README.md 18.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# 馃懢 PyTorch-Transformers
VictorSanh's avatar
VictorSanh committed
2

thomwolf's avatar
thomwolf committed
3
[![CircleCI](https://circleci.com/gh/huggingface/pytorch-transformers.svg?style=svg)](https://circleci.com/gh/huggingface/pytorch-transformers)
Julien Chaumond's avatar
Julien Chaumond committed
4

Peiqin Lin's avatar
typos  
Peiqin Lin committed
5
PyTorch-Transformers (formerly known as `pytorch-pretrained-bert`) is a library of state-of-the-art pre-trained models for Natural Language Processing (NLP).
thomwolf's avatar
indeed  
thomwolf committed
6
7

The library currently contains PyTorch implementations, pre-trained model weights, usage scripts and conversion utilities for the following models:
VictorSanh's avatar
VictorSanh committed
8

thomwolf's avatar
thomwolf committed
9
10
11
12
13
14
1. **[BERT](https://github.com/google-research/bert)** (from Google) released with the paper [BERT: Pre-training of Deep Bidirectional Transformers for Language Understanding](https://arxiv.org/abs/1810.04805) by Jacob Devlin, Ming-Wei Chang, Kenton Lee and Kristina Toutanova.
2. **[GPT](https://github.com/openai/finetune-transformer-lm)** (from OpenAI) released with the paper [Improving Language Understanding by Generative Pre-Training](https://blog.openai.com/language-unsupervised/) by Alec Radford, Karthik Narasimhan, Tim Salimans and Ilya Sutskever.
3. **[GPT-2](https://blog.openai.com/better-language-models/)** (from OpenAI) released with the paper [Language Models are Unsupervised Multitask Learners](https://blog.openai.com/better-language-models/) by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
4. **[Transformer-XL](https://github.com/kimiyoung/transformer-xl)** (from Google/CMU) released with the paper [Transformer-XL: Attentive Language Models Beyond a Fixed-Length Context](https://arxiv.org/abs/1901.02860) by Zihang Dai*, Zhilin Yang*, Yiming Yang, Jaime Carbonell, Quoc V. Le, Ruslan Salakhutdinov.
5. **[XLNet](https://github.com/zihangdai/xlnet/)** (from Google/CMU) released with the paper [鈥媂LNet: Generalized Autoregressive Pretraining for Language Understanding](https://arxiv.org/abs/1906.08237) by Zhilin Yang*, Zihang Dai*, Yiming Yang, Jaime Carbonell, Ruslan Salakhutdinov, Quoc V. Le.
6. **[XLM](https://github.com/facebookresearch/XLM/)** (from Facebook) released together with the paper [Cross-lingual Language Model Pretraining](https://arxiv.org/abs/1901.07291) by Guillaume Lample and Alexis Conneau.
thomwolf's avatar
thomwolf committed
15

thomwolf's avatar
thomwolf committed
16
These implementations have been tested on several datasets (see the example scripts) and should match the performances of the original implementations (e.g. ~93 F1 on SQuAD for BERT Whole-Word-Masking, ~88 F1 on RocStories for OpenAI GPT, ~18.3 perplexity on WikiText 103 for Transformer-XL, ~0.916 Peason R coefficient on STS-B for XLNet). You can find more details on the performances in the Examples section of the [documentation](https://huggingface.co/pytorch-transformers/examples.html).
17

thomwolf's avatar
thomwolf committed
18
| Section | Description |
thomwolf's avatar
thomwolf committed
19
|-|-|
thomwolf's avatar
thomwolf committed
20
| [Installation](#installation) | How to install the package |
thomwolf's avatar
thomwolf committed
21
| [Quick tour: Usage](#quick-tour-usage) | Tokenizers & models usage: Bert and GPT-2 |
Praateek Mahajan's avatar
Praateek Mahajan committed
22
| [Quick tour: Fine-tuning/usage scripts](#quick-tour-of-the-fine-tuningusage-scripts) | Using provided scripts: GLUE, SQuAD and Text generation |
thomwolf's avatar
thomwolf committed
23
| [Migrating from pytorch-pretrained-bert to pytorch-transformers](#Migrating-from-pytorch-pretrained-bert-to-pytorch-transformers) | Migrating your code from pytorch-pretrained-bert to pytorch-transformers |
thomwolf's avatar
thomwolf committed
24
| [Documentation](https://huggingface.co/pytorch-transformers/) | Full API documentation and more |
thomwolf's avatar
thomwolf committed
25

