modeling_bert.py 69.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
thomwolf's avatar
thomwolf committed
2
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
3
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
thomwolf's avatar
thomwolf committed
4
5
6
7
8
9
10
11
12
13
14
15
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
thomwolf's avatar
thomwolf committed
16
"""PyTorch BERT model. """
thomwolf's avatar
thomwolf committed
17
18
19


import logging
thomwolf's avatar
thomwolf committed
20
21
import math
import os
thomwolf's avatar
thomwolf committed
22
23
24

import torch
from torch import nn
25
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
26

27
from .activations import gelu, gelu_new, swish
28
from .configuration_bert import BertConfig
Lysandre's avatar
Lysandre committed
29
from .file_utils import add_start_docstrings, add_start_docstrings_to_callable
Aymeric Augustin's avatar
Aymeric Augustin committed
30
31
from .modeling_utils import PreTrainedModel, prune_linear_layer

thomwolf's avatar
thomwolf committed
32
33
34

logger = logging.getLogger(__name__)

35
BERT_PRETRAINED_MODEL_ARCHIVE_MAP = {
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    "bert-base-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-uncased-pytorch_model.bin",
    "bert-large-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-pytorch_model.bin",
    "bert-base-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-pytorch_model.bin",
    "bert-large-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-pytorch_model.bin",
    "bert-base-multilingual-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-uncased-pytorch_model.bin",
    "bert-base-multilingual-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-multilingual-cased-pytorch_model.bin",
    "bert-base-chinese": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-chinese-pytorch_model.bin",
    "bert-base-german-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-cased-pytorch_model.bin",
    "bert-large-uncased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-pytorch_model.bin",
    "bert-large-cased-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-pytorch_model.bin",
    "bert-large-uncased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-uncased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    "bert-large-cased-whole-word-masking-finetuned-squad": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-large-cased-whole-word-masking-finetuned-squad-pytorch_model.bin",
    "bert-base-cased-finetuned-mrpc": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-cased-finetuned-mrpc-pytorch_model.bin",
    "bert-base-german-dbmdz-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-cased-pytorch_model.bin",
    "bert-base-german-dbmdz-uncased": "https://s3.amazonaws.com/models.huggingface.co/bert/bert-base-german-dbmdz-uncased-pytorch_model.bin",
    "bert-base-japanese": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-pytorch_model.bin",
    "bert-base-japanese-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-whole-word-masking-pytorch_model.bin",
    "bert-base-japanese-char": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-pytorch_model.bin",
    "bert-base-japanese-char-whole-word-masking": "https://s3.amazonaws.com/models.huggingface.co/bert/cl-tohoku/bert-base-japanese-char-whole-word-masking-pytorch_model.bin",
    "bert-base-finnish-cased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-cased-v1/pytorch_model.bin",
    "bert-base-finnish-uncased-v1": "https://s3.amazonaws.com/models.huggingface.co/bert/TurkuNLP/bert-base-finnish-uncased-v1/pytorch_model.bin",
57
    "bert-base-dutch-cased": "https://s3.amazonaws.com/models.huggingface.co/bert/wietsedv/bert-base-dutch-cased/pytorch_model.bin",
58
}
59

Rémi Louf's avatar
Rémi Louf committed
60

61
def load_tf_weights_in_bert(model, config, tf_checkpoint_path):
thomwolf's avatar
thomwolf committed
62
    """ Load tf checkpoints in a pytorch model.
63
    """
64
65
66
67
    try:
        import re
        import numpy as np
        import tensorflow as tf
thomwolf's avatar
thomwolf committed
68
    except ImportError:
69
70
71
72
        logger.error(
            "Loading a TensorFlow model in PyTorch, requires TensorFlow to be installed. Please see "
            "https://www.tensorflow.org/install/ for installation instructions."
        )
73
        raise
74
    tf_path = os.path.abspath(tf_checkpoint_path)
thomwolf's avatar
thomwolf committed
75
    logger.info("Converting TensorFlow checkpoint from {}".format(tf_path))
76
77
78
79
80
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
    names = []
    arrays = []
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
81
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
82
83
84
85
86
        array = tf.train.load_variable(tf_path, name)
        names.append(name)
        arrays.append(array)

