profile_grouped_gemm_impl.hpp 17.5 KB
Newer Older
Jing Zhang's avatar
Jing Zhang committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
#pragma once
#include <iomanip>
#include "config.hpp"
#include "device.hpp"
#include "host_tensor.hpp"
#include "host_tensor_generator.hpp"
#include "host_conv.hpp"
#include "tensor_layout.hpp"
#include "device_tensor.hpp"
#include "element_wise_operation.hpp"
#include "device_gemm.hpp"
#include "reference_gemm.hpp"

namespace ck {
namespace tensor_operation {
namespace device {
namespace device_grouped_gemm_instance {

Jing Zhang's avatar
Jing Zhang committed
19
20
21
22
23
24
25
26
27
28
29
30
31
using DeviceGroupedGemmNoOpPtr = ck::tensor_operation::device::DeviceGroupedGemmPtr<
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough,
    ck::tensor_operation::element_wise::PassThrough>;

void add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(
    std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_km_kn_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
// void
// add_device_grouped_gemm_xdl_f16_f16_f16_km_nk_mn_instances(std::vector<DeviceGroupedGemmNoOpPtr>&);
Jing Zhang's avatar
Jing Zhang committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

} // namespace device_grouped_gemm_instance
} // namespace device
} // namespace tensor_operation
} // namespace ck

namespace ck {
namespace profiler {

template <typename ADataType,
          typename BDataType,
          typename CDataType,
          typename ALayout,
          typename BLayout,
          typename CLayout>
void profile_grouped_gemm_impl(int do_verification,
Jing Zhang's avatar
Jing Zhang committed
48
49
50
51
52
53
54
55
56
                               int init_method,
                               bool do_log,
                               int nrepeat,
                               std::vector<int> Ms,
                               std::vector<int> Ns,
                               std::vector<int> Ks,
                               std::vector<int> StrideAs,
                               std::vector<int> StrideBs,
                               std::vector<int> StrideCs)
Jing Zhang's avatar
Jing Zhang committed
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
{
    auto f_host_tensor_descriptor =
        [](std::size_t row, std::size_t col, std::size_t stride, auto layout) {
            if(is_same<decltype(layout), tensor_layout::gemm::RowMajor>::value)
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({stride, 1}));
            }
            else
            {
                return HostTensorDescriptor(std::vector<std::size_t>({row, col}),
                                            std::vector<std::size_t>({1, stride}));
            }
        };

    std::vector<Tensor<ADataType>> a_m_k;
    std::vector<Tensor<BDataType>> b_k_n;
Jing Zhang's avatar
Jing Zhang committed
74
75
76
    std::vector<Tensor<CDataType>> c_m_n_device_results;

    // int A_size = 0, B_size = 0, C_size = 0;
Jing Zhang's avatar
Jing Zhang committed
77
78
79

    for(int i = 0; i < Ms.size(); i++)
    {
Jing Zhang's avatar
Jing Zhang committed
80
81
82
83
84
85
86
        a_m_k.push_back(
            Tensor<ADataType>(f_host_tensor_descriptor(Ms[i], Ks[i], StrideAs[i], ALayout{})));
        b_k_n.push_back(
            Tensor<BDataType>(f_host_tensor_descriptor(Ks[i], Ns[i], StrideBs[i], BLayout{})));

        c_m_n_device_results.push_back(
            Tensor<CDataType>(f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{})));
Jing Zhang's avatar
Jing Zhang committed
87
88
89

        std::cout << "a_m_k[" << i << "]:" << a_m_k[i].mDesc << std::endl;
        std::cout << "b_k_n[" << i << "]:" << b_k_n[i].mDesc << std::endl;
Jing Zhang's avatar
Jing Zhang committed
90
91
92

        std::cout << "c_m_n_device_results[" << i << "]:" << c_m_n_device_results[i].mDesc
                  << std::endl;
Jing Zhang's avatar
Jing Zhang committed
93
94
95
96

        std::size_t num_thread = std::thread::hardware_concurrency();
        switch(init_method)
        {
Jing Zhang's avatar
Jing Zhang committed
97
98
99
100
101
102
103
104
        case 0: break;
        case 1:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_2<ADataType>{-5, 5}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_2<BDataType>{-5, 5}, num_thread);
            break;
        default:
            a_m_k[i].GenerateTensorValue(GeneratorTensor_3<ADataType>{0.0, 1.0}, num_thread);
            b_k_n[i].GenerateTensorValue(GeneratorTensor_3<BDataType>{-0.5, 0.5}, num_thread);
Jing Zhang's avatar
Jing Zhang committed
105
106
107
        }

        // set zero to c_device_buf
Jing Zhang's avatar
Jing Zhang committed
108
        c_m_n_device_results[i].GenerateTensorValue(GeneratorTensor_0<CDataType>{}, num_thread);
Jing Zhang's avatar
Jing Zhang committed
109