thomwolf's avatar
thomwolf committed
26
## Installation
VictorSanh's avatar
VictorSanh committed
27

thomwolf's avatar
thomwolf committed
28
This repo is tested on Python 2.7 and 3.5+ (examples are tested only on python 3.5+) and PyTorch 0.4.1 to 1.1.0
VictorSanh's avatar
VictorSanh committed
29

thomwolf's avatar
thomwolf committed
30
### With pip
thomwolf's avatar
thomwolf committed
31

thomwolf's avatar
thomwolf committed
32
PyTorch-Transformers can be installed by pip as follows:
thomwolf's avatar
thomwolf committed
33

thomwolf's avatar
thomwolf committed
34
```bash
thomwolf's avatar
thomwolf committed
35
pip install pytorch-transformers
thomwolf's avatar
thomwolf committed
36
```
VictorSanh's avatar
VictorSanh committed
37

thomwolf's avatar
thomwolf committed
38
### From source
thomwolf's avatar
thomwolf committed
39
40

Clone the repository and run:
thomwolf's avatar
thomwolf committed
41

thomwolf's avatar
thomwolf committed
42
43
44
```bash
pip install [--editable] .
```
VictorSanh's avatar
VictorSanh committed
45

thomwolf's avatar
thomwolf committed
46
### Tests
thomwolf's avatar
thomwolf committed
47

thomwolf's avatar
thomwolf committed
48
A series of tests is included for the library and the example scripts. Library tests can be found in the [tests folder](https://github.com/huggingface/pytorch-transformers/tree/master/pytorch_transformers/tests) and examples tests in the [examples folder](https://github.com/huggingface/pytorch-transformers/tree/master/examples).
thomwolf's avatar
thomwolf committed
49

thomwolf's avatar
thomwolf committed
50
These tests can be run using `pytest` (install pytest if needed with `pip install pytest`).
thomwolf's avatar
thomwolf committed
51

thomwolf's avatar
thomwolf committed
52
You can run the tests from the root of the cloned repository with the commands:
thomwolf's avatar
thomwolf committed
53

thomwolf's avatar
thomwolf committed
54
55
56
57
```bash
python -m pytest -sv ./pytorch_transformers/tests/
python -m pytest -sv ./examples/
```
thomwolf's avatar
thomwolf committed
58

thomwolf's avatar
thomwolf committed
59
## Quick tour
thomwolf's avatar
thomwolf committed
60