    for name, array in zip(names, arrays):
87
        name = name.split("/")
88
89
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
90
91
92
93
        if any(
            n in ["adam_v", "adam_m", "AdamWeightDecayOptimizer", "AdamWeightDecayOptimizer_1", "global_step"]
            for n in name
        ):
thomwolf's avatar
thomwolf committed
94
            logger.info("Skipping {}".format("/".join(name)))
95
96
97
            continue
        pointer = model
        for m_name in name:
98
            if re.fullmatch(r"[A-Za-z]+_\d+", m_name):
99
                scope_names = re.split(r"_(\d+)", m_name)
100
            else:
101
102
                scope_names = [m_name]
            if scope_names[0] == "kernel" or scope_names[0] == "gamma":
103
                pointer = getattr(pointer, "weight")
104
            elif scope_names[0] == "output_bias" or scope_names[0] == "beta":
105
                pointer = getattr(pointer, "bias")
106
            elif scope_names[0] == "output_weights":
107
                pointer = getattr(pointer, "weight")
108
            elif scope_names[0] == "squad":
109
                pointer = getattr(pointer, "classifier")
110
            else:
111
                try:
112
                    pointer = getattr(pointer, scope_names[0])
113
                except AttributeError:
thomwolf's avatar
thomwolf committed
114
                    logger.info("Skipping {}".format("/".join(name)))
115
                    continue
116
117
            if len(scope_names) >= 2:
                num = int(scope_names[1])
118
                pointer = pointer[num]
119
120
121
        if m_name[-11:] == "_embeddings":
            pointer = getattr(pointer, "weight")
        elif m_name == "kernel":
122
123
124
125
126
127
            array = np.transpose(array)
        try:
            assert pointer.shape == array.shape
        except AssertionError as e:
            e.args += (pointer.shape, array.shape)
            raise
thomwolf's avatar
thomwolf committed
128
        logger.info("Initialize PyTorch weight {}".format(name))
129
130
131
132
        pointer.data = torch.from_numpy(array)
    return model


Diganta Misra's avatar
Diganta Misra committed
133
134
135
136
137
def mish(x):
    return x * torch.tanh(nn.functional.softplus(x))


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish, "gelu_new": gelu_new, "mish": mish}
thomwolf's avatar
thomwolf committed
138
139


140
BertLayerNorm = torch.nn.LayerNorm
thomwolf's avatar
thomwolf committed
141

Rémi Louf's avatar
Rémi Louf committed
142

thomwolf's avatar
thomwolf committed
143
144
145
class BertEmbeddings(nn.Module):
    """Construct the embeddings from word, position and token_type embeddings.
    """
146

thomwolf's avatar
thomwolf committed
147
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
148
        super().__init__()
149
        self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size, padding_idx=0)
150
151
        self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size)
        self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size)
thomwolf's avatar
thomwolf committed
152
153
154

        # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load
        # any TensorFlow checkpoint file
155
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
156
157
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

158
159
160
161
162
163
164
165
    def forward(self, input_ids=None, token_type_ids=None, position_ids=None, inputs_embeds=None):
        if input_ids is not None:
            input_shape = input_ids.size()
        else:
            input_shape = inputs_embeds.size()[:-1]

        seq_length = input_shape[1]
        device = input_ids.device if input_ids is not None else inputs_embeds.device
thomwolf's avatar
thomwolf committed
166
        if position_ids is None:
167
168
            position_ids = torch.arange(seq_length, dtype=torch.long, device=device)
            position_ids = position_ids.unsqueeze(0).expand(input_shape)
thomwolf's avatar
thomwolf committed
169
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
170
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
171

