profile_grouped_gemm_impl.hpp 13.7 KB
Newer Older
Jing Zhang's avatar
Jing Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#pragma once
#include <iomanip>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {

Jing Zhang's avatar
Jing Zhang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
Jing Zhang's avatar
Jing Zhang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
Jing Zhang's avatar
Jing Zhang committed
48
49
50
51
52
53
54
55
56
                               int init_method,
                               bool do_log,
                               int nrepeat,
                               std::vector<int> Ms,
                               std::vector<int> Ns,
                               std::vector<int> Ks,
                               std::vector<int> StrideAs,
                               std::vector<int> StrideBs,
                               std::vector<int> StrideCs)
Jing Zhang's avatar
Jing Zhang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

Jing Zhang's avatar
clean  
Jing Zhang committed
72
73
74
75
76
77
    if(!(Ms.size() == Ns.size() && Ns.size() == Ks.size() && Ks.size() == StrideAs.size() &&
         StrideAs.size() == StrideBs.size() && StrideBs.size() == StrideCs.size()))
    {
        throw std::runtime_error("wrong! inconsistent Ms, Ns, Ks, StrideA/B/Cs size\n");
    }

Jing Zhang's avatar
Jing Zhang committed
78
79
    std::vector<Tensor<ADataType>> a_m_k;
    std::vector<Tensor<BDataType>> b_k_n;
Jing Zhang's avatar
Jing Zhang committed
80
81
    std::vector<Tensor<CDataType>> c_m_n_device_results;

Jing Zhang's avatar
Jing Zhang committed
82
83
    for(int i = 0; i < Ms.size(); i++)
    {
Jing Zhang's avatar
Jing Zhang committed
84
85
86
87
88
89
90
        a_m_k.push_back(
            Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
        b_k_n.push_back(
            Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));

        c_m_n_device_results.push_back(
            Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
Jing Zhang's avatar
Jing Zhang committed
91

Jing Zhang's avatar
clean  
Jing Zhang committed
92
93
94
        std::cout << "group: " << i << " a_m_k[" << i << "]:" << a_m_k[i].mDesc << ", b_k_n[" << i
                  << "]:" << b_k_n[i].mDesc << ", c_m_n_device_results[" << i
                  << "]:" << c_m_n_device_results[i].mDesc << std::endl;
Jing Zhang's avatar
Jing Zhang committed
95
96
97
98

        std::size_t num_thread = std::thread::hardware_concurrency();
        switch(init_method)
        {
Jing Zhang's avatar
Jing Zhang committed
99
100
101
102
103
104
105
106
        case 0: break;
        case 1:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
            break;
        default:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
Jing Zhang's avatar
Jing Zhang committed
107
108
        }

Jing Zhang's avatar
Jing Zhang committed
109
110
        c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
    }
Jing Zhang's avatar
Jing Zhang committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // if(do_verification)
    // {

    // }

Jing Zhang's avatar
clean  
Jing Zhang committed
125
126
    using DeviceMemPtr = std::unique_ptr<DeviceMem>;
    std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
Jing Zhang's avatar
Jing Zhang committed
127
128
129

    std::vector<GemmShape> gemm_shapes;

Jing Zhang's avatar
Jing Zhang committed
130
131
    for(int i = 0; i < Ms.size(); i++)
    {
Jing Zhang's avatar
clean  
Jing Zhang committed
132
133
134
135
        a_device_buf.push_back(
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSize()));
        b_device_buf.push_back(
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSize()));
Jing Zhang's avatar
clean  
Jing Zhang committed
136

Jing Zhang's avatar
clean  
Jing Zhang committed
137
138
139
140
141
142
        c_device_buf.push_back(std::make_unique<DeviceMem>(
            sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSize()));

        a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
        b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
        c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());
Jing Zhang's avatar
Jing Zhang committed
143
144
145
146
147
148
149

        gemm_shapes.push_back({Ms[i],
                               Ns[i],
                               Ks[i],
                               StrideAs[i],
                               StrideBs[i],
                               StrideCs[i],
Jing Zhang's avatar
clean  
Jing Zhang committed
150
151
152
                               a_device_buf[i]->GetDeviceBuffer(),
                               b_device_buf[i]->GetDeviceBuffer(),
                               c_device_buf[i]->GetDeviceBuffer()});
Jing Zhang's avatar
Jing Zhang committed
153
154
155
    }

