modeling_bert.py 70.7 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17
18
19


import logging
thomwolf's avatar
thomwolf committed
20
21
import math
import os
Sylvain Gugger's avatar
Sylvain Gugger committed
22
import warnings
thomwolf's avatar
thomwolf committed
23
24

import torch
25
import torch.utils.checkpoint
thomwolf's avatar
thomwolf committed
26
from torch import nn
27
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
28

29
from .activations import gelu, gelu_new, swish
30
from .configuration_bert import BertConfig
31
from .file_utils import add_code_sample_docstrings, add_start_docstrings, add_start_docstrings_to_callable
32
from .modeling_utils import PreTrainedModel, find_pruneable_heads_and_indices, prune_linear_layer
Aymeric Augustin's avatar
Aymeric Augustin committed
33

thomwolf's avatar
thomwolf committed
34
35
36

logger = logging.getLogger(__name__)

37
38
_TOKENIZER_FOR_DOC = "BertTokenizer"

39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
BERT_PRETRAINED_MODEL_ARCHIVE_LIST = [
    "bert-base-uncased",
    "bert-large-uncased",
    "bert-base-cased",
    "bert-large-cased",
    "bert-base-multilingual-uncased",
    "bert-base-multilingual-cased",
    "bert-base-chinese",
    "bert-base-german-cased",
    "bert-large-uncased-whole-word-masking",
    "bert-large-cased-whole-word-masking",
    "bert-large-uncased-whole-word-masking-finetuned-squad",
    "bert-large-cased-whole-word-masking-finetuned-squad",
    "bert-base-cased-finetuned-mrpc",
    "bert-base-german-dbmdz-cased",
    "bert-base-german-dbmdz-uncased",
    "cl-tohoku/bert-base-japanese",
    "cl-tohoku/bert-base-japanese-whole-word-masking",
    "cl-tohoku/bert-base-japanese-char",
    "cl-tohoku/bert-base-japanese-char-whole-word-masking",
    "TurkuNLP/bert-base-finnish-cased-v1",
    "TurkuNLP/bert-base-finnish-uncased-v1",
    "wietsedv/bert-base-dutch-cased",
    # See all BERT models at https://huggingface.co/models?filter=bert
]
64

Rémi Louf's avatar
Rémi Louf committed
65

66
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
67
    """ Load tf checkpoints in a pytorch model.
68
    """
69
70
71
72
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
73
    except ImportError:
74
75
76
77
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
78
        raise
79
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
80
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
81
82
83
84
85
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
86
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
87
88
89
90
91
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
92
        name = name.split("/")
93
94
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
95
96
97
98
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
thomwolf's avatar
thomwolf committed
99
            logger.info("Skipping {}".format("/".join(name)))
100
101
102
            continue
        pointer = model
        for m_name in name:
103
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
104
                scope_names = re.split(r"_(\d+)", m_name)
105
            else:
106
107
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
108
                pointer = getattr(pointer, "weight")
109
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
110
                pointer = getattr(pointer, "bias")
111
            elif scope_names[0] == "output_weights":
112
                pointer = getattr(pointer, "weight")
113
            elif scope_names[0] == "squad":
114
                pointer = getattr(pointer, "classifier")
115
            else:
116
                try:
117
                    pointer = getattr(pointer, scope_names[0])
118
                except AttributeError:
thomwolf's avatar
thomwolf committed
119
                    logger.info("Skipping {}".format("/".join(name)))
120
                    continue
121
122
            if len(scope_names) >= 2:
                num = int(scope_names[1])
123
                pointer = pointer[num]
124
125
126
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
127
128
129
130
131
132
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
133
        logger.info("Initialize PyTorch weight {}".format(name))
134
135
136
137
        pointer.data = torch.from_numpy(array)
    return model


Diganta Misra's avatar
Diganta Misra committed
138
139
140
141
142
def mish(x):
    return x * torch.tanh(nn.functional.softplus(x))


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
thomwolf's avatar
thomwolf committed
143
144


145
BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
146

Rémi Louf's avatar
Rémi Louf committed
147

thomwolf's avatar
thomwolf committed
148
149
150
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
151

thomwolf's avatar
thomwolf committed
152
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
153
        super().__init__()
154
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=config.pad_token_id)
155
156
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
157
158
159

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
160
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
161
162
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

163
164
165
166
167
168
169
170
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]
        device = input_ids.device if input_ids is not None else inputs_embeds.device
thomwolf's avatar
thomwolf committed
171
        if position_ids is None:
172
173
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(input_shape)
thomwolf's avatar
thomwolf committed
174
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
175
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
176

