conv.cu 17.3 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#include <iostream>
Chao Liu's avatar
Chao Liu committed
2
3
#include <numeric>
#include <initializer_list>
Chao Liu's avatar
Chao Liu committed
4
#include <cstdlib>
Chao Liu's avatar
Chao Liu committed
5
6
#include "nvToolsExt.h"
#include "tensor.hpp"
Chao Liu's avatar
Chao Liu committed
7
#include "constant_tensor_descriptor.cuh"
Chao Liu's avatar
rename  
Chao Liu committed
8
9
#include "device_direct_convolution_1.cuh"
#include "device_direct_convolution_2.cuh"
10
#include "device_winograd_convolution.cuh"
Chao Liu's avatar
Chao Liu committed
11

Chao Liu's avatar
Chao Liu committed
12
struct GeneratorConstant
Chao Liu's avatar
Chao Liu committed
13
{
Chao Liu's avatar
Chao Liu committed
14
    double value = 0;
Chao Liu's avatar
Chao Liu committed
15
16

    template <class... Is>
Chao Liu's avatar
Chao Liu committed
17
    double operator()(Is...)
Chao Liu's avatar
Chao Liu committed
18
19
    {
        return value;
Chao Liu's avatar
Chao Liu committed
20
21
22
23
24
25
    }
};

struct GeneratorTensor
{
    template <class... Is>
Chao Liu's avatar
Chao Liu committed
26
    double operator()(Is... is)
Chao Liu's avatar
Chao Liu committed
27
    {
Chao Liu's avatar
Chao Liu committed
28
#if 1
Chao Liu's avatar
Chao Liu committed
29
30
        return double(std::rand()) / double(RAND_MAX);
#elif 0
Chao Liu's avatar
Chao Liu committed
31
32
        return 1;
#elif 0
Chao Liu's avatar
Chao Liu committed
33
34
        std::initializer_list<std::size_t> ls = {static_cast<std::size_t>(is)...};
        return std::accumulate(ls.begin(), ls.end(), std::size_t(0));
Chao Liu's avatar
Chao Liu committed
35
36
37
38
39
40
41
#else
        assert(sizeof...(Is) > 0);
        std::initializer_list<std::size_t> ids = {static_cast<std::size_t>(is)...};
        std::vector<std::size_t> lens(sizeof...(Is), 100);
        std::vector<std::size_t> strides(sizeof...(Is), 1);
        std::partial_sum(lens.rbegin(), lens.rbegin() + (sizeof...(Is) - 1), strides.rbegin() + 1);
        return std::inner_product(ids.begin(), ids.end(), strides.begin(), std::size_t(0)) + 1;
Chao Liu's avatar
Chao Liu committed
42
43
44
45
#endif
    }
};

Chao Liu's avatar
Chao Liu committed
46
47
48
49
50
51
52
53
54
55
56
57
struct GeneratorTensor_2
{
    int min_value = 0;
    int max_value = 1;

    template <class... Is>
    double operator()(Is...)
    {
        return (std::rand() % (max_value - min_value)) + min_value;
    }
};

Chao Liu's avatar
Chao Liu committed
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
// this is ugly, only for 4d
template <class TConstTensorDesc>
void ostream_ConstantTensorDescriptor(TConstTensorDesc, std::ostream& os = std::cout)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    os << "Lengths: {" << desc.GetLength(I0) << ", " << desc.GetLength(I1) << ", "
       << desc.GetLength(I2) << ", " << desc.GetLength(I3) << "}, "
       << "Strides: {" << desc.GetStride(I0) << ", " << desc.GetStride(I1) << ", "
       << desc.GetStride(I2) << ", " << desc.GetStride(I3) << "}" << std::endl;
}