Jing Zhang's avatar
Jing Zhang committed
110
111
112
113
        // A_size += a_m_k[i].mDesc.GetElementSpace();
        // B_size += b_k_n[i].mDesc.GetElementSpace();
        // C_size += c_m_n_device_results[i].mDesc.GetElementSpace();
    }
Jing Zhang's avatar
Jing Zhang committed
114
115
116
117
118
119
120
121
122
123
124
125
126
127

    using AElementOp = ck::tensor_operation::element_wise::PassThrough;
    using BElementOp = ck::tensor_operation::element_wise::PassThrough;
    using CElementOp = ck::tensor_operation::element_wise::PassThrough;

    const auto a_element_op = AElementOp{};
    const auto b_element_op = BElementOp{};
    const auto c_element_op = CElementOp{};

    // if(do_verification)
    // {

    // }

Jing Zhang's avatar
Jing Zhang committed
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
    // std::vector<DeviceMem> a_device_buf, b_device_buf, c_device_buf;

    std::vector<void*> a_device_buf, b_device_buf, c_device_buf;
    // DeviceMem a_device_buf_(sizeof(ADataType) * A_size);
    // DeviceMem b_device_buf_(sizeof(BDataType) * B_size);
    // DeviceMem c_device_buf_(sizeof(CDataType) * C_size);

    // std::vector<ADataType> a_tensors_data;
    // std::vector<BDataType> b_tensors_data;
    // std::vector<CDataType> c_tensors_data;

    std::vector<GemmShape> gemm_shapes;

    // A_size = 0;
    // B_size = 0;
    // C_size = 0;
Jing Zhang's avatar
Jing Zhang committed
144
145
146

    for(int i = 0; i < Ms.size(); i++)
    {
Jing Zhang's avatar
Jing Zhang committed
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
        // a_tensors_data.insert(a_tensors_data.end(), a_m_k[i].mData.begin(),
        // a_m_k[i].mData.end()); b_tensors_data.insert(b_tensors_data.end(),
        // b_k_n[i].mData.begin(), b_k_n[i].mData.end());
        // c_tensors_data.insert(c_tensors_data.end(), c_m_n_device_results[i].mData.begin(),
        // c_m_n_device_results[i].mData.end());

        void *a_device_buf_, *b_device_buf_, *c_device_buf_;
        hipGetErrorString(hipMalloc(static_cast<void**>(&a_device_buf_),
                                    sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace()));
        hipGetErrorString(hipMalloc(static_cast<void**>(&b_device_buf_),
                                    sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace()));
        hipGetErrorString(
            hipMalloc(static_cast<void**>(&c_device_buf_),
                      sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpace()));

        // DeviceMem a_device_buf_(sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace());
        // DeviceMem b_device_buf_(sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace());
        // DeviceMem c_device_buf_(sizeof(CDataType) *
        // c_m_n_device_results[i].mDesc.GetElementSpace());

        hipGetErrorString(hipMemcpy(a_device_buf_,
                                    a_m_k[i].mData.data(),
                                    sizeof(ADataType) * a_m_k[i].mDesc.GetElementSpace(),
                                    hipMemcpyHostToDevice));
        hipGetErrorString(hipMemcpy(b_device_buf_,
                                    b_k_n[i].mData.data(),
                                    sizeof(BDataType) * b_k_n[i].mDesc.GetElementSpace(),
                                    hipMemcpyHostToDevice));
        hipGetErrorString(
            hipMemcpy(c_device_buf_,
                      c_m_n_device_results[i].mData.data(),
                      sizeof(CDataType) * c_m_n_device_results[i].mDesc.GetElementSpace(),
                      hipMemcpyHostToDevice));

        // a_device_buf_.ToDevice(a_m_k[i].mData.data());
        // b_device_buf_.ToDevice(b_k_n[i].mData.data());
        // c_device_buf_.ToDevice(c_m_n_device_results[i].mData.data());

        a_device_buf.push_back(a_device_buf_);
        b_device_buf.push_back(b_device_buf_);
        c_device_buf.push_back(c_device_buf_);

        // a_device_buf.push_back(a_device_buf_);
        // b_device_buf.push_back(b_device_buf_);
        // c_device_buf.push_back(c_device_buf_);

        // gemm_shapes.push_back({Ms[i],
        // Ns[i],
        // Ks[i],
        // StrideAs[i],
        // StrideBs[i],
        // StrideCs[i],
        // a_device_buf[i].GetDeviceBuffer(),
        // b_device_buf[i].GetDeviceBuffer(),
        // c_device_buf[i].GetDeviceBuffer()});