177
178
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
thomwolf's avatar
thomwolf committed
179
180
181
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

182
        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
thomwolf's avatar
thomwolf committed
183
184
185
186
187
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Rémi Louf's avatar
Rémi Louf committed
188
189
class BertSelfAttention(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
190
        super().__init__()
Lysandre Debut's avatar
Lysandre Debut committed
191
        if config.hidden_size % config.num_attention_heads != 0 and not hasattr(config, "embedding_size"):
Rémi Louf's avatar
Rémi Louf committed
192
193
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
194
195
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
Rémi Louf's avatar
Rémi Louf committed
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

212
213
214
215
216
217
218
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
219
        output_attentions=False,
220
    ):
thomwolf's avatar
thomwolf committed
221
        mixed_query_layer = self.query(hidden_states)
222

223
224
225
        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
thomwolf's avatar
thomwolf committed
226
227
228
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
229
            attention_mask = encoder_attention_mask
Rémi Louf's avatar
Rémi Louf committed
230
        else:
thomwolf's avatar
thomwolf committed
231
232
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)
Rémi Louf's avatar
Rémi Louf committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

262
        outputs = (context_layer, attention_probs) if output_attentions else (context_layer,)
Rémi Louf's avatar
Rémi Louf committed
263
264
265
        return outputs


thomwolf's avatar
thomwolf committed
266
267
class BertSelfOutput(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
268
        super().__init__()
thomwolf's avatar
thomwolf committed
269
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
270
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
271
272
273
274
275
276
277
278
279
280
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
281
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
282
        super().__init__()
thomwolf's avatar
thomwolf committed
283
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
284
        self.output = BertSelfOutput(config)
285
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
286

thomwolf's avatar
thomwolf committed
287
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
288
289
        if len(heads) == 0:
            return
290
291
292
        heads, index = find_pruneable_heads_and_indices(
            heads, self.self.num_attention_heads, self.self.attention_head_size, self.pruned_heads
        )
293

thomwolf's avatar
thomwolf committed
294
295
296
297
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
298
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
299
300

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
301
302
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
303
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
304

305
306
307
308
309
310
311
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
312
        output_attentions=False,
313
314
    ):
        self_outputs = self.self(
315
            hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask, output_attentions,
316
        )
Rémi Louf's avatar
Rémi Louf committed
317
318
319
320
321
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


thomwolf's avatar
thomwolf committed
322
323
class BertIntermediate(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
324
        super().__init__()
thomwolf's avatar
thomwolf committed
325
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
326
        if isinstance(config.hidden_act, str):
thomwolf's avatar
thomwolf committed
327
328
329
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
330
331
332
333
334
335
336
337
338

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
339
        super().__init__()
thomwolf's avatar
thomwolf committed
340
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
341
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
342
343
344
345
346
347
348
349
350
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Rémi Louf's avatar
Rémi Louf committed
351
class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
352
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
353
        super().__init__()
354
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
355
356
        self.is_decoder = config.is_decoder
        if self.is_decoder:
357
            self.crossattention = BertAttention(config)
Rémi Louf's avatar
Rémi Louf committed
358
359
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
360

361
362
363
364
365
366
367
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
368
        output_attentions=False,
369
    ):
370
371
372
        self_attention_outputs = self.attention(
            hidden_states, attention_mask, head_mask, output_attentions=output_attentions,
        )
thomwolf's avatar
thomwolf committed
373
374
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights
Rémi Louf's avatar
Rémi Louf committed
375

376
        if self.is_decoder and encoder_hidden_states is not None:
377
            cross_attention_outputs = self.crossattention(
378
379
380
381
382
383
                attention_output,
                attention_mask,
                head_mask,
                encoder_hidden_states,
                encoder_attention_mask,
                output_attentions,
384
            )
thomwolf's avatar
thomwolf committed
385
386
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights
Rémi Louf's avatar
Rémi Louf committed
387

Rémi Louf's avatar
Rémi Louf committed
388
        intermediate_output = self.intermediate(attention_output)
Rémi Louf's avatar
Rémi Louf committed
389
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
390
        outputs = (layer_output,) + outputs
Rémi Louf's avatar
Rémi Louf committed
391
        return outputs
392
393


thomwolf's avatar
thomwolf committed
394
class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
395
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
396
        super().__init__()
397
        self.config = config
Rémi Louf's avatar
Rémi Louf committed
398
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
399