172
173
        if inputs_embeds is None:
            inputs_embeds = self.word_embeddings(input_ids)
thomwolf's avatar
thomwolf committed
174
175
176
        position_embeddings = self.position_embeddings(position_ids)
        token_type_embeddings = self.token_type_embeddings(token_type_ids)

177
        embeddings = inputs_embeds + position_embeddings + token_type_embeddings
thomwolf's avatar
thomwolf committed
178
179
180
181
182
        embeddings = self.LayerNorm(embeddings)
        embeddings = self.dropout(embeddings)
        return embeddings


Rémi Louf's avatar
Rémi Louf committed
183
184
class BertSelfAttention(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
185
        super().__init__()
Rémi Louf's avatar
Rémi Louf committed
186
187
188
        if config.hidden_size % config.num_attention_heads != 0:
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
189
190
                "heads (%d)" % (config.hidden_size, config.num_attention_heads)
            )
Rémi Louf's avatar
Rémi Louf committed
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
        self.output_attentions = config.output_attentions

        self.num_attention_heads = config.num_attention_heads
        self.attention_head_size = int(config.hidden_size / config.num_attention_heads)
        self.all_head_size = self.num_attention_heads * self.attention_head_size

        self.query = nn.Linear(config.hidden_size, self.all_head_size)
        self.key = nn.Linear(config.hidden_size, self.all_head_size)
        self.value = nn.Linear(config.hidden_size, self.all_head_size)

        self.dropout = nn.Dropout(config.attention_probs_dropout_prob)

    def transpose_for_scores(self, x):
        new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size)
        x = x.view(*new_x_shape)
        return x.permute(0, 2, 1, 3)

208
209
210
211
212
213
214
215
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
thomwolf's avatar
thomwolf committed
216
        mixed_query_layer = self.query(hidden_states)
217

218
219
220
        # If this is instantiated as a cross-attention module, the keys
        # and values come from an encoder; the attention mask needs to be
        # such that the encoder's padding tokens are not attended to.
thomwolf's avatar
thomwolf committed
221
222
223
        if encoder_hidden_states is not None:
            mixed_key_layer = self.key(encoder_hidden_states)
            mixed_value_layer = self.value(encoder_hidden_states)
224
            attention_mask = encoder_attention_mask
Rémi Louf's avatar
Rémi Louf committed
225
        else:
thomwolf's avatar
thomwolf committed
226
227
            mixed_key_layer = self.key(hidden_states)
            mixed_value_layer = self.value(hidden_states)
Rémi Louf's avatar
Rémi Louf committed
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260

        query_layer = self.transpose_for_scores(mixed_query_layer)
        key_layer = self.transpose_for_scores(mixed_key_layer)
        value_layer = self.transpose_for_scores(mixed_value_layer)

        # Take the dot product between "query" and "key" to get the raw attention scores.
        attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2))
        attention_scores = attention_scores / math.sqrt(self.attention_head_size)
        if attention_mask is not None:
            # Apply the attention mask is (precomputed for all layers in BertModel forward() function)
            attention_scores = attention_scores + attention_mask

        # Normalize the attention scores to probabilities.
        attention_probs = nn.Softmax(dim=-1)(attention_scores)

        # This is actually dropping out entire tokens to attend to, which might
        # seem a bit unusual, but is taken from the original Transformer paper.
        attention_probs = self.dropout(attention_probs)

        # Mask heads if we want to
        if head_mask is not None:
            attention_probs = attention_probs * head_mask

        context_layer = torch.matmul(attention_probs, value_layer)

        context_layer = context_layer.permute(0, 2, 1, 3).contiguous()
        new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,)
        context_layer = context_layer.view(*new_context_layer_shape)

        outputs = (context_layer, attention_probs) if self.output_attentions else (context_layer,)
        return outputs


thomwolf's avatar
thomwolf committed
261
262
class BertSelfOutput(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
263
        super().__init__()
thomwolf's avatar
thomwolf committed
264
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
265
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
266
267
268
269
270
271
272
273
274
275
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