rish-16's avatar
rish-16 committed
61
Let's do a very quick overview of PyTorch-Transformers. Detailed examples for each model architecture (Bert, GPT, GPT-2, Transformer-XL, XLNet and XLM) can be found in the [full documentation](https://huggingface.co/pytorch-transformers/).
thomwolf's avatar
thomwolf committed
62
63
64

```python
import torch
thomwolf's avatar
thomwolf committed
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
from pytorch_transformers import *

# PyTorch-Transformers has a unified API
# for 6 transformer architectures and 27 pretrained weights.
#          Model          | Tokenizer          | Pretrained weights shortcut
MODELS = [(BertModel,       BertTokenizer,      'bert-base-uncased'),
          (OpenAIGPTModel,  OpenAIGPTTokenizer, 'openai-gpt'),
          (GPT2Model,       GPT2Tokenizer,      'gpt2'),
          (TransfoXLModel,  TransfoXLTokenizer, 'transfo-xl-wt103'),
          (XLNetModel,      XLNetTokenizer,     'xlnet-base-cased'),
          (XLMModel,        XLMTokenizer,       'xlm-mlm-enfr-1024')]

# Let's encode some text in a sequence of hidden-states using each model:
for model_class, tokenizer_class, pretrained_weights in MODELS:
    # Load pretrained model/tokenizer
    tokenizer = tokenizer_class.from_pretrained(pretrained_weights)
    model = model_class.from_pretrained(pretrained_weights)

    # Encode text
    input_ids = torch.tensor([tokenizer.encode("Here is some text to encode")])
Thomas Wolf's avatar
Thomas Wolf committed
85
86
    with torch.no_grad():
        last_hidden_states = model(input_ids)[0]  # Models outputs are now tuples
thomwolf's avatar
thomwolf committed
87
88
89
90
91
92

# Each architecture is provided with several class for fine-tuning on down-stream tasks, e.g.
BERT_MODEL_CLASSES = [BertModel, BertForPreTraining, BertForMaskedLM, BertForNextSentencePrediction,
                      BertForSequenceClassification, BertForMultipleChoice, BertForTokenClassification,
                      BertForQuestionAnswering]

thomwolf's avatar
thomwolf committed
93
94
95
# All the classes for an architecture can be initiated from pretrained weights for this architecture
# Note that additional weights added for fine-tuning are only initialized
# and need to be trained on the down-stream task
thomwolf's avatar
thomwolf committed
96
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
thomwolf's avatar
thomwolf committed
97
98
99
100
101
for model_class in BERT_MODEL_CLASSES:
    # Load pretrained model/tokenizer
    model = model_class.from_pretrained('bert-base-uncased')

# Models can return full list of hidden-states & attentions weights at each layer
thomwolf's avatar
thomwolf committed
102
103
104
model = model_class.from_pretrained(pretrained_weights,
                                    output_hidden_states=True,
                                    output_attentions=True)
thomwolf's avatar
thomwolf committed
105
106
107
108
109
110
111
112
113
114
115
116
117
118
input_ids = torch.tensor([tokenizer.encode("Let's see all hidden-states and attentions on this text")])
all_hidden_states, all_attentions = model(input_ids)[-2:]

# Models are compatible with Torchscript
model = model_class.from_pretrained(pretrained_weights, torchscript=True)
traced_model = torch.jit.trace(model, (input_ids,))

# Simple serialization for models and tokenizers
model.save_pretrained('./directory/to/save/')  # save
model = model_class.from_pretrained('./directory/to/save/')  # re-load
tokenizer.save_pretrained('./directory/to/save/')  # save
tokenizer = tokenizer_class.from_pretrained(pretrained_weights)

# SOTA examples for GLUE, SQUAD, text generation...
thomwolf's avatar
thomwolf committed
119
120
```

thomwolf's avatar
thomwolf committed
121
## Quick tour of the fine-tuning/usage scripts
thomwolf's avatar
thomwolf committed
122
The library comprises several example scripts with SOTA performances for NLU and NLG tasks:
thomwolf's avatar
thomwolf committed
123

thomwolf's avatar
thomwolf committed
124
125
126
127
- `run_glue.py`: an example fine-tuning Bert, XLNet and XLM on nine different GLUE tasks (*sequence-level classification*)
- `run_squad.py`: an example fine-tuning Bert, XLNet and XLM on the question answering dataset SQuAD 2.0 (*token-level classification*)
- `run_generation.py`: an example using GPT, GPT-2, Transformer-XL and XLNet for conditional language generation
- other model-specific examples (see the documentation).
thomwolf's avatar
thomwolf committed
128

thomwolf's avatar
thomwolf committed
129
Here are three quick usage examples for these scripts:
thomwolf's avatar
thomwolf committed
130

thomwolf's avatar
thomwolf committed
131
### `run_glue.py`: Fine-tuning on GLUE tasks for sequence classification
thomwolf's avatar
thomwolf committed
132

thomwolf's avatar
thomwolf committed
133
The [General Language Understanding Evaluation (GLUE) benchmark](https://gluebenchmark.com/) is a collection of nine sentence- or sentence-pair language understanding tasks for evaluating and analyzing natural language understanding systems.
thomwolf's avatar
thomwolf committed
134

thomwolf's avatar
thomwolf committed
135
136
137
138
Before running anyone of these GLUE tasks you should download the
[GLUE data](https://gluebenchmark.com/tasks) by running
[this script](https://gist.github.com/W4ngatang/60c2bdb54d156a41194446737ce03e2e)
and unpack it to some directory `$GLUE_DIR`.
thomwolf's avatar
thomwolf committed
139

