tensor.hpp 7.79 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
4
5
6
#include <utility>
#include "cuda_runtime.h"
#include "helper_cuda.h"
Chao Liu's avatar
Chao Liu committed
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39

typedef enum
{
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

struct TensorDescriptor
{
    TensorDescriptor() = delete;
    TensorDescriptor(DataType_t t, std::initializer_list<std::size_t> lens);
    TensorDescriptor(DataType_t t,
                     std::initializer_list<std::size_t> lens,
                     std::initializer_list<std::size_t> strides);
    TensorDescriptor(DataType_t t, std::vector<std::size_t> lens, std::vector<std::size_t> strides);

    void CalculateStrides();

    template <class Range>
    TensorDescriptor(DataType_t t, const Range& lens)
        : mLens(lens.begin(), lens.end()), mDataType(t)
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
40
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
41
42
    TensorDescriptor(DataType_t t, const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end()), mDataType(t)
Chao Liu's avatar
Chao Liu committed
43
44
    {
    }
Chao Liu's avatar
Chao Liu committed
45
46
47
48
49

    std::size_t GetDimension() const;
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
50
51
52
53
54
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

    template <class... Xs>
    std::size_t Get1dIndex(Xs... xs) const
Chao Liu's avatar
Chao Liu committed
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
    {
        assert(sizeof...(Xs) == this->GetDimension());
        std::initializer_list<std::size_t> is{xs...};
        return std::inner_product(is.begin(), is.end(), mStrides.begin(), std::size_t{0});
    }

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;

    DataType_t mDataType;
};

template <class T>
struct Tensor
{
    template <class X>
    Tensor(std::initializer_list<X> lens)
        : mDesc(DataType<T>{}, lens), mData(mDesc.GetElementSpace())
    {
    }

    template <class X>
    Tensor(std::vector<X> lens) : mDesc(DataType<T>{}, lens), mData(mDesc.GetElementSpace())
    {
    }

    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
        : mDesc(DataType<T>{}, lens, strides), mData(mDesc.GetElementSpace())
    {
    }

    template <class G>
    void GenerateTensorValue(G g)
    {
Chao Liu's avatar
Chao Liu committed
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
        // ParallelTensorFunctor([&](Xs... xs) { mData(mDesc.Get1dIndex(xs...)) = g(xs...); },
        // mDesc.mLens)();
        switch(mDesc.GetDimension())
        {
        case 1:
        {
            ParallelTensorFunctor([&](auto i) { mData(mDesc.Get1dIndex(i)) = g(i); },
                                  mDesc.GetLengths()[0])();
            break;
        }
        case 2:
        {
            ParallelTensorFunctor(
                [&](auto i0, auto i1) { mData(mDesc.Get1dIndex(i0, i1)) = g(i0, i1); },
                mDesc.GetLengths()[0],
                mDesc.GetLengths()[1])();
            break;
        }
        case 3:
        {
            ParallelTensorFunctor(
                [&](auto i0, auto i1, auto i2) {
                    mData(mDesc.Get1dIndex(i0, i1, i2)) = g(i0, i1, i2);
                },
                mDesc.GetLengths()[0],
                mDesc.GetLengths()[1],
                mDesc.GetLengths()[2])();
            break;
        }
        case 4:
        {
            ParallelTensorFunctor(
                [&](auto i0, auto i1, auto i2, auto i3) {
                    mData(mDesc.Get1dIndex(i0, i1, i2, i3)) = g(i0, i1, i2, i3);
                },
                mDesc.GetLengths()[0],
                mDesc.GetLengths()[1],
                mDesc.GetLengths()[3],
                mDesc.GetLengths()[4])();
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
Chao Liu's avatar
Chao Liu committed
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
    }