class BertAttention(nn.Module):
thomwolf's avatar
thomwolf committed
276
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
277
        super().__init__()
thomwolf's avatar
thomwolf committed
278
        self.self = BertSelfAttention(config)
thomwolf's avatar
thomwolf committed
279
        self.output = BertSelfOutput(config)
280
        self.pruned_heads = set()
thomwolf's avatar
thomwolf committed
281

thomwolf's avatar
thomwolf committed
282
    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
283
284
        if len(heads) == 0:
            return
thomwolf's avatar
thomwolf committed
285
        mask = torch.ones(self.self.num_attention_heads, self.self.attention_head_size)
v_sboliu's avatar
v_sboliu committed
286
        heads = set(heads) - self.pruned_heads  # Convert to set and remove already pruned heads
thomwolf's avatar
thomwolf committed
287
        for head in heads:
288
289
            # Compute how many pruned heads are before the head and move the index accordingly
            head = head - sum(1 if h < head else 0 for h in self.pruned_heads)
thomwolf's avatar
thomwolf committed
290
291
292
            mask[head] = 0
        mask = mask.view(-1).contiguous().eq(1)
        index = torch.arange(len(mask))[mask].long()
293

thomwolf's avatar
thomwolf committed
294
295
296
297
        # Prune linear layers
        self.self.query = prune_linear_layer(self.self.query, index)
        self.self.key = prune_linear_layer(self.self.key, index)
        self.self.value = prune_linear_layer(self.self.value, index)
thomwolf's avatar
thomwolf committed
298
        self.output.dense = prune_linear_layer(self.output.dense, index, dim=1)
299
300

        # Update hyper params and store pruned heads
thomwolf's avatar
thomwolf committed
301
302
        self.self.num_attention_heads = self.self.num_attention_heads - len(heads)
        self.self.all_head_size = self.self.attention_head_size * self.self.num_attention_heads
303
        self.pruned_heads = self.pruned_heads.union(heads)
thomwolf's avatar
thomwolf committed
304

305
306
307
308
309
310
311
312
313
314
315
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
        self_outputs = self.self(
            hidden_states, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask
        )
Rémi Louf's avatar
Rémi Louf committed
316
317
318
319
320
        attention_output = self.output(self_outputs[0], hidden_states)
        outputs = (attention_output,) + self_outputs[1:]  # add attentions if we output them
        return outputs


thomwolf's avatar
thomwolf committed
321
322
class BertIntermediate(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
323
        super().__init__()
thomwolf's avatar
thomwolf committed
324
        self.dense = nn.Linear(config.hidden_size, config.intermediate_size)
325
        if isinstance(config.hidden_act, str):
thomwolf's avatar
thomwolf committed
326
327
328
            self.intermediate_act_fn = ACT2FN[config.hidden_act]
        else:
            self.intermediate_act_fn = config.hidden_act
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334
335
336
337

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.intermediate_act_fn(hidden_states)
        return hidden_states


class BertOutput(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
338
        super().__init__()
thomwolf's avatar
thomwolf committed
339
        self.dense = nn.Linear(config.intermediate_size, config.hidden_size)
340
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
341
342
343
344
345
346
347
348
349
        self.dropout = nn.Dropout(config.hidden_dropout_prob)

    def forward(self, hidden_states, input_tensor):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.dropout(hidden_states)
        hidden_states = self.LayerNorm(hidden_states + input_tensor)
        return hidden_states


Rémi Louf's avatar
Rémi Louf committed
350
class BertLayer(nn.Module):
thomwolf's avatar
thomwolf committed
351
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
352
        super().__init__()
353
        self.attention = BertAttention(config)
thomwolf's avatar
thomwolf committed
354
355
        self.is_decoder = config.is_decoder
        if self.is_decoder:
356
            self.crossattention = BertAttention(config)
Rémi Louf's avatar
Rémi Louf committed
357
358
        self.intermediate = BertIntermediate(config)
        self.output = BertOutput(config)
359