140
141
142
143
144
145
You should also install the additional packages required by the examples:

```shell
pip install -r ./examples/requirements.txt
```

thomwolf's avatar
thomwolf committed
146
147
148
```shell
export GLUE_DIR=/path/to/glue
export TASK_NAME=MRPC
thomwolf's avatar
thomwolf committed
149

150
151
152
153
154
155
156
157
158
159
160
161
162
163
python ./examples/run_glue.py \
    --model_type bert \
    --model_name_or_path bert-base-uncased \
    --task_name $TASK_NAME \
    --do_train \
    --do_eval \
    --do_lower_case \
    --data_dir $GLUE_DIR/$TASK_NAME \
    --max_seq_length 128 \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5 \
    --num_train_epochs 3.0 \
    --output_dir /tmp/$TASK_NAME/
thomwolf's avatar
thomwolf committed
164
165
```

thomwolf's avatar
thomwolf committed
166
where task name can be one of CoLA, SST-2, MRPC, STS-B, QQP, MNLI, QNLI, RTE, WNLI.
thomwolf's avatar
thomwolf committed
167

thomwolf's avatar
thomwolf committed
168
The dev set results will be present within the text file 'eval_results.txt' in the specified output_dir. In case of MNLI, since there are two separate dev sets, matched and mismatched, there will be a separate output folder called '/tmp/MNLI-MM/' in addition to '/tmp/MNLI/'.
thomwolf's avatar
thomwolf committed
169

thomwolf's avatar
thomwolf committed
170
#### Fine-tuning XLNet model on the STS-B regression task
thomwolf's avatar
thomwolf committed
171

thomwolf's avatar
thomwolf committed
172
This example code fine-tunes XLNet on the STS-B corpus using parallel training on a server with 4 V100 GPUs.
173
Parallel training is a simple way to use several GPUs (but is slower and less flexible than distributed training, see below).
thomwolf's avatar
thomwolf committed
174

thomwolf's avatar
thomwolf committed
175
176
```shell
export GLUE_DIR=/path/to/glue
thomwolf's avatar
thomwolf committed
177

thomwolf's avatar
thomwolf committed
178
179
180
181
python ./examples/run_glue.py \
    --model_type xlnet \
    --model_name_or_path xlnet-large-cased \
    --do_train  \
182
    --do_eval   \
thomwolf's avatar
thomwolf committed
183
184
185
186
187
188
189
190
191
192
193
194
    --task_name=sts-b     \
    --data_dir=${GLUE_DIR}/STS-B  \
    --output_dir=./proc_data/sts-b-110   \
    --max_seq_length=128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --gradient_accumulation_steps=1 \
    --max_steps=1200  \
    --model_name=xlnet-large-cased   \
    --overwrite_output_dir   \
    --overwrite_cache \
    --warmup_steps=120
thomwolf's avatar
thomwolf committed
195
196
```

197
On this machine we thus have a batch size of 32, please increase `gradient_accumulation_steps` to reach the same batch size if you have a smaller machine. These hyper-parameters should results in a Pearson correlation coefficient of `+0.917` on the development set.
thomwolf's avatar
thomwolf committed
198

thomwolf's avatar
thomwolf committed
199
#### Fine-tuning Bert model on the MRPC classification task
thomwolf's avatar
thomwolf committed
200

thomwolf's avatar
thomwolf committed
201
This example code fine-tunes the Bert Whole Word Masking model on the Microsoft Research Paraphrase Corpus (MRPC) corpus using distributed training on 8 V100 GPUs to reach a F1 > 92.
thomwolf's avatar
thomwolf committed
202

thomwolf's avatar
thomwolf committed
203
```bash
204
python -m torch.distributed.launch --nproc_per_node 8 ./examples/run_glue.py   \
thomwolf's avatar
thomwolf committed
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --task_name MRPC \
    --do_train   \
    --do_eval   \
    --do_lower_case   \
    --data_dir $GLUE_DIR/MRPC/   \
    --max_seq_length 128   \
    --per_gpu_eval_batch_size=8   \
    --per_gpu_train_batch_size=8   \
    --learning_rate 2e-5   \
    --num_train_epochs 3.0  \
    --output_dir /tmp/mrpc_output/ \
    --overwrite_output_dir   \
    --overwrite_cache \
thomwolf's avatar
thomwolf committed
220
221
```

thomwolf's avatar
thomwolf committed
222
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
223