400
401
402
403
404
405
406
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
407
        output_attentions=False,
Joseph Liu's avatar
Joseph Liu committed
408
        output_hidden_states=False,
409
    ):
410
411
        all_hidden_states = ()
        all_attentions = ()
412
        for i, layer_module in enumerate(self.layer):
Joseph Liu's avatar
Joseph Liu committed
413
            if output_hidden_states:
414
                all_hidden_states = all_hidden_states + (hidden_states,)
415

416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
            if getattr(self.config, "gradient_checkpointing", False):

                def create_custom_forward(module):
                    def custom_forward(*inputs):
                        return module(*inputs, output_attentions)

                    return custom_forward

                layer_outputs = torch.utils.checkpoint.checkpoint(
                    create_custom_forward(layer_module),
                    hidden_states,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                )
            else:
                layer_outputs = layer_module(
                    hidden_states,
                    attention_mask,
                    head_mask[i],
                    encoder_hidden_states,
                    encoder_attention_mask,
                    output_attentions,
                )
441
442
            hidden_states = layer_outputs[0]

443
            if output_attentions:
444
                all_attentions = all_attentions + (layer_outputs[1],)
445
446

        # Add last layer
Joseph Liu's avatar
Joseph Liu committed
447
        if output_hidden_states:
448
            all_hidden_states = all_hidden_states + (hidden_states,)
449

450
        outputs = (hidden_states,)
Joseph Liu's avatar
Joseph Liu committed
451
        if output_hidden_states:
452
            outputs = outputs + (all_hidden_states,)
453
        if output_attentions:
454
            outputs = outputs + (all_attentions,)
455
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
456
457
458
459


class BertPooler(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
460
        super().__init__()
thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
475
        super().__init__()
thomwolf's avatar
thomwolf committed
476
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
477
        if isinstance(config.hidden_act, str):
thomwolf's avatar
thomwolf committed
478
479
480
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
481
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489
490

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
491
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
492
        super().__init__()
thomwolf's avatar
thomwolf committed
493
494
495
496
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
497
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
498

thomwolf's avatar
thomwolf committed
499
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
500

501
502
503
        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

thomwolf's avatar
thomwolf committed
504
505
    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
Lysandre Debut's avatar
Lysandre Debut committed
506
        hidden_states = self.decoder(hidden_states)
thomwolf's avatar
thomwolf committed
507
508
509
510
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
511
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
512
        super().__init__()
thomwolf's avatar
thomwolf committed
513
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
514
515
516
517
518
519
520
521

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
522
        super().__init__()
thomwolf's avatar
thomwolf committed
523
524
525
526
527
528
529
530
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
531
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
532
        super().__init__()
thomwolf's avatar
thomwolf committed
533
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
534
535
536
537
538
539
540
541
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


542
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
543
    """ An abstract class to handle weights initialization and
544
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
545
    """
546

547
548
549
550
    config_class = BertConfig
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

551
552
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
553
554
555
556
557
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
558
559
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
560
561
562
563
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


Lysandre's avatar
Lysandre committed
564
565
566
BERT_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
Lysandre's avatar
Fixes  
Lysandre committed
567
    usage and behavior.
thomwolf's avatar
thomwolf committed
568

thomwolf's avatar
thomwolf committed
569
    Parameters:
Rémi Louf's avatar
Rémi Louf committed
570
        config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
571
            Initializing with a config file does not load the weights associated with the model, only the configuration.
572
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
573
574
575
"""

BERT_INPUTS_DOCSTRING = r"""
Lysandre's avatar
Lysandre committed
576
    Args:
577
        input_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`):
Lysandre's avatar
Lysandre committed
578
579
            Indices of input sequence tokens in the vocabulary.

580
581
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
Lysandre's avatar
Lysandre committed
582
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.
Lysandre's avatar
Lysandre committed
583

Lysandre's avatar
Lysandre committed
584
            `What are input IDs? <../glossary.html#input-ids>`__
585
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
586
587
588
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
Lysandre's avatar
Lysandre committed
589

Lysandre's avatar
Lysandre committed
590
            `What are attention masks? <../glossary.html#attention-mask>`__
591
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
592
593
594
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
Lysandre's avatar
Lysandre committed
595

Lysandre's avatar
Lysandre committed
596
            `What are token type IDs? <../glossary.html#token-type-ids>`_
597
        position_ids (:obj:`torch.LongTensor` of shape :obj:`{0}`, `optional`, defaults to :obj:`None`):
598
599
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
Lysandre's avatar
Lysandre committed
600

