"vscode:/vscode.git/clone" did not exist on "dc93d9e56fe3be5453b61a2556bdbc18dad80373"
conv.cu 17.4 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "constant_tensor_descriptor.cuh"
Chao Liu's avatar
rename  
Chao Liu committed
8
9
#include "device_direct_convolution_1.cuh"
#include "device_direct_convolution_2.cuh"
Chao Liu's avatar
Chao Liu committed
10
#include "device_direct_convolution_3.cuh"
Chao Liu's avatar
Chao Liu committed
11
//#include "device_winograd_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
12

Chao Liu's avatar
Chao Liu committed
13
struct GeneratorTensor_1
Chao Liu's avatar
Chao Liu committed
14
15
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
16
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
17
    {
Chao Liu's avatar
Chao Liu committed
18
#if 0
Chao Liu's avatar
Chao Liu committed
19
        return double(std::rand()) / double(RAND_MAX);
Chao Liu's avatar
Chao Liu committed
20
#elif 1
Chao Liu's avatar
Chao Liu committed
21
22
        return 1;
#elif 0
Chao Liu's avatar
Chao Liu committed
23
24
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
25
26
27
28
29
30
31
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
32
33
34
35
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
36
37
38
39
40
41
42
43
44
45
46
47
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

Chao Liu's avatar
Chao Liu committed
48
49
50
51
52
53
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
54
55
56
57
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

Chao Liu's avatar
Chao Liu committed
72
73
74
75
    constexpr auto I0   = Number<0>{};
    constexpr auto I1   = Number<1>{};
    constexpr auto I2   = Number<2>{};
    constexpr auto I3   = Number<3>{};
Chao Liu's avatar
Chao Liu committed
76
77
78
79
80
81
82
83
84
85
86
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
Chao Liu's avatar
Chao Liu committed
87
void host_direct_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
112
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
113
114
}

Chao Liu's avatar
Chao Liu committed
115
116
template <class T>
void host_winograd_3x3_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
117
{
Chao Liu's avatar
Chao Liu committed
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
    constexpr std::size_t OutTileSizeH = 2;
    constexpr std::size_t OutTileSizeW = 2;

    std::size_t N  = in.mDesc.GetLengths()[0];
    std::size_t C  = in.mDesc.GetLengths()[1];
    std::size_t HI = in.mDesc.GetLengths()[2];
    std::size_t WI = in.mDesc.GetLengths()[3];

    std::size_t K = wei.mDesc.GetLengths()[0];
    std::size_t S = wei.mDesc.GetLengths()[2];
    std::size_t R = wei.mDesc.GetLengths()[3];

    std::size_t HO = out.mDesc.GetLengths()[2];
    std::size_t WO = out.mDesc.GetLengths()[3];

    std::size_t InTileSizeH = OutTileSizeH + S - 1;
    std::size_t InTileSizeW = OutTileSizeW + R - 1;

    std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH;
    std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW;
Chao Liu's avatar
Chao Liu committed
138

Chao Liu's avatar
Chao Liu committed
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
    Tensor<T> in_hold({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> in_transform({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> wei_transform({K, C, InTileSizeH, InTileSizeW});
    Tensor<T> out_transform({N, K, Y, X, InTileSizeH, InTileSizeH});
    Tensor<T> out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW});

    auto f_in_hold = [&](auto n, auto c, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            std::size_t hi = OutTileSizeH * y + j;
            for(int i = 0; i < InTileSizeW; ++i)
            {
                std::size_t wi            = OutTileSizeW * x + i;
                in_hold(n, c, y, x, j, i) = in(n, c, hi, wi);
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto y, auto x) {
        in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) -
                                         in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
        wei_transform(k, c, 0, 0) = wei(k, c, 0, 0);
        wei_transform(k, c, 0, 1) =
            0.5 * wei(k, c, 0, 0) + 0.5 * wei(k, c, 0, 1) + 0.5 * wei(k, c, 0, 2);
        wei_transform(k, c, 0, 2) =
            0.5 * wei(k, c, 0, 0) - 0.5 * wei(k, c, 0, 1) + 0.5 * wei(k, c, 0, 2);
        wei_transform(k, c, 0, 3) = wei(k, c, 0, 2);

        wei_transform(k, c, 1, 0) =
            0.5 * wei(k, c, 0, 0) + 0.5 * wei(k, c, 1, 0) + 0.5 * wei(k, c, 2, 0);
        wei_transform(k, c, 1, 1) =
            0.25 * wei(k, c, 0, 0) + 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) +
            0.25 * wei(k, c, 1, 0) + 0.25 * wei(k, c, 1, 1) + 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) + 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 1, 2) =
            0.25 * wei(k, c, 0, 0) - 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) +
            0.25 * wei(k, c, 1, 0) - 0.25 * wei(k, c, 1, 1) + 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) - 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 1, 3) =
            0.5 * wei(k, c, 0, 2) + 0.5 * wei(k, c, 1, 2) + 0.5 * wei(k, c, 2, 2);

        wei_transform(k, c, 2, 0) =
            0.5 * wei(k, c, 0, 0) - 0.5 * wei(k, c, 1, 0) + 0.5 * wei(k, c, 2, 0);
        wei_transform(k, c, 2, 1) =
            0.25 * wei(k, c, 0, 0) + 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) -
            0.25 * wei(k, c, 1, 0) - 0.25 * wei(k, c, 1, 1) - 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) + 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 2, 2) =
            0.25 * wei(k, c, 0, 0) - 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) -
            0.25 * wei(k, c, 1, 0) + 0.25 * wei(k, c, 1, 1) - 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) - 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 2, 3) =
            0.5 * wei(k, c, 0, 2) - 0.5 * wei(k, c, 1, 2) + 0.5 * wei(k, c, 2, 2);