thomwolf's avatar
thomwolf committed
224
225
226
227
228
229
230
```bash
  acc = 0.8823529411764706
  acc_and_f1 = 0.901702786377709
  eval_loss = 0.3418912578906332
  f1 = 0.9210526315789473
  global_step = 174
  loss = 0.07231863956341798
thomwolf's avatar
thomwolf committed
231
232
```

thomwolf's avatar
thomwolf committed
233
### `run_squad.py`: Fine-tuning on SQuAD for question-answering
thomwolf's avatar
thomwolf committed
234

thomwolf's avatar
thomwolf committed
235
This example code fine-tunes BERT on the SQuAD dataset using distributed training on 8 V100 GPUs and Bert Whole Word Masking uncased model to reach a F1 > 93 on SQuAD:
thomwolf's avatar
thomwolf committed
236

thomwolf's avatar
thomwolf committed
237
```bash
238
python -m torch.distributed.launch --nproc_per_node=8 ./examples/run_squad.py \
thomwolf's avatar
thomwolf committed
239
240
241
    --model_type bert \
    --model_name_or_path bert-large-uncased-whole-word-masking \
    --do_train \
thomwolf's avatar
thomwolf committed
242
    --do_eval \
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
249
250
251
252
    --do_lower_case \
    --train_file $SQUAD_DIR/train-v1.1.json \
    --predict_file $SQUAD_DIR/dev-v1.1.json \
    --learning_rate 3e-5 \
    --num_train_epochs 2 \
    --max_seq_length 384 \
    --doc_stride 128 \
    --output_dir ../models/wwm_uncased_finetuned_squad/ \
    --per_gpu_eval_batch_size=3   \
    --per_gpu_train_batch_size=3   \
thomwolf's avatar
thomwolf committed
253
254
```

thomwolf's avatar
thomwolf committed
255
Training with these hyper-parameters gave us the following results:
thomwolf's avatar
thomwolf committed
256

thomwolf's avatar
thomwolf committed
257
258
259
```bash
python $SQUAD_DIR/evaluate-v1.1.py $SQUAD_DIR/dev-v1.1.json ../models/wwm_uncased_finetuned_squad/predictions.json
{"exact_match": 86.91579943235573, "f1": 93.1532499015869}
thomwolf's avatar
thomwolf committed
260
261
```

thomwolf's avatar
thomwolf committed
262
This is the model provided as `bert-large-uncased-whole-word-masking-finetuned-squad`.
263

thomwolf's avatar
thomwolf committed
264
### `run_generation.py`: Text generation with GPT, GPT-2, Transformer-XL and XLNet
265

thomwolf's avatar
thomwolf committed
266
267
A conditional generation script is also included to generate text from a prompt.
The generation script include the [tricks](https://github.com/rusiaaman/XLNet-gen#methodology) proposed by by Aman Rusia to get high quality generation with memory models like Transformer-XL and XLNet (include a predefined text to make short inputs longer).
268

thomwolf's avatar
thomwolf committed
269
Here is how to run the script with the small version of OpenAI GPT-2 model:
270

thomwolf's avatar
thomwolf committed
271
```shell
thomwolf's avatar
thomwolf committed
272
python ./examples/run_generation.py \
thomwolf's avatar
thomwolf committed
273
274
275
    --model_type=gpt2 \
    --length=20 \
    --model_name_or_path=gpt2 \
276
277
```

thomwolf's avatar
thomwolf committed
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
## Migrating from pytorch-pretrained-bert to pytorch-transformers

Here is a quick summary of what you should take care of when migrating from `pytorch-pretrained-bert` to `pytorch-transformers`

### Models always output `tuples`

The main breaking change when migrating from `pytorch-pretrained-bert` to `pytorch-transformers` is that the models forward method always outputs a `tuple` with various elements depending on the model and the configuration parameters.

The exact content of the tuples for each model are detailled in the models' docstrings and the [documentation](https://huggingface.co/pytorch-transformers/).

In pretty much every case, you will be fine by taking the first element of the output as the output you previously used in `pytorch-pretrained-bert`.

