"profiler/src/profile_grouped_gemm.cpp" did not exist on "9a8ee8a39a0aa6059c55faba05f6abb904fff6dd"
tensor.hpp 7.17 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
4
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
5
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
6
#include <utility>
Chao Liu's avatar
Chao Liu committed
7
8
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
9

Chao Liu's avatar
Chao Liu committed
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
template <class Range>
std::ostream& LogRange(std::ostream& os, Range&& r, std::string delim)
{
    bool first = true;
    for(auto&& x : r)
    {
        if(first)
            first = false;
        else
            os << delim;
        os << x;
    }
    return os;
}

25
26
typedef enum
{
Chao Liu's avatar
Chao Liu committed
27
28
29
30
31
32
33
34
35
36
37
38
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
67
68
69
struct TensorDescriptor
{
    TensorDescriptor() = delete;
Chao Liu's avatar
Chao Liu committed
70
71
    TensorDescriptor(std::initializer_list<std::size_t> lens);
    TensorDescriptor(std::initializer_list<std::size_t> lens,
Chao Liu's avatar
Chao Liu committed
72
                     std::initializer_list<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
73
    TensorDescriptor(std::vector<std::size_t> lens, std::vector<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
74
75
76
77

    void CalculateStrides();

    template <class Range>
Chao Liu's avatar
Chao Liu committed
78
    TensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
Chao Liu's avatar
Chao Liu committed
79
80
81
82
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
83
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
84
85
    TensorDescriptor(const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
Chao Liu's avatar
Chao Liu committed
86
87
    {
    }
Chao Liu's avatar
Chao Liu committed
88
89
90
91
92

    std::size_t GetDimension() const;
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
93
94
95
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
96
97
    template <class... Is>
    std::size_t Get1dIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
98
    {
Chao Liu's avatar
Chao Liu committed
99
100
101
        assert(sizeof...(Is) == this->GetDimension());
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
102
103
104
105
106
107
108
    }

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;
};

Chao Liu's avatar
Chao Liu committed
109
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
110
{
Chao Liu's avatar
Chao Liu committed
111
112
113
114
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
115

Chao Liu's avatar
Chao Liu committed
116
117
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
118

Chao Liu's avatar
Chao Liu committed
119
120
121
122
123
124
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
125
126
127
128
129

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
130
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
131
132
133
134
135
136
137
138
139
140
141
142
143
144
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
145
146
147
148
149
150
151
152
153
154
155
156
157
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
158
    void operator()(std::size_t num_thread) const
Chao Liu's avatar
Chao Liu committed
159
160
161
162
163
164
165
166
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
167
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
168
169
170

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
171
172
173
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
174
175
176
177
178
179
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
180
181
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
182
{
Chao Liu's avatar
Chao Liu committed
183
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
184
185
}

Chao Liu's avatar
Chao Liu committed
186
187
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
188
{
Chao Liu's avatar
Chao Liu committed
189
    template <class X>
Chao Liu's avatar
Chao Liu committed
190
    Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
191
192
    {
    }
Chao Liu's avatar
Chao Liu committed
193

Chao Liu's avatar
Chao Liu committed
194
    template <class X>
Chao Liu's avatar
Chao Liu committed
195
    Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
196
197
    {
    }
Chao Liu's avatar
Chao Liu committed
198

Chao Liu's avatar
Chao Liu committed
199
200
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
Chao Liu's avatar
Chao Liu committed
201
        : mDesc(lens, strides), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
202
203
    {
    }
Chao Liu's avatar
Chao Liu committed
204

Chao Liu's avatar
Chao Liu committed
205
206
    Tensor(const TensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}

Chao Liu's avatar
Chao Liu committed
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
        switch(mDesc.GetDimension())
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};