tensor.hpp 8 KB
Newer Older
Chao Liu's avatar
Chao Liu committed
1
#pragma once
Chao Liu's avatar
Chao Liu committed
2
3
4
#include <thread>
#include <vector>
#include <numeric>
Chao Liu's avatar
Chao Liu committed
5
#include <algorithm>
Chao Liu's avatar
Chao Liu committed
6
#include <utility>
Chao Liu's avatar
Chao Liu committed
7
8
#include <cassert>
#include <iostream>
Chao Liu's avatar
Chao Liu committed
9
10
#include "cuda_runtime.h"
#include "helper_cuda.h"
Chao Liu's avatar
Chao Liu committed
11

Chao Liu's avatar
Chao Liu committed
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
template <class Range>
std::ostream& LogRange(std::ostream& os, Range&& r, std::string delim)
{
    bool first = true;
    for(auto&& x : r)
    {
        if(first)
            first = false;
        else
            os << delim;
        os << x;
    }
    return os;
}

Chao Liu's avatar
Chao Liu committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
typedef enum
{
    Half  = 0,
    Float = 1,
} DataType_t;

template <class T>
struct DataType;

template <>
struct DataType<float> : std::integral_constant<DataType_t, DataType_t::Float>
{
};

Chao Liu's avatar
Chao Liu committed
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
template <class F, class T, std::size_t... Is>
auto call_f_unpack_args_impl(F f, T args, std::index_sequence<Is...>)
{
    return f(std::get<Is>(args)...);
}

template <class F, class T>
auto call_f_unpack_args(F f, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return call_f_unpack_args_impl(f, args, std::make_index_sequence<N>{});
}

template <class F, class T, std::size_t... Is>
auto construct_f_unpack_args_impl(T args, std::index_sequence<Is...>)
{
    return F(std::get<Is>(args)...);
}

template <class F, class T>
auto construct_f_unpack_args(F, T args)
{
    constexpr std::size_t N = std::tuple_size<T>::value;

    return construct_f_unpack_args_impl<F>(args, std::make_index_sequence<N>{});
}

Chao Liu's avatar
Chao Liu committed
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
struct TensorDescriptor
{
    TensorDescriptor() = delete;
    TensorDescriptor(DataType_t t, std::initializer_list<std::size_t> lens);
    TensorDescriptor(DataType_t t,
                     std::initializer_list<std::size_t> lens,
                     std::initializer_list<std::size_t> strides);
    TensorDescriptor(DataType_t t, std::vector<std::size_t> lens, std::vector<std::size_t> strides);

    void CalculateStrides();

    template <class Range>
    TensorDescriptor(DataType_t t, const Range& lens)
        : mLens(lens.begin(), lens.end()), mDataType(t)
    {
        this->CalculateStrides();
    }

Chao Liu's avatar
Chao Liu committed
87
    template <class Range1, class Range2>
Chao Liu's avatar
Chao Liu committed
88
89
    TensorDescriptor(DataType_t t, const Range1& lens, const Range2& strides)
        : mLens(lens.begin(), lens.end()), mStrides(strides.begin(), strides.end()), mDataType(t)
Chao Liu's avatar
Chao Liu committed
90
91
    {
    }
Chao Liu's avatar
Chao Liu committed
92

Chao Liu's avatar
Chao Liu committed
93
    DataType_t GetDataType() const;
Chao Liu's avatar
Chao Liu committed
94
95
96
97
    std::size_t GetDimension() const;
    std::size_t GetElementSize() const;
    std::size_t GetElementSpace() const;

Chao Liu's avatar
Chao Liu committed
98
99
100
    const std::vector<std::size_t>& GetLengths() const;
    const std::vector<std::size_t>& GetStrides() const;

Chao Liu's avatar
Chao Liu committed
101
102
    template <class... Is>
    std::size_t Get1dIndex(Is... is) const
Chao Liu's avatar
Chao Liu committed
103
    {
Chao Liu's avatar
Chao Liu committed
104
105
106
        assert(sizeof...(Is) == this->GetDimension());
        std::initializer_list<std::size_t> iss{static_cast<std::size_t>(is)...};
        return std::inner_product(iss.begin(), iss.end(), mStrides.begin(), std::size_t{0});
Chao Liu's avatar
Chao Liu committed
107
108
109
    }

    private:
Chao Liu's avatar
Chao Liu committed
110
    DataType_t mDataType;
Chao Liu's avatar
Chao Liu committed
111
112
113
114
    std::vector<std::size_t> mLens;
    std::vector<std::size_t> mStrides;
};