360
361
362
363
364
365
366
367
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
thomwolf's avatar
thomwolf committed
368
369
370
        self_attention_outputs = self.attention(hidden_states, attention_mask, head_mask)
        attention_output = self_attention_outputs[0]
        outputs = self_attention_outputs[1:]  # add self attentions if we output attention weights
Rémi Louf's avatar
Rémi Louf committed
371

372
        if self.is_decoder and encoder_hidden_states is not None:
373
374
375
            cross_attention_outputs = self.crossattention(
                attention_output, attention_mask, head_mask, encoder_hidden_states, encoder_attention_mask
            )
thomwolf's avatar
thomwolf committed
376
377
            attention_output = cross_attention_outputs[0]
            outputs = outputs + cross_attention_outputs[1:]  # add cross attentions if we output attention weights
Rémi Louf's avatar
Rémi Louf committed
378

Rémi Louf's avatar
Rémi Louf committed
379
        intermediate_output = self.intermediate(attention_output)
Rémi Louf's avatar
Rémi Louf committed
380
        layer_output = self.output(intermediate_output, attention_output)
thomwolf's avatar
thomwolf committed
381
        outputs = (layer_output,) + outputs
Rémi Louf's avatar
Rémi Louf committed
382
        return outputs
383
384


thomwolf's avatar
thomwolf committed
385
class BertEncoder(nn.Module):
thomwolf's avatar
thomwolf committed
386
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
387
        super().__init__()
thomwolf's avatar
thomwolf committed
388
389
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
Rémi Louf's avatar
Rémi Louf committed
390
        self.layer = nn.ModuleList([BertLayer(config) for _ in range(config.num_hidden_layers)])
thomwolf's avatar
thomwolf committed
391

392
393
394
395
396
397
398
399
    def forward(
        self,
        hidden_states,
        attention_mask=None,
        head_mask=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
400
401
        all_hidden_states = ()
        all_attentions = ()
402
        for i, layer_module in enumerate(self.layer):
403
            if self.output_hidden_states:
404
                all_hidden_states = all_hidden_states + (hidden_states,)
405

406
407
408
            layer_outputs = layer_module(
                hidden_states, attention_mask, head_mask[i], encoder_hidden_states, encoder_attention_mask
            )
409
410
            hidden_states = layer_outputs[0]

thomwolf's avatar
thomwolf committed
411
            if self.output_attentions:
412
                all_attentions = all_attentions + (layer_outputs[1],)
413
414
415

        # Add last layer
        if self.output_hidden_states:
416
            all_hidden_states = all_hidden_states + (hidden_states,)
417

418
        outputs = (hidden_states,)
419
        if self.output_hidden_states:
420
            outputs = outputs + (all_hidden_states,)
thomwolf's avatar
thomwolf committed
421
        if self.output_attentions:
422
            outputs = outputs + (all_attentions,)
423
        return outputs  # last-layer hidden state, (all hidden states), (all attentions)
thomwolf's avatar
thomwolf committed
424
425
426
427


class BertPooler(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
428
        super().__init__()
thomwolf's avatar
thomwolf committed
429
430
431
432
433
434
435
436
437
438
439
440
441
442
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
        self.activation = nn.Tanh()

    def forward(self, hidden_states):
        # We "pool" the model by simply taking the hidden state corresponding
        # to the first token.
        first_token_tensor = hidden_states[:, 0]
        pooled_output = self.dense(first_token_tensor)
        pooled_output = self.activation(pooled_output)
        return pooled_output


class BertPredictionHeadTransform(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
443
        super().__init__()
thomwolf's avatar
thomwolf committed
444
        self.dense = nn.Linear(config.hidden_size, config.hidden_size)
445
        if isinstance(config.hidden_act, str):
thomwolf's avatar
thomwolf committed
446
447
448
            self.transform_act_fn = ACT2FN[config.hidden_act]
        else:
            self.transform_act_fn = config.hidden_act
449
        self.LayerNorm = BertLayerNorm(config.hidden_size, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
450
451
452
453
454
455
456
457
458

    def forward(self, hidden_states):
        hidden_states = self.dense(hidden_states)
        hidden_states = self.transform_act_fn(hidden_states)
        hidden_states = self.LayerNorm(hidden_states)
        return hidden_states


class BertLMPredictionHead(nn.Module):
thomwolf's avatar
thomwolf committed
459
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
460
        super().__init__()
thomwolf's avatar
thomwolf committed
461
462
463
464
        self.transform = BertPredictionHeadTransform(config)

