tensor.hpp 7.18 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
4
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
5
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
6
#include <utility>
Chao Liu's avatar
Chao Liu committed
7
8
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
9

Chao Liu's avatar
Chao Liu committed
10
template <class Range>
Chao Liu's avatar
Chao Liu committed
11
std::ostream& LogRange(std::ostream& os, Range&& range, std::string delim)
Chao Liu's avatar
Chao Liu committed
12
13
{
    bool first = true;
Chao Liu's avatar
Chao Liu committed
14
    for(auto&& v : range)
Chao Liu's avatar
Chao Liu committed
15
16
17
18
19
    {
        if(first)
            first = false;
        else
            os << delim;
Chao Liu's avatar
Chao Liu committed
20
        os << v;
Chao Liu's avatar
Chao Liu committed
21
22
23
24
    }
    return os;
}

Chao Liu's avatar
Chao Liu committed
25
typedef enum {
Chao Liu's avatar
Chao Liu committed
26
27
28
29
30
31
32
33
34
35
36
37
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
66
67
68
struct TensorDescriptor
{
    TensorDescriptor() = delete;
Chao Liu's avatar
Chao Liu committed
69
70
    TensorDescriptor(std::initializer_list<std::size_t> lens);
    TensorDescriptor(std::initializer_list<std::size_t> lens,
Chao Liu's avatar
Chao Liu committed
71
                     std::initializer_list<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
72
    TensorDescriptor(std::vector<std::size_t> lens, std::vector<std::size_t> strides);
Chao Liu's avatar
Chao Liu committed
73
74
75
76

    void CalculateStrides();

    template <class Range>
Chao Liu's avatar
Chao Liu committed
77
    TensorDescriptor(const Range& lens) : mLens(lens.begin(), lens.end())
Chao Liu's avatar
Chao Liu committed
78
79
80
81
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
82
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
83
84
    TensorDescriptor(const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end())
Chao Liu's avatar
Chao Liu committed
85
86
    {
    }
Chao Liu's avatar
Chao Liu committed
87
88
89
90
91

    std::size_t GetDimension() const;
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
92
93
94
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
95
96
    template <class... Is>
    std::size_t Get1dIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
97
    {
Chao Liu's avatar
Chao Liu committed
98
99
100
        assert(sizeof...(Is) == this->GetDimension());
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
101
102
103
104
105
106
107
    }

    private:
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;
};

Chao Liu's avatar
Chao Liu committed
108
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
109
{
Chao Liu's avatar
Chao Liu committed
110
111
112
113
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
114

Chao Liu's avatar
Chao Liu committed
115
116
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
117

Chao Liu's avatar
Chao Liu committed
118
119
120
121
122
123
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
124
125
126
127
128

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
129
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
144
145
146
147
148
149
150
151
152
153
154
155
156
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
157
    void operator()(std::size_t num_thread) const
Chao Liu's avatar
Chao Liu committed
158
159
160
161
162
163
164
165
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
166
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
167
168
169

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
170
171
172
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
173
174
175
176
177
178
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
179
180
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
181
{
Chao Liu's avatar
Chao Liu committed
182
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
183
184
}

Chao Liu's avatar
Chao Liu committed
185
186
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
187
{
Chao Liu's avatar
Chao Liu committed
188
    template <class X>
Chao Liu's avatar
Chao Liu committed
189
    Tensor(std::initializer_list<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
190
191
    {
    }
Chao Liu's avatar
Chao Liu committed
192

Chao Liu's avatar
Chao Liu committed
193
    template <class X>
Chao Liu's avatar
Chao Liu committed
194
    Tensor(std::vector<X> lens) : mDesc(lens), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
195
196
    {
    }
Chao Liu's avatar
Chao Liu committed
197

Chao Liu's avatar
Chao Liu committed
198
199
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
Chao Liu's avatar
Chao Liu committed
200
        : mDesc(lens, strides), mData(mDesc.GetElementSpace())
Chao Liu's avatar
Chao Liu committed
201
202
    {
    }
Chao Liu's avatar
Chao Liu committed
203

Chao Liu's avatar
Chao Liu committed
204
205
    Tensor(const TensorDescriptor& desc) : mDesc(desc), mData(mDesc.GetElementSpace()) {}

Chao Liu's avatar
Chao Liu committed
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
        switch(mDesc.GetDimension())
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};