Lysandre's avatar
Lysandre committed
601
602
            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
603
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
604
            Mask values selected in ``[0, 1]``:
Lysandre's avatar
Lysandre committed
605
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
Lysandre's avatar
Lysandre committed
606
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
607
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
608
609
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
Lysandre's avatar
Lysandre committed
610
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
611
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
Lysandre's avatar
Lysandre committed
612
613
            if the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
614
615
616
617
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
ZhuBaohe's avatar
ZhuBaohe committed
618
        output_attentions (:obj:`bool`, `optional`, defaults to :obj:`None`):
619
            If set to ``True``, the attentions tensors of all attention layers are returned. See ``attentions`` under returned tensors for more detail.
thomwolf's avatar
thomwolf committed
620
621
"""

622
623
624
625
626

@add_start_docstrings(
    "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
627
class BertModel(BertPreTrainedModel):
Lysandre's avatar
Lysandre committed
628
    """
thomwolf's avatar
thomwolf committed
629

Lysandre's avatar
Lysandre committed
630
631
632
633
    The model can behave as an encoder (with only self-attention) as well
    as a decoder, in which case a layer of cross-attention is added between
    the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
    Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
thomwolf's avatar
thomwolf committed
634

Lysandre's avatar
Lysandre committed
635
636
637
638
639
640
    To behave as an decoder the model needs to be initialized with the
    :obj:`is_decoder` argument of the configuration set to :obj:`True`; an
    :obj:`encoder_hidden_states` is expected as an input to the forward pass.

    .. _`Attention is all you need`:
        https://arxiv.org/abs/1706.03762
thomwolf's avatar
thomwolf committed
641
642

    """
643

thomwolf's avatar
thomwolf committed
644
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
645
        super().__init__(config)
646
        self.config = config
thomwolf's avatar
thomwolf committed
647

thomwolf's avatar
thomwolf committed
648
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
649
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
650
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
651

652
        self.init_weights()
thomwolf's avatar
thomwolf committed
653

thomwolf's avatar
thomwolf committed
654
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
655
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
656

thomwolf's avatar
thomwolf committed
657
658
    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value
659

thomwolf's avatar
thomwolf committed
660
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
661
662
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
663
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
664
665
        """
        for layer, heads in heads_to_prune.items():
666
            self.encoder.layer[layer].attention.prune_heads(heads)
thomwolf's avatar
thomwolf committed
667

668
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
669
    @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
670
671
672
673
674
675
676
677
678
679
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
680
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
681
        output_hidden_states=None,
682
    ):
Lysandre's avatar
Lysandre committed
683
684
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
685
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
686
687
688
689
690
691
692
693
694
695
696
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during pre-training.

            This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
697
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
698
699
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.
700

Lysandre's avatar
Lysandre committed
701
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
702
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
703
704
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
705

Lysandre's avatar
Lysandre committed
706
707
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
708
        """
709
        output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
Joseph Liu's avatar
Joseph Liu committed
710
711
712
        output_hidden_states = (
            output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
        )
Lysandre's avatar
Lysandre committed
713

714
715
716
717
718
719
720
721
722
723
724
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

thomwolf's avatar
thomwolf committed
725
        if attention_mask is None:
Julien Chaumond's avatar
Julien Chaumond committed
726
            attention_mask = torch.ones(input_shape, device=device)
thomwolf's avatar
thomwolf committed
727
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
728
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
729

730
731
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
732
        extended_attention_mask: torch.Tensor = self.get_extended_attention_mask(attention_mask, input_shape, device)
thomwolf's avatar
thomwolf committed
733

Rémi Louf's avatar
Rémi Louf committed
734
        # If a 2D ou 3D attention mask is provided for the cross-attention
Rémi Louf's avatar
Rémi Louf committed
735
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
736
737
738
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
739
            if encoder_attention_mask is None:
740
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
741
            encoder_extended_attention_mask = self.invert_attention_mask(encoder_attention_mask)
742
743
        else:
            encoder_extended_attention_mask = None
Rémi Louf's avatar
Rémi Louf committed
744

thomwolf's avatar
thomwolf committed
745
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
746
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
747
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
748
749
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
750
        head_mask = self.get_head_mask(head_mask, self.config.num_hidden_layers)
thomwolf's avatar
thomwolf committed
751

752
753
754
755
756
757
758
759
760
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
761
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
762
            output_hidden_states=output_hidden_states,
763
        )
764
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
765
        pooled_output = self.pooler(sequence_output)
766

