tensor.hpp 7.91 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
2
3
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
4
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
5
#include <utility>
Chao Liu's avatar
Chao Liu committed
6
7
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
8
9
#include "cuda_runtime.h"
#include "helper_cuda.h"
Chao Liu's avatar
Chao Liu committed
10

Chao Liu's avatar
Chao Liu committed
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
template <class Range>
std::ostream& LogRange(std::ostream& os, Range&& r, std::string delim)
{
    bool first = true;
    for(auto&& x : r)
    {
        if(first)
            first = false;
        else
            os << delim;
        os << x;
    }
    return os;
}

Chao Liu's avatar
Chao Liu committed
26
27
28
29
30
31
32
33
34
35
36
37
38
39
typedef enum
{
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
struct TensorDescriptor
{
    TensorDescriptor() = delete;
    TensorDescriptor(DataType_t t, std::initializer_list<std::size_t> lens);
    TensorDescriptor(DataType_t t,
                     std::initializer_list<std::size_t> lens,
                     std::initializer_list<std::size_t> strides);
    TensorDescriptor(DataType_t t, std::vector<std::size_t> lens, std::vector<std::size_t> strides);

    void CalculateStrides();

    template <class Range>
    TensorDescriptor(DataType_t t, const Range& lens)
        : mLens(lens.begin(), lens.end()), mDataType(t)
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
86
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
87
88
    TensorDescriptor(DataType_t t, const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end()), mDataType(t)
Chao Liu's avatar
Chao Liu committed
89
90
    {
    }
Chao Liu's avatar
Chao Liu committed
91
92
93
94
95

    std::size_t GetDimension() const;
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
96
97
98
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
99
100
    template <class... Is>
    std::size_t Get1dIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
101
    {
Chao Liu's avatar
Chao Liu committed
102
103
104
        assert(sizeof...(Is) == this->GetDimension());
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
105
106
107
108
109
110
111
112
113
114
115
116
    }

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;

    DataType_t mDataType;
};

struct GpuMem
{
    GpuMem() = delete;
Chao Liu's avatar
Chao Liu committed
117
    GpuMem(std::size_t size, std::size_t data_size) : mSize(size), mDataSize(data_size)
Chao Liu's avatar
Chao Liu committed
118
    {
Chao Liu's avatar
Chao Liu committed
119
        cudaMalloc(static_cast<void**>(&mGpuBuf), mDataSize * mSize);
Chao Liu's avatar
Chao Liu committed
120
121
122
123
    }

    int ToGpu(void* p)
    {
Chao Liu's avatar
Chao Liu committed
124
        return static_cast<int>(cudaMemcpy(mGpuBuf, p, mDataSize * mSize, cudaMemcpyHostToDevice));
Chao Liu's avatar
Chao Liu committed
125
126
    }

Chao Liu's avatar
Chao Liu committed
127
128
129
130
    int FromGpu(void* p)
    {
        return static_cast<int>(cudaMemcpy(p, mGpuBuf, mDataSize * mSize, cudaMemcpyDeviceToHost));
    }
Chao Liu's avatar
Chao Liu committed
131
132
133
134

    ~GpuMem() { cudaFree(mGpuBuf); }

    void* mGpuBuf;
Chao Liu's avatar
Chao Liu committed
135
136
    std::size_t mSize;
    std::size_t mDataSize;
Chao Liu's avatar
Chao Liu committed
137
138
};

Chao Liu's avatar
Chao Liu committed
139
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
140
{
Chao Liu's avatar
Chao Liu committed
141
142
143
144
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
145

Chao Liu's avatar
Chao Liu committed
146
147
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
148

Chao Liu's avatar
Chao Liu committed
149
150
151
152
153
154
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
155
156
157
158
159

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
160
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
175
176
177
178
179
180
181
182
183
184
185
186
187
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
188
    void operator()(std::size_t num_thread) const
Chao Liu's avatar
Chao Liu committed
189
190
191
192
193
194
195
196
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
197
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
198
199
200

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
201
202
203
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
204
205
206
207
208
209
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
210
211
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
212
{
Chao Liu's avatar
Chao Liu committed
213
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
214
215
}

Chao Liu's avatar
Chao Liu committed
216
217
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
218
{
Chao Liu's avatar
Chao Liu committed
219
220
221
222
223
    template <class X>
    Tensor(std::initializer_list<X> lens)
        : mDesc(DataType<T>{}, lens), mData(mDesc.GetElementSpace())
    {
    }
Chao Liu's avatar
Chao Liu committed
224

Chao Liu's avatar
Chao Liu committed
225
226
227
228
    template <class X>
    Tensor(std::vector<X> lens) : mDesc(DataType<T>{}, lens), mData(mDesc.GetElementSpace())
    {
    }
Chao Liu's avatar
Chao Liu committed
229

Chao Liu's avatar
Chao Liu committed
230
231
232
233
234
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
        : mDesc(DataType<T>{}, lens, strides), mData(mDesc.GetElementSpace())
    {
    }
Chao Liu's avatar
Chao Liu committed
235

Chao Liu's avatar
Chao Liu committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
        switch(mDesc.GetDimension())
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};