72
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
73
74
75
76
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
77
78
79
80
81
82
83
84
85
86
87
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
Chao Liu's avatar
Chao Liu committed
88
void host_direct_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
113
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
114
115
}

Chao Liu's avatar
Chao Liu committed
116
117
template <class T>
void host_winograd_3x3_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
118
{
Chao Liu's avatar
Chao Liu committed
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
    constexpr std::size_t OutTileSizeH = 2;
    constexpr std::size_t OutTileSizeW = 2;

    std::size_t N  = in.mDesc.GetLengths()[0];
    std::size_t C  = in.mDesc.GetLengths()[1];
    std::size_t HI = in.mDesc.GetLengths()[2];
    std::size_t WI = in.mDesc.GetLengths()[3];

    std::size_t K = wei.mDesc.GetLengths()[0];
    std::size_t S = wei.mDesc.GetLengths()[2];
    std::size_t R = wei.mDesc.GetLengths()[3];

    std::size_t HO = out.mDesc.GetLengths()[2];
    std::size_t WO = out.mDesc.GetLengths()[3];

    std::size_t InTileSizeH = OutTileSizeH + S - 1;
    std::size_t InTileSizeW = OutTileSizeW + R - 1;

    std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH;
    std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW;
Chao Liu's avatar
Chao Liu committed
139

Chao Liu's avatar
Chao Liu committed
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
    Tensor<T> in_hold({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> in_transform({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> wei_transform({K, C, InTileSizeH, InTileSizeW});
    Tensor<T> out_transform({N, K, Y, X, InTileSizeH, InTileSizeH});
    Tensor<T> out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW});

    auto f_in_hold = [&](auto n, auto c, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            std::size_t hi = OutTileSizeH * y + j;
            for(int i = 0; i < InTileSizeW; ++i)
            {
                std::size_t wi            = OutTileSizeW * x + i;
                in_hold(n, c, y, x, j, i) = in(n, c, hi, wi);
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto y, auto x) {
        in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) -
                                         in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
        wei_transform(k, c, 0, 0) = wei(k, c, 0, 0);
        wei_transform(k, c, 0, 1) =
            0.5 * wei(k, c, 0, 0) + 0.5 * wei(k, c, 0, 1) + 0.5 * wei(k, c, 0, 2);
        wei_transform(k, c, 0, 2) =
            0.5 * wei(k, c, 0, 0) - 0.5 * wei(k, c, 0, 1) + 0.5 * wei(k, c, 0, 2);
        wei_transform(k, c, 0, 3) = wei(k, c, 0, 2);

        wei_transform(k, c, 1, 0) =
            0.5 * wei(k, c, 0, 0) + 0.5 * wei(k, c, 1, 0) + 0.5 * wei(k, c, 2, 0);
        wei_transform(k, c, 1, 1) =
            0.25 * wei(k, c, 0, 0) + 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) +
            0.25 * wei(k, c, 1, 0) + 0.25 * wei(k, c, 1, 1) + 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) + 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 1, 2) =
            0.25 * wei(k, c, 0, 0) - 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) +
            0.25 * wei(k, c, 1, 0) - 0.25 * wei(k, c, 1, 1) + 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) - 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 1, 3) =
            0.5 * wei(k, c, 0, 2) + 0.5 * wei(k, c, 1, 2) + 0.5 * wei(k, c, 2, 2);

        wei_transform(k, c, 2, 0) =
            0.5 * wei(k, c, 0, 0) - 0.5 * wei(k, c, 1, 0) + 0.5 * wei(k, c, 2, 0);
        wei_transform(k, c, 2, 1) =
            0.25 * wei(k, c, 0, 0) + 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) -
            0.25 * wei(k, c, 1, 0) - 0.25 * wei(k, c, 1, 1) - 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) + 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 2, 2) =
            0.25 * wei(k, c, 0, 0) - 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) -
            0.25 * wei(k, c, 1, 0) + 0.25 * wei(k, c, 1, 1) - 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) - 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 2, 3) =
            0.5 * wei(k, c, 0, 2) - 0.5 * wei(k, c, 1, 2) + 0.5 * wei(k, c, 2, 2);

        wei_transform(k, c, 3, 0) = wei(k, c, 2, 0);
        wei_transform(k, c, 3, 1) =
            0.5 * wei(k, c, 2, 0) + 0.5 * wei(k, c, 2, 1) + 0.5 * wei(k, c, 2, 2);
        wei_transform(k, c, 3, 2) =
            0.5 * wei(k, c, 2, 0) - 0.5 * wei(k, c, 2, 1) + 0.5 * wei(k, c, 2, 2);
        wei_transform(k, c, 3, 3) = wei(k, c, 2, 2);
    };