// this is ugly, only for 4d
template <class TConstTensorDesc>
auto make_TensorDescriptor(TConstTensorDesc)
{
    static_assert(TConstTensorDesc::nDim == 4, "nDim is not 4");

    constexpr auto I0   = Index<0>{};
    constexpr auto I1   = Index<1>{};
    constexpr auto I2   = Index<2>{};
    constexpr auto I3   = Index<3>{};
    constexpr auto desc = TConstTensorDesc{};

    std::initializer_list<unsigned> lengths = {
        desc.GetLength(I0), desc.GetLength(I1), desc.GetLength(I2), desc.GetLength(I3)};
    std::initializer_list<unsigned> strides = {
        desc.GetStride(I0), desc.GetStride(I1), desc.GetStride(I2), desc.GetStride(I3)};

    return TensorDescriptor(lengths, strides);
}

template <class T>
Chao Liu's avatar
Chao Liu committed
97
void host_direct_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
{
    auto f = [&](auto n, auto k, auto ho, auto wo) {
        double v = 0;
        for(int c = 0; c < wei.mDesc.GetLengths()[1]; ++c)
        {
            for(int y = 0; y < wei.mDesc.GetLengths()[2]; ++y)
            {
                int hi = ho + y;
                for(int x = 0; x < wei.mDesc.GetLengths()[3]; ++x)
                {
                    int wi = wo + x;
                    v += in(n, c, hi, wi) * wei(k, c, y, x);
                }
            }
        }
        out(n, k, ho, wo) = v;
    };

    auto f_par = make_ParallelTensorFunctor(f,
                                            out.mDesc.GetLengths()[0],
                                            out.mDesc.GetLengths()[1],
                                            out.mDesc.GetLengths()[2],
                                            out.mDesc.GetLengths()[3]);

Chao Liu's avatar
Chao Liu committed
122
    f_par(std::thread::hardware_concurrency());
Chao Liu's avatar
Chao Liu committed
123
124
}

Chao Liu's avatar
Chao Liu committed
125
126
template <class T>
void host_winograd_3x3_convolution(const Tensor<T>& in, const Tensor<T>& wei, Tensor<T>& out)
Chao Liu's avatar
Chao Liu committed
127
{
Chao Liu's avatar
Chao Liu committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
    constexpr std::size_t OutTileSizeH = 2;
    constexpr std::size_t OutTileSizeW = 2;

    std::size_t N  = in.mDesc.GetLengths()[0];
    std::size_t C  = in.mDesc.GetLengths()[1];
    std::size_t HI = in.mDesc.GetLengths()[2];
    std::size_t WI = in.mDesc.GetLengths()[3];

    std::size_t K = wei.mDesc.GetLengths()[0];
    std::size_t S = wei.mDesc.GetLengths()[2];
    std::size_t R = wei.mDesc.GetLengths()[3];

    std::size_t HO = out.mDesc.GetLengths()[2];
    std::size_t WO = out.mDesc.GetLengths()[3];

    std::size_t InTileSizeH = OutTileSizeH + S - 1;
    std::size_t InTileSizeW = OutTileSizeW + R - 1;

    std::size_t Y = (HO + OutTileSizeH - 1) / OutTileSizeH;
    std::size_t X = (WO + OutTileSizeW - 1) / OutTileSizeW;
Chao Liu's avatar
Chao Liu committed
148

Chao Liu's avatar
Chao Liu committed
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
    Tensor<T> in_hold({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> in_transform({N, C, Y, X, InTileSizeH, InTileSizeW});
    Tensor<T> wei_transform({K, C, InTileSizeH, InTileSizeW});
    Tensor<T> out_transform({N, K, Y, X, InTileSizeH, InTileSizeH});
    Tensor<T> out_hold({N, K, Y, X, OutTileSizeH, OutTileSizeW});

    auto f_in_hold = [&](auto n, auto c, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            std::size_t hi = OutTileSizeH * y + j;
            for(int i = 0; i < InTileSizeW; ++i)
            {
                std::size_t wi            = OutTileSizeW * x + i;
                in_hold(n, c, y, x, j, i) = in(n, c, hi, wi);
            }
        }
    };

    auto f_in_transform = [&](auto n, auto c, auto y, auto x) {
        in_transform(n, c, y, x, 0, 0) = in_hold(n, c, y, x, 0, 0) - in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 0) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 1) = in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) -
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 2) = -in_hold(n, c, y, x, 0, 1) + in_hold(n, c, y, x, 0, 2) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 0, 3) = in_hold(n, c, y, x, 0, 1) - in_hold(n, c, y, x, 0, 3) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 1, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 1, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 2, 0) = -in_hold(n, c, y, x, 1, 0) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 0) - in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 1) = -in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 2) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 2, 1) + in_hold(n, c, y, x, 2, 2);
        in_transform(n, c, y, x, 2, 3) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 3) +
                                         in_hold(n, c, y, x, 2, 1) - in_hold(n, c, y, x, 2, 3);

