profile_grouped_gemm_impl.hpp 13.5 KB
Newer Older
Jing Zhang's avatar
Jing Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#pragma once
#include <iomanip>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {

Jing Zhang's avatar
Jing Zhang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
Jing Zhang's avatar
Jing Zhang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
Jing Zhang's avatar
Jing Zhang committed
48
49
50
51
52
53
54
55
56
                               int init_method,
                               bool do_log,
                               int nrepeat,
                               std::vector<int> Ms,
                               std::vector<int> Ns,
                               std::vector<int> Ks,
                               std::vector<int> StrideAs,
                               std::vector<int> StrideBs,
                               std::vector<int> StrideCs)
Jing Zhang's avatar
Jing Zhang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    std::vector<Tensor<ADataType>> a_m_k;
    std::vector<Tensor<BDataType>> b_k_n;
Jing Zhang's avatar
Jing Zhang committed
74
75
    std::vector<Tensor<CDataType>> c_m_n_device_results;

Jing Zhang's avatar
Jing Zhang committed
76
77
    for(int i = 0; i < Ms.size(); i++)
    {
Jing Zhang's avatar
Jing Zhang committed
78
79
80
81
82
83
84
        a_m_k.push_back(
            Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
        b_k_n.push_back(
            Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));

        c_m_n_device_results.push_back(
            Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
Jing Zhang's avatar
Jing Zhang committed
85
86
87

        std::cout << "a_m_k[" << i << "]:" << a_m_k[i].mDesc << std::endl;
        std::cout << "b_k_n[" << i << "]:" << b_k_n[i].mDesc << std::endl;
Jing Zhang's avatar
Jing Zhang committed
88
89
90

        std::cout << "c_m_n_device_results[" << i << "]:" << c_m_n_device_results[i].mDesc
                  << std::endl;
Jing Zhang's avatar
Jing Zhang committed
91
92
93
94

        std::size_t num_thread = std::thread::hardware_concurrency();
        switch(init_method)
        {
Jing Zhang's avatar
Jing Zhang committed
95
96
97
98
99
100
101
102
        case 0: break;
        case 1:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
            break;
        default:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
Jing Zhang's avatar
Jing Zhang committed
103
104
        }

Jing Zhang's avatar
Jing Zhang committed
105
106
        c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
    }
Jing Zhang's avatar
Jing Zhang committed
107
108
109
110
111
112
113
114
115
116
117
118
119
120

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // if(do_verification)
    // {

    // }

Jing Zhang's avatar
clean  
Jing Zhang committed
121
122
    using DeviceMemPtr = std::unique_ptr<DeviceMem>;
    std::vector<DeviceMemPtr> a_device_buf, b_device_buf, c_device_buf;
Jing Zhang's avatar
Jing Zhang committed
123
124
125

    std::vector<GemmShape> gemm_shapes;

Jing Zhang's avatar
Jing Zhang committed
126
127
    for(int i = 0; i < Ms.size(); i++)
    {
Jing Zhang's avatar
clean  
Jing Zhang committed
128
129
130
131
132
133
134
135
136
137
        a_device_buf.push_back(
            std::make_unique<DeviceMem>(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSize()));
        b_device_buf.push_back(
            std::make_unique<DeviceMem>(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSize()));
        c_device_buf.push_back(std::make_unique<DeviceMem>(
            sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSize()));

        a_device_buf[i]->ToDevice(a_m_k[i].mData.data());
        b_device_buf[i]->ToDevice(b_k_n[i].mData.data());
        c_device_buf[i]->ToDevice(c_m_n_device_results[i].mData.data());
Jing Zhang's avatar
Jing Zhang committed
138
139
140
141
142
143
144

        gemm_shapes.push_back({Ms[i],
                               Ns[i],
                               Ks[i],
                               StrideAs[i],
                               StrideBs[i],
                               StrideCs[i],
Jing Zhang's avatar
clean  
Jing Zhang committed
145
146
147
                               a_device_buf[i]->GetDeviceBuffer(),
                               b_device_buf[i]->GetDeviceBuffer(),
                               c_device_buf[i]->GetDeviceBuffer()});
Jing Zhang's avatar
Jing Zhang committed
148
149
150
    }