        # The output weights are the same as the input embeddings, but there is
        # an output-only bias for each token.
465
        self.decoder = nn.Linear(config.hidden_size, config.vocab_size, bias=False)
466

thomwolf's avatar
thomwolf committed
467
        self.bias = nn.Parameter(torch.zeros(config.vocab_size))
thomwolf's avatar
thomwolf committed
468

469
470
471
        # Need a link between the two variables so that the bias is correctly resized with `resize_token_embeddings`
        self.decoder.bias = self.bias

thomwolf's avatar
thomwolf committed
472
473
    def forward(self, hidden_states):
        hidden_states = self.transform(hidden_states)
Lysandre Debut's avatar
Lysandre Debut committed
474
        hidden_states = self.decoder(hidden_states)
thomwolf's avatar
thomwolf committed
475
476
477
478
        return hidden_states


class BertOnlyMLMHead(nn.Module):
thomwolf's avatar
thomwolf committed
479
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
480
        super().__init__()
thomwolf's avatar
thomwolf committed
481
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
482
483
484
485
486
487
488
489

    def forward(self, sequence_output):
        prediction_scores = self.predictions(sequence_output)
        return prediction_scores


class BertOnlyNSPHead(nn.Module):
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
490
        super().__init__()
thomwolf's avatar
thomwolf committed
491
492
493
494
495
496
497
498
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, pooled_output):
        seq_relationship_score = self.seq_relationship(pooled_output)
        return seq_relationship_score


class BertPreTrainingHeads(nn.Module):
thomwolf's avatar
thomwolf committed
499
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
500
        super().__init__()
thomwolf's avatar
thomwolf committed
501
        self.predictions = BertLMPredictionHead(config)
thomwolf's avatar
thomwolf committed
502
503
504
505
506
507
508
509
        self.seq_relationship = nn.Linear(config.hidden_size, 2)

    def forward(self, sequence_output, pooled_output):
        prediction_scores = self.predictions(sequence_output)
        seq_relationship_score = self.seq_relationship(pooled_output)
        return prediction_scores, seq_relationship_score


510
class BertPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
511
    """ An abstract class to handle weights initialization and
512
        a simple interface for downloading and loading pretrained models.
thomwolf's avatar
thomwolf committed
513
    """
514

515
    config_class = BertConfig
516
    pretrained_model_archive_map = BERT_PRETRAINED_MODEL_ARCHIVE_MAP
517
518
519
    load_tf_weights = load_tf_weights_in_bert
    base_model_prefix = "bert"

520
521
    def _init_weights(self, module):
        """ Initialize the weights """
thomwolf's avatar
thomwolf committed
522
523
524
525
526
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
        elif isinstance(module, BertLayerNorm):
Li Dong's avatar
Li Dong committed
527
528
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
thomwolf's avatar
thomwolf committed
529
530
531
532
        if isinstance(module, nn.Linear) and module.bias is not None:
            module.bias.data.zero_()


Lysandre's avatar
Lysandre committed
533
534
535
BERT_START_DOCSTRING = r"""
    This model is a PyTorch `torch.nn.Module <https://pytorch.org/docs/stable/nn.html#torch.nn.Module>`_ sub-class.
    Use it as a regular PyTorch Module and refer to the PyTorch documentation for all matter related to general
Lysandre's avatar
Fixes  
Lysandre committed
536
    usage and behavior.
thomwolf's avatar
thomwolf committed
537

thomwolf's avatar
thomwolf committed
538
    Parameters:
Rémi Louf's avatar
Rémi Louf committed
539
        config (:class:`~transformers.BertConfig`): Model configuration class with all the parameters of the model.
540
            Initializing with a config file does not load the weights associated with the model, only the configuration.
541
            Check out the :meth:`~transformers.PreTrainedModel.from_pretrained` method to load the model weights.
thomwolf's avatar
thomwolf committed
542
543
544
"""

BERT_INPUTS_DOCSTRING = r"""
Lysandre's avatar
Lysandre committed
545
546
    Args:
        input_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`):
Lysandre's avatar
Lysandre committed
547
548
            Indices of input sequence tokens in the vocabulary.