767
768
769
        outputs = (sequence_output, pooled_output,) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
770
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
771
772


773
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
774
    """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
Lysandre's avatar
Lysandre committed
775
    a `next sentence prediction (classification)` head. """,
776
777
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
778
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
779
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
780
        super().__init__(config)
781

thomwolf's avatar
thomwolf committed
782
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
783
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
784

785
        self.init_weights()
thomwolf's avatar
thomwolf committed
786

thomwolf's avatar
thomwolf committed
787
    def get_output_embeddings(self):
788
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
789

790
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
791
792
793
794
795
796
797
798
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
799
        labels=None,
800
        next_sentence_label=None,
801
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
802
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
803
        **kwargs
804
    ):
Lysandre's avatar
Lysandre committed
805
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
806
        labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
807
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
808
809
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
810
811
812
813
814
815
            in ``[0, ..., config.vocab_size]``
        next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.
Sylvain Gugger's avatar
Sylvain Gugger committed
816
817
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.
Lysandre's avatar
Lysandre committed
818
819
820

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Sylvain Gugger's avatar
Sylvain Gugger committed
821
        loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Lysandre's avatar
Lysandre committed
822
823
824
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
825
        seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Lysandre's avatar
Lysandre committed
826
827
            Prediction scores of the next sequence prediction (classification) head (scores of True/False
            continuation before SoftMax).
828
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
829
830
831
832
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
833
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
834
835
836
837
838
839
840
841
842
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.


    Examples::

843
844
        >>> from transformers import BertTokenizer, BertForPreTraining
        >>> import torch
Lysandre's avatar
Lysandre committed
845

846
847
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> model = BertForPreTraining.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
848

849
850
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
Lysandre's avatar
Lysandre committed
851

852
        >>> prediction_scores, seq_relationship_scores = outputs[:2]
Lysandre's avatar
Lysandre committed
853
854

        """
Sylvain Gugger's avatar
Sylvain Gugger committed
855
856
857
858
859
860
861
        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                DeprecationWarning,
            )
            labels = kwargs.pop("masked_lm_labels")
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
862
863
864
865
866
867
868
869

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
870
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
871
            output_hidden_states=output_hidden_states,
872
        )
873
874

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
875
876
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

877
878
879
        outputs = (prediction_scores, seq_relationship_score,) + outputs[
            2:
        ]  # add hidden states and attention if they are here
880

Sylvain Gugger's avatar
Sylvain Gugger committed
881
        if labels is not None and next_sentence_label is not None:
LysandreJik's avatar
LysandreJik committed
882
            loss_fct = CrossEntropyLoss()
Sylvain Gugger's avatar
Sylvain Gugger committed
883
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
884
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
885
            total_loss = masked_lm_loss + next_sentence_loss
886
            outputs = (total_loss,) + outputs
887
888

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
889
890


891
892
893
894
@add_start_docstrings(
    """Bert Model with a `language modeling` head on top for CLM fine-tuning. """, BERT_START_DOCSTRING
)
class BertLMHeadModel(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
895
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
896
        super().__init__(config)
897
        assert config.is_decoder, "If you want to use `BertLMHeadModel` as a standalone, add `is_decoder=True`."
thomwolf's avatar
thomwolf committed
898

thomwolf's avatar
thomwolf committed
899
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
900
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
901

902
        self.init_weights()
thomwolf's avatar
thomwolf committed
903

thomwolf's avatar
thomwolf committed
904
    def get_output_embeddings(self):
905
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
906

907
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
908
909
910
911
912
913
914
915
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
916
        labels=None,
917
918
        encoder_hidden_states=None,
        encoder_attention_mask=None,
919
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
920
        output_hidden_states=None,
Sylvain Gugger's avatar
Sylvain Gugger committed
921
        **kwargs
922
    ):
Lysandre's avatar
Lysandre committed
923
        r"""
Sylvain Gugger's avatar
Sylvain Gugger committed
924
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
925
            Labels for computing the left-to-right language modeling loss (next word prediction).
Lysandre's avatar
Lysandre committed
926
927
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
928
            in ``[0, ..., config.vocab_size]``
929
930
931
932
933
934
935
936
937
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
            Next token prediction loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
938
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
939
940
941
942
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
943
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
944
945
946
947
948
949
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

950
    Example::
951

952
953
        >>> from transformers import BertTokenizer, BertLMHeadModel, BertConfig
        >>> import torch
954