    // add device GEMM instances
Jing Zhang's avatar
Jing Zhang committed
151
152
153
    std::vector<
        ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
        gemm_ptrs;
Jing Zhang's avatar
Jing Zhang committed
154
155

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
Jing Zhang's avatar
Jing Zhang committed
156
                 is_same<CDataType, half_t>::value)
Jing Zhang's avatar
Jing Zhang committed
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
#if 0
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
        }
#endif
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

Jing Zhang's avatar
Jing Zhang committed
236
#if 1
Jing Zhang's avatar
Jing Zhang committed
237
238
239
240
    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
Jing Zhang's avatar
Jing Zhang committed
241
            gemm_ptr->MakeArgumentPointer(gemm_shapes,
Jing Zhang's avatar
Jing Zhang committed
242
243
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
Jing Zhang's avatar
Jing Zhang committed
244
                                          ck::tensor_operation::element_wise::PassThrough{});
Jing Zhang's avatar
Jing Zhang committed
245
246
247
248
249
250
251
252
253

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

Jing Zhang's avatar
clean  
Jing Zhang committed
254
255
256
            std::size_t flop = 0, num_btype = 0;
            for(int i = 0; i < gemm_shapes.size(); i++)
            {
Jing Zhang's avatar
Jing Zhang committed
257

Jing Zhang's avatar
clean  
Jing Zhang committed
258
259
260
261
262
                flop += std::size_t(2) * Ms[i] * Ns[i] * Ks[i];

                num_btype += sizeof(ADataType) * Ms[i] * Ks[i] + sizeof(BDataType) * Ks[i] * Ms[i] +
                             sizeof(CDataType) * Ms[i] * Ns[i];
            }
Jing Zhang's avatar
Jing Zhang committed
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;
            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }

            if(do_verification)
            {
Jing Zhang's avatar
Jing Zhang committed
280
281
                for(int i = 0; i < gemm_shapes.size(); i++)
                {
Jing Zhang's avatar
Jing Zhang committed
282

Jing Zhang's avatar
clean  
Jing Zhang committed
283
                    c_device_buf[i]->FromDevice(c_m_n_device_results[i].mData.data());
Jing Zhang's avatar
Jing Zhang committed
284
285

                    Tensor<CDataType> c_m_n_host_result(
Jing Zhang's avatar
Jing Zhang committed
286
                        f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));
Jing Zhang's avatar
Jing Zhang committed
287
288
289
290
291
292
293
294
295
296
297
298

                    using ReferenceGemmInstance =
                        ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                  BDataType,
                                                                  CDataType,
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  CElementOp>;

                    auto ref_gemm    = ReferenceGemmInstance{};
                    auto ref_invoker = ref_gemm.MakeInvoker();

Jing Zhang's avatar
Jing Zhang committed
299
300
301
302
303
304
                    auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
                                                              b_k_n[i],
                                                              c_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);
Jing Zhang's avatar
Jing Zhang committed
305
306

                    ref_invoker.Run(ref_argument);
Jing Zhang's avatar
Jing Zhang committed
307
                    check_error(c_m_n_host_result, c_m_n_device_results[i]);
Jing Zhang's avatar
Jing Zhang committed
308
309
310

                    if(do_log)
                    {
Jing Zhang's avatar
clean  
Jing Zhang committed
311
312
313
                        LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
                            << std::endl;
                        LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") << std::endl;
Jing Zhang's avatar
Jing Zhang committed
314
                        LogRangeAsType<float>(
Jing Zhang's avatar
Jing Zhang committed
315
                            std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
Jing Zhang's avatar
Jing Zhang committed
316
                            << std::endl;
Jing Zhang's avatar
clean  
Jing Zhang committed
317
318
319
                        LogRangeAsType<float>(
                            std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                            << std::endl;
Jing Zhang's avatar
Jing Zhang committed
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
                    }
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }
#endif

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}

} // namespace profiler
} // namespace ck