Chao Liu's avatar
Chao Liu committed
115
struct DeviceMem
Chao Liu's avatar
Chao Liu committed
116
{
Chao Liu's avatar
Chao Liu committed
117
118
    DeviceMem() = delete;
    DeviceMem(std::size_t mem_size) : mMemSize(mem_size)
Chao Liu's avatar
Chao Liu committed
119
    {
Chao Liu's avatar
Chao Liu committed
120
        cudaMalloc(static_cast<void**>(&mpDeviceBuf), mMemSize);
Chao Liu's avatar
Chao Liu committed
121
122
    }

Chao Liu's avatar
Chao Liu committed
123
124
125
    void* GetDeviceBuffer() { return mpDeviceBuf; }

    int ToDevice(const void* p)
Chao Liu's avatar
Chao Liu committed
126
    {
Chao Liu's avatar
Chao Liu committed
127
128
        return static_cast<int>(
            cudaMemcpy(mpDeviceBuf, const_cast<void*>(p), mMemSize, cudaMemcpyHostToDevice));
Chao Liu's avatar
Chao Liu committed
129
130
    }

Chao Liu's avatar
Chao Liu committed
131
    int FromDevice(void* p)
Chao Liu's avatar
Chao Liu committed
132
    {
Chao Liu's avatar
Chao Liu committed
133
        return static_cast<int>(cudaMemcpy(p, mpDeviceBuf, mMemSize, cudaMemcpyDeviceToHost));
Chao Liu's avatar
Chao Liu committed
134
    }
Chao Liu's avatar
Chao Liu committed
135

Chao Liu's avatar
Chao Liu committed
136
    ~DeviceMem() { cudaFree(mpDeviceBuf); }
Chao Liu's avatar
Chao Liu committed
137

Chao Liu's avatar
Chao Liu committed
138
139
    void* mpDeviceBuf;
    std::size_t mMemSize;
Chao Liu's avatar
Chao Liu committed
140
141
};

Chao Liu's avatar
Chao Liu committed
142
struct joinable_thread : std::thread
Chao Liu's avatar
Chao Liu committed
143
{
Chao Liu's avatar
Chao Liu committed
144
145
146
147
    template <class... Xs>
    joinable_thread(Xs&&... xs) : std::thread(std::forward<Xs>(xs)...)
    {
    }
Chao Liu's avatar
Chao Liu committed
148

Chao Liu's avatar
Chao Liu committed
149
150
    joinable_thread(joinable_thread&&) = default;
    joinable_thread& operator=(joinable_thread&&) = default;
Chao Liu's avatar
Chao Liu committed
151

Chao Liu's avatar
Chao Liu committed
152
153
154
155
156
157
    ~joinable_thread()
    {
        if(this->joinable())
            this->join();
    }
};
Chao Liu's avatar
Chao Liu committed
158
159
160
161
162

template <class F, class... Xs>
struct ParallelTensorFunctor
{
    F mF;
Chao Liu's avatar
Chao Liu committed
163
    static constexpr std::size_t NDIM = sizeof...(Xs);
Chao Liu's avatar
Chao Liu committed
164
165
166
167
168
169
170
171
172
173
174
175
176
177
    std::array<std::size_t, NDIM> mLens;
    std::array<std::size_t, NDIM> mStrides;
    std::size_t mN1d;

    ParallelTensorFunctor(F f, Xs... xs) : mF(f), mLens({static_cast<std::size_t>(xs)...})
    {
        mStrides.back() = 1;
        std::partial_sum(mLens.rbegin(),
                         mLens.rend() - 1,
                         mStrides.rbegin() + 1,
                         std::multiplies<std::size_t>());
        mN1d = mStrides[0] * mLens[0];
    }