    // add device GEMM instances
Jing Zhang's avatar
Jing Zhang committed
156
157
158
    std::vector<
        ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
        gemm_ptrs;
Jing Zhang's avatar
Jing Zhang committed
159
160

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
Jing Zhang's avatar
Jing Zhang committed
161
                 is_same<CDataType, half_t>::value)
Jing Zhang's avatar
Jing Zhang committed
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
#if 0
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
        }
#endif
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

Jing Zhang's avatar
Jing Zhang committed
241
#if 1
Jing Zhang's avatar
Jing Zhang committed
242
243
244
245
    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
Jing Zhang's avatar
Jing Zhang committed
246
            gemm_ptr->MakeArgumentPointer(gemm_shapes,
Jing Zhang's avatar
Jing Zhang committed
247
248
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
Jing Zhang's avatar
Jing Zhang committed
249
                                          ck::tensor_operation::element_wise::PassThrough{});
Jing Zhang's avatar
Jing Zhang committed
250
251
252
253
254
255
256
257
258

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

Jing Zhang's avatar
clean  
Jing Zhang committed
259
260
261
262
263
            std::size_t flop = 0, num_btype = 0;
            for(int i = 0; i < gemm_shapes.size(); i++)
            {
                flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];

Jing Zhang's avatar
clean  
Jing Zhang committed
264
                num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + sizeof(BDataType) * Ks[i] * Ns[i] +
Jing Zhang's avatar
clean  
Jing Zhang committed
265
266
                             sizeof(CDataType) * Ms[i] * Ns[i];
            }
Jing Zhang's avatar
Jing Zhang committed
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;
            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
Jing Zhang's avatar
Jing Zhang committed
284
285
                for(int i = 0; i < gemm_shapes.size(); i++)
                {
Jing Zhang's avatar
Jing Zhang committed
286

Jing Zhang's avatar
clean  
Jing Zhang committed
287
                    c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
Jing Zhang's avatar
Jing Zhang committed
288
289

                    Tensor<CDataType> c_m_n_host_result(
Jing Zhang's avatar
Jing Zhang committed
290
                        f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));
Jing Zhang's avatar
Jing Zhang committed
291
292
293
294
295
296
297
298
299
300
301
302

                    using ReferenceGemmInstance =
                        ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                  BDataType,
                                                                  CDataType,
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  CElementOp>;

                    auto ref_gemm    = ReferenceGemmInstance{};
                    auto ref_invoker = ref_gemm.MakeInvoker();

Jing Zhang's avatar
Jing Zhang committed
303
304
305
306
307
308
                    auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
                                                              b_k_n[i],
                                                              c_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);
Jing Zhang's avatar
Jing Zhang committed
309
310

                    ref_invoker.Run(ref_argument);
Jing Zhang's avatar
Jing Zhang committed
311
                    check_error(c_m_n_host_result, c_m_n_device_results[i]);
Jing Zhang's avatar
Jing Zhang committed
312
313
314

                    if(do_log)
                    {
Jing Zhang's avatar
clean  
Jing Zhang committed
315
316
317
                        LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
Jing Zhang's avatar
Jing Zhang committed
318
                        LogRangeAsType<float>(
Jing Zhang's avatar
Jing Zhang committed
319
                            std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
Jing Zhang's avatar
Jing Zhang committed
320
                            << std::endl;
Jing Zhang's avatar
clean  
Jing Zhang committed
321
322
323
                        LogRangeAsType<float>(
                            std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                            << std::endl;
Jing Zhang's avatar
Jing Zhang committed
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
                    }
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }
#endif

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}

} // namespace profiler
} // namespace ck