        in_transform(n, c, y, x, 3, 0) = in_hold(n, c, y, x, 1, 0) - in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 0) + in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 1) = in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) -
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 2) = -in_hold(n, c, y, x, 1, 1) + in_hold(n, c, y, x, 1, 2) +
                                         in_hold(n, c, y, x, 3, 1) - in_hold(n, c, y, x, 3, 2);
        in_transform(n, c, y, x, 3, 3) = in_hold(n, c, y, x, 1, 1) - in_hold(n, c, y, x, 1, 3) -
                                         in_hold(n, c, y, x, 3, 1) + in_hold(n, c, y, x, 3, 3);
    };

    auto f_wei_transform = [&](auto k, auto c) {
        wei_transform(k, c, 0, 0) = wei(k, c, 0, 0);
        wei_transform(k, c, 0, 1) =
            0.5 * wei(k, c, 0, 0) + 0.5 * wei(k, c, 0, 1) + 0.5 * wei(k, c, 0, 2);
        wei_transform(k, c, 0, 2) =
            0.5 * wei(k, c, 0, 0) - 0.5 * wei(k, c, 0, 1) + 0.5 * wei(k, c, 0, 2);
        wei_transform(k, c, 0, 3) = wei(k, c, 0, 2);

        wei_transform(k, c, 1, 0) =
            0.5 * wei(k, c, 0, 0) + 0.5 * wei(k, c, 1, 0) + 0.5 * wei(k, c, 2, 0);
        wei_transform(k, c, 1, 1) =
            0.25 * wei(k, c, 0, 0) + 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) +
            0.25 * wei(k, c, 1, 0) + 0.25 * wei(k, c, 1, 1) + 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) + 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 1, 2) =
            0.25 * wei(k, c, 0, 0) - 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) +
            0.25 * wei(k, c, 1, 0) - 0.25 * wei(k, c, 1, 1) + 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) - 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 1, 3) =
            0.5 * wei(k, c, 0, 2) + 0.5 * wei(k, c, 1, 2) + 0.5 * wei(k, c, 2, 2);

        wei_transform(k, c, 2, 0) =
            0.5 * wei(k, c, 0, 0) - 0.5 * wei(k, c, 1, 0) + 0.5 * wei(k, c, 2, 0);
        wei_transform(k, c, 2, 1) =
            0.25 * wei(k, c, 0, 0) + 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) -
            0.25 * wei(k, c, 1, 0) - 0.25 * wei(k, c, 1, 1) - 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) + 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 2, 2) =
            0.25 * wei(k, c, 0, 0) - 0.25 * wei(k, c, 0, 1) + 0.25 * wei(k, c, 0, 2) -
            0.25 * wei(k, c, 1, 0) + 0.25 * wei(k, c, 1, 1) - 0.25 * wei(k, c, 1, 2) +
            0.25 * wei(k, c, 2, 0) - 0.25 * wei(k, c, 2, 1) + 0.25 * wei(k, c, 2, 2);
        wei_transform(k, c, 2, 3) =
            0.5 * wei(k, c, 0, 2) - 0.5 * wei(k, c, 1, 2) + 0.5 * wei(k, c, 2, 2);

        wei_transform(k, c, 3, 0) = wei(k, c, 2, 0);
        wei_transform(k, c, 3, 1) =
            0.5 * wei(k, c, 2, 0) + 0.5 * wei(k, c, 2, 1) + 0.5 * wei(k, c, 2, 2);
        wei_transform(k, c, 3, 2) =
            0.5 * wei(k, c, 2, 0) - 0.5 * wei(k, c, 2, 1) + 0.5 * wei(k, c, 2, 2);
        wei_transform(k, c, 3, 3) = wei(k, c, 2, 2);
    };

    auto f_out_transform = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < InTileSizeH; ++j)
        {
            for(int i = 0; i < InTileSizeW; ++i)
            {
                double v = 0;
                for(int c = 0; c < C; ++c)
                {
                    v += in_transform(n, c, y, x, j, i) * wei_transform(k, c, j, i);
                }