549
550
            Indices can be obtained using :class:`transformers.BertTokenizer`.
            See :func:`transformers.PreTrainedTokenizer.encode` and
Lysandre's avatar
Lysandre committed
551
            :func:`transformers.PreTrainedTokenizer.encode_plus` for details.
Lysandre's avatar
Lysandre committed
552

Lysandre's avatar
Lysandre committed
553
554
            `What are input IDs? <../glossary.html#input-ids>`__
        attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
555
556
557
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
Lysandre's avatar
Lysandre committed
558

Lysandre's avatar
Lysandre committed
559
            `What are attention masks? <../glossary.html#attention-mask>`__
Lysandre's avatar
Lysandre committed
560
        token_type_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
561
562
563
            Segment token indices to indicate first and second portions of the inputs.
            Indices are selected in ``[0, 1]``: ``0`` corresponds to a `sentence A` token, ``1``
            corresponds to a `sentence B` token
Lysandre's avatar
Lysandre committed
564

Lysandre's avatar
Lysandre committed
565
566
            `What are token type IDs? <../glossary.html#token-type-ids>`_
        position_ids (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
567
568
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
Lysandre's avatar
Lysandre committed
569

Lysandre's avatar
Lysandre committed
570
571
            `What are position IDs? <../glossary.html#position-ids>`_
        head_mask (:obj:`torch.FloatTensor` of shape :obj:`(num_heads,)` or :obj:`(num_layers, num_heads)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
572
            Mask to nullify selected heads of the self-attention modules.
thomwolf's avatar
thomwolf committed
573
            Mask values selected in ``[0, 1]``:
Lysandre's avatar
Lysandre committed
574
            :obj:`1` indicates the head is **not masked**, :obj:`0` indicates the head is **masked**.
Lysandre's avatar
Lysandre committed
575
        inputs_embeds (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
576
            Optionally, instead of passing :obj:`input_ids` you can choose to directly pass an embedded representation.
577
578
            This is useful if you want more control over how to convert `input_ids` indices into associated vectors
            than the model's internal embedding lookup matrix.
Lysandre's avatar
Lysandre committed
579
        encoder_hidden_states  (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`, `optional`, defaults to :obj:`None`):
Lysandre's avatar
Lysandre committed
580
            Sequence of hidden-states at the output of the last layer of the encoder. Used in the cross-attention
Lysandre's avatar
Lysandre committed
581
582
            if the model is configured as a decoder.
        encoder_attention_mask (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
583
584
585
586
            Mask to avoid performing attention on the padding token indices of the encoder input. This mask
            is used in the cross-attention if the model is configured as a decoder.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
thomwolf's avatar
thomwolf committed
587
588
"""

589
590
591
592
593

@add_start_docstrings(
    "The bare Bert Model transformer outputting raw hidden-states without any specific head on top.",
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
594
class BertModel(BertPreTrainedModel):
Lysandre's avatar
Lysandre committed
595
    """
thomwolf's avatar
thomwolf committed
596

Lysandre's avatar
Lysandre committed
597
598
599
600
    The model can behave as an encoder (with only self-attention) as well
    as a decoder, in which case a layer of cross-attention is added between
    the self-attention layers, following the architecture described in `Attention is all you need`_ by Ashish Vaswani,
    Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser and Illia Polosukhin.
thomwolf's avatar
thomwolf committed
601

Lysandre's avatar
Lysandre committed
602
603
604
605
606
607
    To behave as an decoder the model needs to be initialized with the
    :obj:`is_decoder` argument of the configuration set to :obj:`True`; an
    :obj:`encoder_hidden_states` is expected as an input to the forward pass.