        // printf("%p %p %p\n",
        // a_device_buf[i].GetDeviceBuffer(),
        // b_device_buf[i].GetDeviceBuffer(),
        // c_device_buf[i].GetDeviceBuffer());

        gemm_shapes.push_back({Ms[i],
                               Ns[i],
                               Ks[i],
                               StrideAs[i],
                               StrideBs[i],
                               StrideCs[i],
                               a_device_buf_,
                               b_device_buf_,
                               c_device_buf_});

        // A_size += a_m_k[i].mDesc.GetElementSpace();
        // B_size += b_k_n[i].mDesc.GetElementSpace();
        // C_size += c_m_n_device_results[i].mDesc.GetElementSpace();
Jing Zhang's avatar
Jing Zhang committed
221
222
    }

Jing Zhang's avatar
Jing Zhang committed
223
224
225
    // a_device_buf_.ToDevice(a_tensors_data.data());
    // b_device_buf_.ToDevice(b_tensors_data.data());
    // c_device_buf_.ToDevice(c_tensors_data.data());
Jing Zhang's avatar
Jing Zhang committed
226
227

    // add device GEMM instances
Jing Zhang's avatar
Jing Zhang committed
228
229
230
    std::vector<
        ck::tensor_operation::device::device_grouped_gemm_instance::DeviceGroupedGemmNoOpPtr>
        gemm_ptrs;
Jing Zhang's avatar
Jing Zhang committed
231
232

    if constexpr(is_same<ADataType, half_t>::value && is_same<BDataType, half_t>::value &&
Jing Zhang's avatar
Jing Zhang committed
233
                 is_same<CDataType, half_t>::value)
Jing Zhang's avatar
Jing Zhang committed
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
    {
        if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                     is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            ck::tensor_operation::device::device_grouped_gemm_instance::
                add_device_grouped_gemm_xdl_f16_f16_f16_mk_kn_mn_instances(gemm_ptrs);
        }
#if 0
        else if constexpr(is_same<ALayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_2_stage_f16_f16_f16_mk_nk_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::RowMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_kn_mn_instances(gemm_ptrs);
            }
        }
        else if constexpr(is_same<ALayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<BLayout, tensor_layout::gemm::ColumnMajor>::value &&
                          is_same<CLayout, tensor_layout::gemm::RowMajor>::value)
        {
            if(KBatch > 1)
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_splitk_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
            else
            {
                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);

                ck::tensor_operation::device::device_grouped_gemm_instance::
                    add_device_gemm_xdl_c_shuffle_f16_f16_f16_km_nk_mn_instances(gemm_ptrs);
            }
        }
#endif
    }

    if(gemm_ptrs.size() <= 0)
    {
        throw std::runtime_error("wrong! no device GEMM instance found");
    }

    std::string best_gemm_name;
    float best_ave_time   = 0;
    float best_tflops     = 0;
    float best_gb_per_sec = 0;

Jing Zhang's avatar
Jing Zhang committed
313
#if 1
Jing Zhang's avatar
Jing Zhang committed
314
315
316
317
    // profile device GEMM instances
    for(auto& gemm_ptr : gemm_ptrs)
    {
        auto argument_ptr =
Jing Zhang's avatar
Jing Zhang committed
318
            gemm_ptr->MakeArgumentPointer(gemm_shapes,
Jing Zhang's avatar
Jing Zhang committed
319
320
                                          ck::tensor_operation::element_wise::PassThrough{},
                                          ck::tensor_operation::element_wise::PassThrough{},
Jing Zhang's avatar
Jing Zhang committed
321
                                          ck::tensor_operation::element_wise::PassThrough{});
Jing Zhang's avatar
Jing Zhang committed
322
323
324
325
326
327
328
329
330

        auto invoker_ptr = gemm_ptr->MakeInvokerPointer();

        if(gemm_ptr->IsSupportedArgument(argument_ptr.get()))
        {
            std::string gemm_name = gemm_ptr->GetTypeString();

            float ave_time = invoker_ptr->Run(argument_ptr.get(), nrepeat);

Jing Zhang's avatar
Jing Zhang committed
331
#if 0
Jing Zhang's avatar
Jing Zhang committed
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
            std::size_t flop = std::size_t(2) * M * N * K;

            std::size_t num_btype =
                sizeof(ADataType) * M * K + sizeof(BDataType) * K * M + sizeof(CDataType) * M * N;

            float tflops = static_cast<float>(flop) / 1.E9 / ave_time;

            float gb_per_sec = num_btype / 1.E6 / ave_time;

            std::cout << "Perf: " << std::setw(10) << ave_time << " ms, " << tflops << " TFlops, "
                      << gb_per_sec << " GB/s, " << gemm_name << std::endl;

            if(tflops > best_tflops)
            {
                best_gemm_name  = gemm_name;
                best_tflops     = tflops;
                best_ave_time   = ave_time;
                best_gb_per_sec = gb_per_sec;
            }
Jing Zhang's avatar
Jing Zhang committed
351
#endif
Jing Zhang's avatar
Jing Zhang committed
352
353
354

            if(do_verification)
            {
Jing Zhang's avatar
Jing Zhang committed
355
                // c_tensors_data.resize(C_size);
Jing Zhang's avatar
Jing Zhang committed
356