    auto f_out_transform = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            for(int i = 0; i < InTileSizeW; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, y, x, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto y, auto x) {
        out_hold(n, k, y, x, 0, 0) =
            out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) +
            out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) +
            out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) +
            out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2);
        out_hold(n, k, y, x, 0, 1) =
            out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) -
            out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) -
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) +
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 2, 3);
        out_hold(n, k, y, x, 1, 0) =
            out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) +
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) -
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) -
            out_transform(n, k, y, x, 3, 2);
        out_hold(n, k, y, x, 1, 1) =
            out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) -
            out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) -
            out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) +
            out_transform(n, k, y, x, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < OutTileSizeH; ++j)
        {
            std::size_t ho = OutTileSizeH * y + j;
            for(int i = 0; i < OutTileSizeW; ++i)
            {
                std::size_t wo    = OutTileSizeW * x + i;
                out(n, k, ho, wo) = out_hold(n, k, y, x, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
307
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(ref.mData[i] - result.mData[i]);
        float diff = std::abs(ref.mData[i] - result.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main()
{
Chao Liu's avatar
Chao Liu committed
327
#if 0
Chao Liu's avatar
Chao Liu committed
328
329
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
330
331
    constexpr unsigned HI = 4;
    constexpr unsigned WI = 4;
Chao Liu's avatar
Chao Liu committed
332
333
334
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
335
336
337
#elif 0
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
Chao Liu's avatar
Chao Liu committed
338
339
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
340
    constexpr unsigned K = 1;
Chao Liu's avatar
Chao Liu committed
341
342
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
343
#elif 1
Chao Liu's avatar
Chao Liu committed
344
345
346
347
348
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
349
350
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
351
#elif 0
Chao Liu's avatar
Chao Liu committed
352
353
354
355
356
    constexpr unsigned N = 64;
    constexpr unsigned C = 64;
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
357
358
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
359
#elif 0
Chao Liu's avatar
Chao Liu committed
360
361
362
363
364
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 66;
    constexpr unsigned WI = 66;
    constexpr unsigned K  = 64;
Chao Liu's avatar
Chao Liu committed
365
366
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
367
#endif
Chao Liu's avatar
Chao Liu committed
368
369
370

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
Chao Liu's avatar
Chao Liu committed
371
    auto out_desc = get_convolution_output_default_4d_tensor_descriptor(in_desc, wei_desc);
Chao Liu's avatar
Chao Liu committed
372
373
374
375
376
377
378
379

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
380
    Tensor<float> out_device(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
381

Chao Liu's avatar
Chao Liu committed
382
383
384
385
#if 0
    std::size_t num_thread = std::thread::hardware_concurrency();
    in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
386
#elif 1
Chao Liu's avatar
Chao Liu committed
387
388
389
    std::size_t num_thread = std::thread::hardware_concurrency();
    in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
390
#endif
Chao Liu's avatar
Chao Liu committed
391

Chao Liu's avatar
Chao Liu committed
392
    for(int i = 0; i < 40; ++i)
Chao Liu's avatar
Chao Liu committed
393
    {
Chao Liu's avatar
Chao Liu committed
394
#if 0
Chao Liu's avatar
Chao Liu committed
395
        device_direct_convolution_1(in_desc, in, wei_desc, wei, out_desc, out_device);
Chao Liu's avatar
Chao Liu committed
396
#elif 1
Chao Liu's avatar
Chao Liu committed
397
        device_direct_convolution_2(in_desc, in, wei_desc, wei, out_desc, out_device);
398
399
#elif 0
        device_implicit_gemm_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
Chao Liu's avatar
Chao Liu committed
400
#elif 0
401
402
        device_winograd_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
#endif
Chao Liu's avatar
Chao Liu committed
403
    }
Chao Liu's avatar
Chao Liu committed
404

Chao Liu's avatar
Chao Liu committed
405
#if 1
Chao Liu's avatar
Chao Liu committed
406
    host_winograd_3x3_convolution(in, wei, out_host);
407
408
    check_error(out_host, out_device);
#elif 0
Chao Liu's avatar
Chao Liu committed
409
    host_direct_convolution(in, wei, out_host);
Chao Liu's avatar
Chao Liu committed
410
    check_error(out_host, out_device);
411
#endif
Chao Liu's avatar
Chao Liu committed
412

Chao Liu's avatar
Chao Liu committed
413
#if 0
Chao Liu's avatar
Chao Liu committed
414
415
416
417
    LogRange(std::cout << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
418
#endif
419
}