                out_transform(n, k, y, x, j, i) = v;
            }
        }
    };

    auto f_out_hold = [&](auto n, auto k, auto y, auto x) {
        out_hold(n, k, y, x, 0, 0) =
            out_transform(n, k, y, x, 0, 0) + out_transform(n, k, y, x, 0, 1) +
            out_transform(n, k, y, x, 0, 2) + out_transform(n, k, y, x, 1, 0) +
            out_transform(n, k, y, x, 1, 1) + out_transform(n, k, y, x, 1, 2) +
            out_transform(n, k, y, x, 2, 0) + out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2);
        out_hold(n, k, y, x, 0, 1) =
            out_transform(n, k, y, x, 0, 1) - out_transform(n, k, y, x, 0, 2) -
            out_transform(n, k, y, x, 0, 3) + out_transform(n, k, y, x, 1, 1) -
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 1, 3) +
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 2, 3);
        out_hold(n, k, y, x, 1, 0) =
            out_transform(n, k, y, x, 1, 0) + out_transform(n, k, y, x, 1, 1) +
            out_transform(n, k, y, x, 1, 2) - out_transform(n, k, y, x, 2, 0) -
            out_transform(n, k, y, x, 2, 1) - out_transform(n, k, y, x, 2, 2) -
            out_transform(n, k, y, x, 3, 0) - out_transform(n, k, y, x, 3, 1) -
            out_transform(n, k, y, x, 3, 2);
        out_hold(n, k, y, x, 1, 1) =
            out_transform(n, k, y, x, 1, 1) - out_transform(n, k, y, x, 1, 2) -
            out_transform(n, k, y, x, 1, 3) - out_transform(n, k, y, x, 2, 1) +
            out_transform(n, k, y, x, 2, 2) + out_transform(n, k, y, x, 2, 3) -
            out_transform(n, k, y, x, 3, 1) + out_transform(n, k, y, x, 3, 2) +
            out_transform(n, k, y, x, 3, 3);
    };

    auto f_out = [&](auto n, auto k, auto y, auto x) {
        for(int j = 0; j < OutTileSizeH; ++j)
        {
            std::size_t ho = OutTileSizeH * y + j;
            for(int i = 0; i < OutTileSizeW; ++i)
            {
                std::size_t wo    = OutTileSizeW * x + i;
                out(n, k, ho, wo) = out_hold(n, k, y, x, j, i);
            }
        }
    };

    std::size_t num_thread = std::thread::hardware_concurrency();

    make_ParallelTensorFunctor(f_in_hold, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_in_transform, N, C, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_wei_transform, K, C)(num_thread);
    make_ParallelTensorFunctor(f_out_transform, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out_hold, N, K, Y, X)(num_thread);
    make_ParallelTensorFunctor(f_out, N, K, Y, X)(num_thread);
}

template <class T>
void check_error(const Tensor<T>& ref, const Tensor<T>& result)
{
    float error     = 0;
    float max_diff  = 0;
    float ref_value = 0, result_value = 0;
    for(int i = 0; i < ref.mData.size(); ++i)
    {
        error += std::abs(ref.mData[i] - result.mData[i]);
        float diff = std::abs(ref.mData[i] - result.mData[i]);
        if(max_diff < diff)
        {
            max_diff     = diff;
            ref_value    = ref.mData[i];
            result_value = result.mData[i];
        }
    }

    std::cout << "error: " << error << std::endl;
    std::cout << "max_diff: " << max_diff << ", " << ref_value << ", " << result_value << std::endl;
}