    T& operator[](std::size_t i) { return mData.at(i); }

    const T& operator[](std::size_t i) const { return mData.at(i); }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};

struct GpuMem
{
    GpuMem() = delete;
Chao Liu's avatar
Chao Liu committed
155
    GpuMem(std::size_t size, std::size_t data_size) : mSize(size), mDataSize(data_size)
Chao Liu's avatar
Chao Liu committed
156
    {
Chao Liu's avatar
Chao Liu committed
157
        cudaMalloc(static_cast<void**>(&mGpuBuf), mDataSize * mSize);
Chao Liu's avatar
Chao Liu committed
158
159
160
161
    }

    int ToGpu(void* p)
    {
Chao Liu's avatar
Chao Liu committed
162
        return static_cast<int>(cudaMemcpy(mGpuBuf, p, mDataSize * mSize, cudaMemcpyHostToDevice));
Chao Liu's avatar
Chao Liu committed
163
164
    }

Chao Liu's avatar
Chao Liu committed
165
166
167
168
    int FromGpu(void* p)
    {
        return static_cast<int>(cudaMemcpy(p, mGpuBuf, mDataSize * mSize, cudaMemcpyDeviceToHost));
    }
Chao Liu's avatar
Chao Liu committed
169
170
171
172

    ~GpuMem() { cudaFree(mGpuBuf); }

    void* mGpuBuf;
Chao Liu's avatar
Chao Liu committed
173
174
    std::size_t mSize;
    std::size_t mDataSize;
Chao Liu's avatar
Chao Liu committed
175
176
};

Chao Liu's avatar
Chao Liu committed
177
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
178
{
Chao Liu's avatar
Chao Liu committed
179
180
181
182
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
183

Chao Liu's avatar
Chao Liu committed
184
185
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
186

Chao Liu's avatar
Chao Liu committed
187
188
189
190
191
192
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
193
194
195
196
197
198
199
200
201
202
203

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    enum ParallelMethod_t
    {
        Serial   = 0,
        Parallel = 1,
    };

    F mF;
Chao Liu's avatar
Chao Liu committed
204
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
219
220
221
222
223
224
225
226
227
228
229
230
231
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
232
233
234
235
    void operator()(std::integral_constant<ParallelMethod_t, ParallelMethod_t::Serial>)
    {
        for(std::size_t i = 0; i < mN1d; ++i)
        {
Chao Liu's avatar
Chao Liu committed
236
            call_f_unpack_args(mF, GetNdIndices(i));
Chao Liu's avatar
Chao Liu committed
237
238
239
240
        }
    }

    void operator()(std::integral_constant<ParallelMethod_t, ParallelMethod_t::Parallel>,
Chao Liu's avatar
Chao Liu committed
241
                    std::size_t num_thread)
Chao Liu's avatar
Chao Liu committed
242
243
244
245
246
247
248
249
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
250
            std::size_t iw_end   = std::min(((it + 1) * work_per_thread, mN1d));
Chao Liu's avatar
Chao Liu committed
251
252
253

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
254
255
256
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
257
258
259
260
261
262
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
263
264
template <class F, class T>
auto call_f_unpack_args(F f, T args)
Chao Liu's avatar
Chao Liu committed
265
{
Chao Liu's avatar
Chao Liu committed
266
    static constexpr std::size_t N = std::tuple_size<T>::value;
Chao Liu's avatar
Chao Liu committed
267

Chao Liu's avatar
Chao Liu committed
268
    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
Chao Liu's avatar
Chao Liu committed
269
270
}

Chao Liu's avatar
Chao Liu committed
271
272
template <class F, class T, class... Is>
auto call_f_unpack_args_impl(F f, T args, std::integer_sequence<Is...>)
Chao Liu's avatar
Chao Liu committed
273
{
Chao Liu's avatar
Chao Liu committed
274
    return f(std::get<Is>(args)...);
Chao Liu's avatar
Chao Liu committed
275
276
277
}

template <class F, class T, class... Is>
Chao Liu's avatar
Chao Liu committed
278
auto construct_f_unpack_args_impl(T args, std::integer_sequence<Is...>)
Chao Liu's avatar
Chao Liu committed
279
{
Chao Liu's avatar
Chao Liu committed
280
281
282
283
284
285
286
287
288
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
    static constexpr std::size_t N = std::tuple_size<T>::value;

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
Chao Liu's avatar
Chao Liu committed
289
}