955
956
957
958
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-cased')
        >>> config = BertConfig.from_pretrained("bert-base-cased")
        >>> config.is_decoder = True
        >>> model = BertLMHeadModel.from_pretrained('bert-base-cased', config=config)
959

960
961
        >>> inputs = tokenizer("Hello, my dog is cute", return_tensors="pt")
        >>> outputs = model(**inputs)
962

963
        >>> last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
964
965
966
967
968
969
970
971
972
973
974
975
        """

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
976
            output_hidden_states=output_hidden_states,
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
        )

        sequence_output = outputs[0]
        prediction_scores = self.cls(sequence_output)

        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here

        if labels is not None:
            # we are doing next-token prediction; shift prediction scores and input ids by one
            prediction_scores = prediction_scores[:, :-1, :].contiguous()
            labels = labels[:, 1:].contiguous()
            loss_fct = CrossEntropyLoss()
            ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
            outputs = (ltr_lm_loss,) + outputs

        return outputs  # (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)

    def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape

        # if model is used as a decoder in encoder-decoder model, the decoder attention mask is created on the fly
        if attention_mask is None:
            attention_mask = input_ids.new_ones(input_shape)

        return {"input_ids": input_ids, "attention_mask": attention_mask}


@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
class BertForMaskedLM(BertPreTrainedModel):
    def __init__(self, config):
        super().__init__(config)
1008
1009
1010
        assert (
            not config.is_decoder
        ), "If you want to use `BertForMaskedLM` make sure `config.is_decoder=False` for bi-directional self-attention."
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020

        self.bert = BertModel(config)
        self.cls = BertOnlyMLMHead(config)

        self.init_weights()

    def get_output_embeddings(self):
        return self.cls.predictions.decoder

    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1021
    @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1034
        output_hidden_states=None,
1035
1036
1037
1038
1039
        **kwargs
    ):
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
1040
1041
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
1042
            in ``[0, ..., config.vocab_size]``
Sylvain Gugger's avatar
Sylvain Gugger committed
1043
1044
        kwargs (:obj:`Dict[str, any]`, optional, defaults to `{}`):
            Used to hide legacy arguments that have been deprecated.
Lysandre's avatar
Lysandre committed
1045
1046
1047

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Sylvain Gugger's avatar
Sylvain Gugger committed
1048
        masked_lm_loss (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
Lysandre's avatar
Lysandre committed
1049
1050
1051
            Masked language modeling loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
1052
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
1053
1054
1055
1056
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1057
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
1058
1059
1060
1061
1062
1063
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """
Sylvain Gugger's avatar
Sylvain Gugger committed
1064
1065
1066
1067
1068
1069
        if "masked_lm_labels" in kwargs:
            warnings.warn(
                "The `masked_lm_labels` argument is deprecated and will be removed in a future version, use `labels` instead.",
                DeprecationWarning,
            )
            labels = kwargs.pop("masked_lm_labels")
1070
        assert "lm_labels" not in kwargs, "Use `BertWithLMHead` for autoregressive language modeling task."
Sylvain Gugger's avatar
Sylvain Gugger committed
1071
        assert kwargs == {}, f"Unexpected keyword arguments: {list(kwargs.keys())}."
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
1082
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1083
            output_hidden_states=output_hidden_states,
1084
        )
thomwolf's avatar
thomwolf committed
1085
1086

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
1087
1088
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
1089
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
1090

Sylvain Gugger's avatar
Sylvain Gugger committed
1091
        if labels is not None:
Lysandre's avatar
Lysandre committed
1092
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
Sylvain Gugger's avatar
Sylvain Gugger committed
1093
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), labels.view(-1))
1094
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
1095

1096
        return outputs  # (masked_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1097

1098
1099
1100
1101
    def prepare_inputs_for_generation(self, input_ids, attention_mask=None, **model_kwargs):
        input_shape = input_ids.shape
        effective_batch_size = input_shape[0]

1102
1103
1104
1105
1106
1107
1108
        #  add a dummy token
        assert self.config.pad_token_id is not None, "The PAD token should be defined for generation"
        attention_mask = torch.cat([attention_mask, attention_mask.new_zeros((attention_mask.shape[0], 1))], dim=-1)
        dummy_token = torch.full(
            (effective_batch_size, 1), self.config.pad_token_id, dtype=torch.long, device=input_ids.device
        )
        input_ids = torch.cat([input_ids, dummy_token], dim=1)
1109
1110
1111

        return {"input_ids": input_ids, "attention_mask": attention_mask}

thomwolf's avatar
thomwolf committed
1112

1113
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1114
    """Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING,
1115
)
thomwolf's avatar
thomwolf committed
1116
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1117
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1118
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1119

thomwolf's avatar
thomwolf committed
1120
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1121
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
1122