Here is a `pytorch-pretrained-bert` to `pytorch-transformers` conversion example for a `BertForSequenceClassification` classification model:

```python
# Let's load our model
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')

# If you used to have this line in pytorch-pretrained-bert:
loss = model(input_ids, labels=labels)

# Now just use this line in pytorch-transformers to extract the loss from the output tuple:
outputs = model(input_ids, labels=labels)
loss = outputs[0]

# In pytorch-transformers you can also have access to the logits:
loss, logits = outputs[:2]

# And even the attention weigths if you configure the model to output them (and other outputs too, see the docstrings and documentation)
model = BertForSequenceClassification.from_pretrained('bert-base-uncased', output_attentions=True)
outputs = model(input_ids, labels=labels)
loss, logits, attentions = outputs
```

### Serialization

314
315
316
317
318
Breaking change in the `from_pretrained()`method:

1. Models are now set in evaluation mode by default when instantiated with the `from_pretrained()` method. To train them don't forget to set them back in training mode (`model.train()`) to activate the dropout modules.

2. The additional `*input` and `**kwargs` arguments supplied to the `from_pretrained()` method used to be directly passed to the underlying model's class `__init__()` method. They are now used to update the model configuration attribute instead which can break derived model classes build based on the previous `BertForSequenceClassification` examples. We are working on a way to mitigate this breaking change in [#866](https://github.com/huggingface/pytorch-transformers/pull/866) by forwarding the the model `__init__()` method (i) the provided positional arguments and (ii) the keyword arguments which do not match any configuratoin class attributes.
319

thomwolf's avatar
typos  
thomwolf committed
320
Also, while not a breaking change, the serialization methods have been standardized and you probably should switch to the new method `save_pretrained(save_directory)` if you were using any other serialization method before.
thomwolf's avatar
thomwolf committed
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379

Here is an example:

```python
### Let's load a model and tokenizer
model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')

### Do some stuff to our model and tokenizer
# Ex: add new tokens to the vocabulary and embeddings of our model
tokenizer.add_tokens(['[SPECIAL_TOKEN_1]', '[SPECIAL_TOKEN_2]'])
model.resize_token_embeddings(len(tokenizer))
# Train our model
train(model)

### Now let's save our model and tokenizer to a directory
model.save_pretrained('./my_saved_model_directory/')
tokenizer.save_pretrained('./my_saved_model_directory/')

### Reload the model and the tokenizer
model = BertForSequenceClassification.from_pretrained('./my_saved_model_directory/')
tokenizer = BertTokenizer.from_pretrained('./my_saved_model_directory/')
```

### Optimizers: BertAdam & OpenAIAdam are now AdamW, schedules are standard PyTorch schedules

The two optimizers previously included, `BertAdam` and `OpenAIAdam`, have been replaced by a single `AdamW` optimizer.
The new optimizer `AdamW` matches PyTorch `Adam` optimizer API.

The schedules are now standard [PyTorch learning rate schedulers](https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate) and not part of the optimizer anymore.

Here is a conversion examples from `BertAdam` with a linear warmup and decay schedule to `AdamW` and the same schedule:

```python
# Parameters:
lr = 1e-3
num_total_steps = 1000
num_warmup_steps = 100
warmup_proportion = float(num_warmup_steps) / float(num_total_steps)  # 0.1

### Previously BertAdam optimizer was instantiated like this:
optimizer = BertAdam(model.parameters(), lr=lr, schedule='warmup_linear', warmup=warmup_proportion, t_total=num_total_steps)
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    optimizer.step()

### In PyTorch-Transformers, optimizer and schedules are splitted and instantiated like this:
optimizer = AdamW(model.parameters(), lr=lr, correct_bias=False)  # To reproduce BertAdam specific behavior set correct_bias=False
scheduler = WarmupLinearSchedule(optimizer, warmup_steps=num_warmup_steps, t_total=num_total_steps)  # PyTorch scheduler
### and used like this:
for batch in train_data:
    loss = model(batch)
    loss.backward()
    scheduler.step()
    optimizer.step()
```

thomwolf's avatar
thomwolf committed
380
## Citation
thomwolf's avatar
thomwolf committed
381

thomwolf's avatar
thomwolf committed
382
At the moment, there is no paper associated to PyTorch-Transformers but we are working on preparing one. In the meantime, please include a mention of the library and a link to the present repository if you use this work in a published or open-source project.