Jing Zhang's avatar
Jing Zhang committed
357
                // c_device_buf_.FromDevice(c_tensors_data.data());
Jing Zhang's avatar
Jing Zhang committed
358

Jing Zhang's avatar
Jing Zhang committed
359
360
361
362
363
364
                // C_size = 0;
                // for(int i = 0; i < gemm_shapes.size(); i++)
                //{
                // memcpy(c_m_n_device_results[i].mData.data(),
                // c_tensors_data.data() + C_size,
                // c_m_n_device_results[i].mDesc.GetElementSpace() * sizeof(CDataType));
Jing Zhang's avatar
Jing Zhang committed
365

Jing Zhang's avatar
Jing Zhang committed
366
367
                // C_size += c_m_n_device_results[i].mDesc.GetElementSpace();
                //}
Jing Zhang's avatar
Jing Zhang committed
368

Jing Zhang's avatar
Jing Zhang committed
369
370
371
372
373
374
375
                for(int i = 0; i < gemm_shapes.size(); i++)
                {
                    hipGetErrorString(hipMemcpy(c_m_n_device_results[i].mData.data(),
                                                c_device_buf[i],
                                                sizeof(CDataType) *
                                                    c_m_n_device_results[i].mDesc.GetElementSpace(),
                                                hipMemcpyDeviceToHost));
Jing Zhang's avatar
Jing Zhang committed
376

Jing Zhang's avatar
Jing Zhang committed
377
                    // hipGetErrorString(hipFree(c_device_buf[i]));
Jing Zhang's avatar
Jing Zhang committed
378
379

                    Tensor<CDataType> c_m_n_host_result(
Jing Zhang's avatar
Jing Zhang committed
380
                        f_host_tensor_descriptor(Ms[i], Ns[i], StrideCs[i], CLayout{}));
Jing Zhang's avatar
Jing Zhang committed
381
382
383
384
385
386
387
388
389
390
391
392

                    using ReferenceGemmInstance =
                        ck::tensor_operation::host::ReferenceGemm<ADataType,
                                                                  BDataType,
                                                                  CDataType,
                                                                  AElementOp,
                                                                  BElementOp,
                                                                  CElementOp>;

                    auto ref_gemm    = ReferenceGemmInstance{};
                    auto ref_invoker = ref_gemm.MakeInvoker();

Jing Zhang's avatar
Jing Zhang committed
393
394
395
396
397
398
                    auto ref_argument = ref_gemm.MakeArgument(a_m_k[i],
                                                              b_k_n[i],
                                                              c_m_n_host_result,
                                                              a_element_op,
                                                              b_element_op,
                                                              c_element_op);
Jing Zhang's avatar
Jing Zhang committed
399
400

                    ref_invoker.Run(ref_argument);
Jing Zhang's avatar
Jing Zhang committed
401
                    check_error(c_m_n_host_result, c_m_n_device_results[i]);
Jing Zhang's avatar
Jing Zhang committed
402
403
404

                    if(do_log)
                    {
Jing Zhang's avatar
Jing Zhang committed
405
406
407
408
                        // LogRangeAsType<float>(std::cout << "a : ", a_m_k[i].mData, ",")
                        //<< std::endl;
                        // LogRangeAsType<float>(std::cout << "b: ", b_k_n[i].mData, ",") <<
                        // std::endl;
Jing Zhang's avatar
Jing Zhang committed
409
                        LogRangeAsType<float>(
Jing Zhang's avatar
Jing Zhang committed
410
                            std::cout << "c_device: ", c_m_n_device_results[i].mData, ",")
Jing Zhang's avatar
Jing Zhang committed
411
                            << std::endl;
Jing Zhang's avatar
Jing Zhang committed
412
413
414
                        // LogRangeAsType<float>(
                        // std::cout << "c_host  : ", c_m_n_host_result.mData, ",")
                        //<< std::endl;
Jing Zhang's avatar
Jing Zhang committed
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
                    }
                }
            }
        }
        else
        {
            std::cout << "does not support this GEMM problem" << std::endl;
        }
    }
#endif

    std::cout << "Best Perf: " << best_ave_time << " ms, " << best_tflops << " TFlops, "
              << best_gb_per_sec << " GB/s, " << best_gemm_name << std::endl;
}

} // namespace profiler
} // namespace ck