Chao Liu's avatar
Chao Liu committed
178
179
180
181
182
183
184
185
186
187
188
189
190
    std::array<std::size_t, NDIM> GetNdIndices(std::size_t i) const
    {
        std::array<std::size_t, NDIM> indices;

        for(int idim = 0; idim < NDIM; ++idim)
        {
            indices[idim] = i / mStrides[idim];
            i -= indices[idim] * mStrides[idim];
        }

        return indices;
    }

Chao Liu's avatar
Chao Liu committed
191
    void operator()(std::size_t num_thread) const
Chao Liu's avatar
Chao Liu committed
192
193
194
195
196
197
198
199
    {
        std::size_t work_per_thread = (mN1d + num_thread - 1) / num_thread;

        std::vector<joinable_thread> threads(num_thread);

        for(std::size_t it = 0; it < num_thread; ++it)
        {
            std::size_t iw_begin = it * work_per_thread;
Chao Liu's avatar
Chao Liu committed
200
            std::size_t iw_end   = std::min((it + 1) * work_per_thread, mN1d);
Chao Liu's avatar
Chao Liu committed
201
202
203

            auto f = [=] {
                for(std::size_t iw = iw_begin; iw < iw_end; ++iw)
Chao Liu's avatar
Chao Liu committed
204
205
206
                {
                    call_f_unpack_args(mF, GetNdIndices(iw));
                }
Chao Liu's avatar
Chao Liu committed
207
208
209
210
211
212
            };
            threads[it] = joinable_thread(f);
        }
    }
};

Chao Liu's avatar
Chao Liu committed
213
214
template <class F, class... Xs>
auto make_ParallelTensorFunctor(F f, Xs... xs)
Chao Liu's avatar
Chao Liu committed
215
{
Chao Liu's avatar
Chao Liu committed
216
    return ParallelTensorFunctor<F, Xs...>(f, xs...);
Chao Liu's avatar
Chao Liu committed
217
218
}

Chao Liu's avatar
Chao Liu committed
219
220
template <class T>
struct Tensor
Chao Liu's avatar
Chao Liu committed
221
{
Chao Liu's avatar
Chao Liu committed
222
223
224
225
226
    template <class X>
    Tensor(std::initializer_list<X> lens)
        : mDesc(DataType<T>{}, lens), mData(mDesc.GetElementSpace())
    {
    }
Chao Liu's avatar
Chao Liu committed
227

Chao Liu's avatar
Chao Liu committed
228
229
230
231
    template <class X>
    Tensor(std::vector<X> lens) : mDesc(DataType<T>{}, lens), mData(mDesc.GetElementSpace())
    {
    }
Chao Liu's avatar
Chao Liu committed
232

Chao Liu's avatar
Chao Liu committed
233
234
235
236
237
    template <class X, class Y>
    Tensor(std::vector<X> lens, std::vector<Y> strides)
        : mDesc(DataType<T>{}, lens, strides), mData(mDesc.GetElementSpace())
    {
    }
Chao Liu's avatar
Chao Liu committed
238

Chao Liu's avatar
Chao Liu committed
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
    template <class G>
    void GenerateTensorValue(G g, std::size_t num_thread = 1)
    {
        switch(mDesc.GetDimension())
        {
        case 1:
        {
            auto f = [&](auto i) { (*this)(i) = g(i); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0])(num_thread);
            break;
        }
        case 2:
        {
            auto f = [&](auto i0, auto i1) { (*this)(i0, i1) = g(i0, i1); };
            make_ParallelTensorFunctor(f, mDesc.GetLengths()[0], mDesc.GetLengths()[1])(num_thread);
            break;
        }
        case 3:
        {
            auto f = [&](auto i0, auto i1, auto i2) { (*this)(i0, i1, i2) = g(i0, i1, i2); };
            make_ParallelTensorFunctor(
                f, mDesc.GetLengths()[0], mDesc.GetLengths()[1], mDesc.GetLengths()[2])(num_thread);
            break;
        }
        case 4:
        {
            auto f = [&](auto i0, auto i1, auto i2, auto i3) {
                (*this)(i0, i1, i2, i3) = g(i0, i1, i2, i3);
            };
            make_ParallelTensorFunctor(f,
                                       mDesc.GetLengths()[0],
                                       mDesc.GetLengths()[1],
                                       mDesc.GetLengths()[2],
                                       mDesc.GetLengths()[3])(num_thread);
            break;
        }
        default: throw std::runtime_error("unspported dimension");
        }
    }

    template <class... Is>
    T& operator()(Is... is)
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    template <class... Is>
    const T& operator()(Is... is) const
    {
        return mData[mDesc.Get1dIndex(is...)];
    }

    typename std::vector<T>::iterator begin() { return mData.begin(); }

    typename std::vector<T>::iterator end() { return mData.end(); }

    typename std::vector<T>::const_iterator begin() const { return mData.begin(); }

    typename std::vector<T>::const_iterator end() const { return mData.end(); }

    TensorDescriptor mDesc;
    std::vector<T> mData;
};