1123
        self.init_weights()
thomwolf's avatar
thomwolf committed
1124

1125
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1126
1127
1128
1129
1130
1131
1132
1133
1134
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        next_sentence_label=None,
1135
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1136
        output_hidden_states=None,
1137
    ):
Lysandre's avatar
Lysandre committed
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
        r"""
        next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
            Next sequence prediction (classification) loss.
1149
        seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Lysandre's avatar
Lysandre committed
1150
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
1151
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
1152
1153
1154
1155
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1156
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
1157
1158
1159
1160
1161
1162
1163
1164
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

1165
1166
        >>> from transformers import BertTokenizer, BertForNextSentencePrediction
        >>> import torch
Lysandre's avatar
Lysandre committed
1167

1168
1169
        >>> tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        >>> model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1170

1171
1172
1173
        >>> prompt = "In Italy, pizza served in formal settings, such as at a restaurant, is presented unsliced."
        >>> next_sentence = "The sky is blue due to the shorter wavelength of blue light."
        >>> encoding = tokenizer(prompt, next_sentence, return_tensors='pt')
Lysandre's avatar
Lysandre committed
1174

1175
1176
        >>> loss, logits = model(**encoding, next_sentence_label=torch.LongTensor([1]))
        >>> assert logits[0, 0] < logits[0, 1] # next sentence was random
Lysandre's avatar
Lysandre committed
1177
        """
1178
1179
1180
1181
1182
1183
1184
1185

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
1186
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1187
            output_hidden_states=output_hidden_states,
1188
        )
1189

thomwolf's avatar
thomwolf committed
1190
1191
        pooled_output = outputs[1]

1192
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
1193

1194
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1195
        if next_sentence_label is not None:
LysandreJik's avatar
LysandreJik committed
1196
            loss_fct = CrossEntropyLoss()
1197
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
1198
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
1199
1200

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1201
1202


1203
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1204
    """Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1205
    the pooled output) e.g. for GLUE tasks. """,
1206
1207
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1208
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1209
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1210
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1211
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1212

thomwolf's avatar
thomwolf committed
1213
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1214
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
Jordan's avatar
Jordan committed
1215
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1216

1217
        self.init_weights()
thomwolf's avatar
thomwolf committed
1218

1219
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1220
    @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
1221
1222
1223
1224
1225
1226
1227
1228
1229
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1230
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1231
        output_hidden_states=None,
1232
    ):
Lysandre's avatar
Lysandre committed
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
1246
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
1247
1248
1249
1250
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1251
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
1252
1253
1254
1255
1256
1257
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """
1258
1259
1260
1261
1262
1263
1264
1265

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
1266
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1267
            output_hidden_states=output_hidden_states,
1268
        )
1269

thomwolf's avatar
thomwolf committed
1270
1271
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1272
1273
1274
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1275
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1276

thomwolf's avatar
thomwolf committed
1277
        if labels is not None:
1278
1279
1280
1281
1282
1283
1284
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1285
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1286
1287

        return outputs  # (loss), logits, (hidden_states), (attentions)
1288
1289


1290
1291
@add_start_docstrings(
    """Bert Model with a multiple choice classification head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1292
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
1293
1294
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1295
class BertForMultipleChoice(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1296
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1297
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1298

thomwolf's avatar
thomwolf committed
1299
        self.bert = BertModel(config)
1300
1301
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1302

1303
        self.init_weights()
1304

1305
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, num_choices, sequence_length)"))
1306
    @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
1307
1308
1309
1310
1311
1312
1313
1314
1315
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1316
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1317
        output_hidden_states=None,
1318
    ):
Lysandre's avatar
Lysandre committed
1319
1320
1321
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
1322
            Indices should be in ``[0, ..., num_choices-1]`` where `num_choices` is the size of the second dimension
Lysandre's avatar
Lysandre committed
1323
1324
1325
            of the input tensors. (see `input_ids` above)

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1326
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre Debut's avatar
Lysandre Debut committed
1327
        loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
Lysandre's avatar
Lysandre committed
1328
1329
1330
1331
1332
            Classification loss.
        classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
            `num_choices` is the second dimension of the input tensors. (see `input_ids` above).