        wei_transform(k, c, 3, 0) = wei(k, c, 2, 0);
        wei_transform(k, c, 3, 1) =
            0.5 * wei(k, c, 2, 0) + 0.5 * wei(k, c, 2, 1) + 0.5 * wei(k, c, 2, 2);
        wei_transform(k, c, 3, 2) =
            0.5 * wei(k, c, 2, 0) - 0.5 * wei(k, c, 2, 1) + 0.5 * wei(k, c, 2, 2);
        wei_transform(k, c, 3, 3) = wei(k, c, 2, 2);
    };

    auto f_out_transform = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            for(int i = 0; i < InTileSizeW; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, y, x, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto y, auto x) {
        out_hold(n, k, y, x, 0, 0) =
            out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) +
            out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) +
            out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) +
            out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2);
        out_hold(n, k, y, x, 0, 1) =
            out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) -
            out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) -
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) +
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 2, 3);
        out_hold(n, k, y, x, 1, 0) =
            out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) +
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) -
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) -
            out_transform(n, k, y, x, 3, 2);
        out_hold(n, k, y, x, 1, 1) =
            out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) -
            out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) -
            out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) +
            out_transform(n, k, y, x, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < OutTileSizeH; ++j)
        {
            std::size_t ho = OutTileSizeH * y + j;
            for(int i = 0; i < OutTileSizeW; ++i)
            {
                std::size_t wo    = OutTileSizeW * x + i;
                out(n, k, ho, wo) = out_hold(n, k, y, x, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
Chao Liu's avatar
Chao Liu committed
306
    float max_diff  = -1;
Chao Liu's avatar
Chao Liu committed
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(ref.mData[i] - result.mData[i]);
        float diff = std::abs(ref.mData[i] - result.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main()
{
Chao Liu's avatar
Chao Liu committed
326
#if 0
Chao Liu's avatar
Chao Liu committed
327
328
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
329
330
    constexpr unsigned HI = 4;
    constexpr unsigned WI = 4;
Chao Liu's avatar
Chao Liu committed
331
332
333
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
334
335
336
#elif 0
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
Chao Liu's avatar
Chao Liu committed
337
338
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
339
    constexpr unsigned K = 1;
Chao Liu's avatar
Chao Liu committed
340
341
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
342
#elif 1
Chao Liu's avatar
Chao Liu committed
343
344
345
346
347
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
348
349
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
350
#elif 0
Chao Liu's avatar
Chao Liu committed
351
352
353
354
355
    constexpr unsigned N = 64;
    constexpr unsigned C = 64;
    constexpr unsigned HI = 56;
    constexpr unsigned WI = 56;
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
356
357
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
358
#elif 0
Chao Liu's avatar
Chao Liu committed
359
360
361
362
363
    constexpr unsigned N  = 64;
    constexpr unsigned C  = 64;
    constexpr unsigned HI = 66;
    constexpr unsigned WI = 66;
    constexpr unsigned K  = 64;
Chao Liu's avatar
Chao Liu committed
364
365
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
366
#endif
Chao Liu's avatar
Chao Liu committed
367
368
369
370
371
372
373
374
375
376
377
378

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_desc = get_output_4d_tensor_descriptor(in_desc, wei_desc);

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
379
    Tensor<float> out_device(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
380

Chao Liu's avatar
Chao Liu committed
381
382
383
384
#if 0
    std::size_t num_thread = std::thread::hardware_concurrency();
    in.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor_1{}, num_thread);
Chao Liu's avatar
Chao Liu committed
385
#elif 1
Chao Liu's avatar
Chao Liu committed
386
387
388
    std::size_t num_thread = std::thread::hardware_concurrency();
    in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
389
#endif
Chao Liu's avatar
Chao Liu committed
390

Chao Liu's avatar
Chao Liu committed
391
    for(int i = 0; i < 40; ++i)
Chao Liu's avatar
Chao Liu committed
392
    {
393
#if 1
Chao Liu's avatar
Chao Liu committed
394
        device_direct_convolution_1(in_desc, in, wei_desc, wei, out_desc, out_device);
Chao Liu's avatar
Chao Liu committed
395
396
397
398
399
#elif 0
        device_direct_convolution_2(in_desc, in, wei_desc, wei, out_desc, out_device);
#elif 0
        device_direct_convolution_3(in_desc, in, wei_desc, wei, out_desc, out_device);
#elif 0
400
401
        device_winograd_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
#endif
Chao Liu's avatar
Chao Liu committed
402
    }
Chao Liu's avatar
Chao Liu committed
403

Chao Liu's avatar
Chao Liu committed
404
#if 1
Chao Liu's avatar
Chao Liu committed
405
    host_winograd_3x3_convolution(in, wei, out_host);
406
407
    check_error(out_host, out_device);
#elif 0
Chao Liu's avatar
Chao Liu committed
408
    host_direct_convolution(in, wei, out_host);
Chao Liu's avatar
Chao Liu committed
409
    check_error(out_host, out_device);
410
#endif
Chao Liu's avatar
Chao Liu committed
411

Chao Liu's avatar
Chao Liu committed
412
#if 0
Chao Liu's avatar
Chao Liu committed
413
414
415
416
    LogRange(std::cout << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
417
#endif
418
}