int main()
{
Chao Liu's avatar
Chao Liu committed
336
#if 0
Chao Liu's avatar
Chao Liu committed
337
338
    constexpr unsigned N  = 1;
    constexpr unsigned C  = 1;
Chao Liu's avatar
Chao Liu committed
339
340
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
341
342
343
    constexpr unsigned K  = 1;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
344
#elif 1
Chao Liu's avatar
Chao Liu committed
345
346
347
348
    constexpr unsigned N = 64;
    constexpr unsigned C = 256;
    constexpr unsigned HI = 34;
    constexpr unsigned WI = 34;
Chao Liu's avatar
Chao Liu committed
349
    constexpr unsigned K = 64;
Chao Liu's avatar
Chao Liu committed
350
351
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
352
353
354
355
356
357
358
359
#elif 0
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
    constexpr unsigned HI = 18;
    constexpr unsigned WI = 18;
    constexpr unsigned K = 1;
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
360
#elif 0
Chao Liu's avatar
Chao Liu committed
361
362
363
364
365
    constexpr unsigned N = 1;
    constexpr unsigned C = 1;
    constexpr unsigned HI = 4;
    constexpr unsigned WI = 4;
    constexpr unsigned K = 1;
Chao Liu's avatar
Chao Liu committed
366
367
    constexpr unsigned S = 3;
    constexpr unsigned R = 3;
Chao Liu's avatar
Chao Liu committed
368
369
370
371
372
373
374
375
#elif 0
    constexpr unsigned N  = 2;
    constexpr unsigned C  = 3;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K  = 5;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
376
377
378
379
380
381
382
383
#elif 0
    constexpr unsigned N  = 3;
    constexpr unsigned C  = 16;
    constexpr unsigned HI = 130;
    constexpr unsigned WI = 130;
    constexpr unsigned K  = 4;
    constexpr unsigned S  = 3;
    constexpr unsigned R  = 3;
Chao Liu's avatar
Chao Liu committed
384
#endif
Chao Liu's avatar
Chao Liu committed
385
386
387
388
389
390
391
392
393
394
395
396

    auto in_desc  = make_ConstantTensorDescriptor(Sequence<N, C, HI, WI>{});
    auto wei_desc = make_ConstantTensorDescriptor(Sequence<K, C, S, R>{});
    auto out_desc = get_output_4d_tensor_descriptor(in_desc, wei_desc);

    ostream_ConstantTensorDescriptor(in_desc, std::cout << "in_desc: ");
    ostream_ConstantTensorDescriptor(wei_desc, std::cout << "wei_desc: ");
    ostream_ConstantTensorDescriptor(out_desc, std::cout << "out_desc: ");

    Tensor<float> in(make_TensorDescriptor(in_desc));
    Tensor<float> wei(make_TensorDescriptor(wei_desc));
    Tensor<float> out_host(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
397
    Tensor<float> out_device(make_TensorDescriptor(out_desc));
Chao Liu's avatar
Chao Liu committed
398

399
#if 0
Chao Liu's avatar
Chao Liu committed
400
401
402
    std::size_t num_thread = std::thread::hardware_concurrency();
    in.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
    wei.GenerateTensorValue(GeneratorTensor_2{-5, 5}, num_thread);
Chao Liu's avatar
Chao Liu committed
403
#endif
Chao Liu's avatar
Chao Liu committed
404

Chao Liu's avatar
Chao Liu committed
405
406
    for(int i = 0; i < 20; ++i)
    {
407
408
409
410
411
#if 1
        device_direct_convolution_2(in_desc, in, wei_desc, wei, out_desc, out_device);
#else
        device_winograd_convolution(in_desc, in, wei_desc, wei, out_desc, out_device);
#endif
Chao Liu's avatar
Chao Liu committed
412
    }
Chao Liu's avatar
Chao Liu committed
413

Chao Liu's avatar
Chao Liu committed
414
#if 0
Chao Liu's avatar
Chao Liu committed
415
    host_direct_convolution(in, wei, out_host);
416
417
    check_error(out_host, out_device);
#elif 0
Chao Liu's avatar
Chao Liu committed
418
419
    host_winograd_3x3_convolution(in, wei, out_host);
    check_error(out_host, out_device);
420
#endif
Chao Liu's avatar
Chao Liu committed
421

Chao Liu's avatar
Chao Liu committed
422
#if 0
Chao Liu's avatar
Chao Liu committed
423
424
425
426
    LogRange(std::cout << "in : ", in.mData, ",") << std::endl;
    LogRange(std::cout << "wei: ", wei.mData, ",") << std::endl;
    LogRange(std::cout << "out_host  : ", out_host.mData, ",") << std::endl;
    LogRange(std::cout << "out_device: ", out_device.mData, ",") << std::endl;
Chao Liu's avatar
Chao Liu committed
427
#endif
428
}