            Classification scores (before SoftMax).
1333
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
1334
1335
1336
1337
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1338
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
1339
1340
1341
1342
1343
1344
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """
1345
        num_choices = input_ids.shape[1] if input_ids is not None else inputs_embeds.shape[1]
thomwolf's avatar
thomwolf committed
1346

1347
        input_ids = input_ids.view(-1, input_ids.size(-1)) if input_ids is not None else None
1348
1349
1350
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None
1351
1352
1353
1354
1355
        inputs_embeds = (
            inputs_embeds.view(-1, inputs_embeds.size(-2), inputs_embeds.size(-1))
            if inputs_embeds is not None
            else None
        )
1356

1357
1358
1359
1360
1361
1362
1363
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
1364
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1365
            output_hidden_states=output_hidden_states,
1366
        )
1367

thomwolf's avatar
thomwolf committed
1368
1369
        pooled_output = outputs[1]

1370
1371
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1372
        reshaped_logits = logits.view(-1, num_choices)
1373

1374
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1375

1376
1377
1378
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1379
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1380
1381

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1382
1383


1384
1385
@add_start_docstrings(
    """Bert Model with a token classification head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1386
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
1387
1388
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1389
class BertForTokenClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1390
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1391
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1392
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1393

thomwolf's avatar
thomwolf committed
1394
        self.bert = BertModel(config)
1395
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1396
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1397

1398
        self.init_weights()
1399

1400
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1401
    @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
1402
1403
1404
1405
1406
1407
1408
1409
1410
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
1411
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1412
        output_hidden_states=None,
1413
    ):
Lysandre's avatar
Lysandre committed
1414
1415
1416
1417
1418
1419
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1420
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
1421
1422
1423
1424
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
            Classification scores (before SoftMax).
1425
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
1426
1427
1428
1429
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1430
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
1431
1432
1433
1434
1435
1436
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """
1437
1438
1439
1440
1441
1442
1443
1444

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
1445
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1446
            output_hidden_states=output_hidden_states,
1447
        )
1448

thomwolf's avatar
thomwolf committed
1449
1450
        sequence_output = outputs[0]

1451
1452
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1453

1454
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1455
1456
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1457
1458
1459
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
1460
1461
1462
1463
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
1464
1465
1466
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1467
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1468

thomwolf's avatar
thomwolf committed
1469
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1470
1471


1472
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1473
    """Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Lysandre's avatar
Lysandre committed
1474
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
1475
1476
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1477
class BertForQuestionAnswering(BertPreTrainedModel):
Lysandre's avatar
Lysandre committed
1478
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1479
        super().__init__(config)
Lysandre's avatar
Lysandre committed
1480
1481
1482
1483
1484
1485
1486
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

1487
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING.format("(batch_size, sequence_length)"))
1488
    @add_code_sample_docstrings(tokenizer_class=_TOKENIZER_FOR_DOC, checkpoint="bert-base-uncased")
Lysandre's avatar
Lysandre committed
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
1499
        output_attentions=None,
Joseph Liu's avatar
Joseph Liu committed
1500
        output_hidden_states=None,
Lysandre's avatar
Lysandre committed
1501
1502
1503
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
1504
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1505
1506
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
Lysandre's avatar
Lysandre committed
1507
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
1508
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1509
1510
1511
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

Lysandre's avatar
Lysandre committed
1512
    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1513
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
1514
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
thomwolf's avatar
thomwolf committed
1515
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
Lysandre's avatar
Lysandre committed
1516
        start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
thomwolf's avatar
thomwolf committed
1517
            Span-start scores (before SoftMax).
Lysandre's avatar
Lysandre committed
1518
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
thomwolf's avatar
thomwolf committed
1519
            Span-end scores (before SoftMax).
1520
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_hidden_states=True`` is passed or when ``config.output_hidden_states=True``):
Lysandre's avatar
Lysandre committed
1521
1522
1523
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

thomwolf's avatar
thomwolf committed
1524
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
1525
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``output_attentions=True`` is passed or when ``config.output_attentions=True``):
Lysandre's avatar
Lysandre committed
1526
1527
1528
1529
1530
1531
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
        """
1532
1533
1534
1535
1536
1537
1538
1539

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
1540
            output_attentions=output_attentions,
Joseph Liu's avatar
Joseph Liu committed
1541
            output_hidden_states=output_hidden_states,
1542
        )
1543

thomwolf's avatar
thomwolf committed
1544
1545
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1546
1547
1548
1549
1550
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1551
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1567
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1568
1569

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)