    .. _`Attention is all you need`:
        https://arxiv.org/abs/1706.03762
thomwolf's avatar
thomwolf committed
608
609

    """
610

thomwolf's avatar
thomwolf committed
611
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
612
        super().__init__(config)
613
        self.config = config
thomwolf's avatar
thomwolf committed
614

thomwolf's avatar
thomwolf committed
615
        self.embeddings = BertEmbeddings(config)
thomwolf's avatar
thomwolf committed
616
        self.encoder = BertEncoder(config)
thomwolf's avatar
thomwolf committed
617
        self.pooler = BertPooler(config)
thomwolf's avatar
thomwolf committed
618

619
        self.init_weights()
thomwolf's avatar
thomwolf committed
620

thomwolf's avatar
thomwolf committed
621
    def get_input_embeddings(self):
thomwolf's avatar
thomwolf committed
622
        return self.embeddings.word_embeddings
thomwolf's avatar
thomwolf committed
623

thomwolf's avatar
thomwolf committed
624
625
    def set_input_embeddings(self, value):
        self.embeddings.word_embeddings = value
626

thomwolf's avatar
thomwolf committed
627
    def _prune_heads(self, heads_to_prune):
thomwolf's avatar
thomwolf committed
628
629
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
thomwolf's avatar
thomwolf committed
630
            See base class PreTrainedModel
thomwolf's avatar
thomwolf committed
631
632
        """
        for layer, heads in heads_to_prune.items():
633
            self.encoder.layer[layer].attention.prune_heads(heads)
thomwolf's avatar
thomwolf committed
634

Lysandre's avatar
Lysandre committed
635
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
636
637
638
639
640
641
642
643
644
645
646
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
    ):
Lysandre's avatar
Lysandre committed
647
648
        r"""
    Return:
Lysandre's avatar
Fixes  
Lysandre committed
649
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
650
651
652
653
654
655
656
657
658
659
660
661
662
663
        last_hidden_state (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, hidden_size)`):
            Sequence of hidden-states at the output of the last layer of the model.
        pooler_output (:obj:`torch.FloatTensor`: of shape :obj:`(batch_size, hidden_size)`):
            Last layer hidden-state of the first token of the sequence (classification token)
            further processed by a Linear layer and a Tanh activation function. The Linear
            layer weights are trained from the next sentence prediction (classification)
            objective during pre-training.

            This output is usually *not* a good summary
            of the semantic content of the input, you're often better with averaging or pooling
            the sequence of hidden-states for the whole input sequence.
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.
664

Lysandre's avatar
Lysandre committed
665
666
667
668
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.
669

Lysandre's avatar
Lysandre committed
670
671
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
672

Lysandre's avatar
Lysandre committed
673
674
    Examples::

Lysandre's avatar
Lysandre committed
675
676
677
        from transformers import BertModel, BertTokenizer
        import torch

Lysandre's avatar
Lysandre committed
678
679
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertModel.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
680

Lysandre's avatar
Lysandre committed
681
682
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
Lysandre's avatar
Lysandre committed
683

Lysandre's avatar
Lysandre committed
684
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple
685
686

        """
Lysandre's avatar
Lysandre committed
687

688
689
690
691
692
693
694
695
696
697
698
        if input_ids is not None and inputs_embeds is not None:
            raise ValueError("You cannot specify both input_ids and inputs_embeds at the same time")
        elif input_ids is not None:
            input_shape = input_ids.size()
        elif inputs_embeds is not None:
            input_shape = inputs_embeds.size()[:-1]
        else:
            raise ValueError("You have to specify either input_ids or inputs_embeds")

        device = input_ids.device if input_ids is not None else inputs_embeds.device

thomwolf's avatar
thomwolf committed
699
        if attention_mask is None:
Julien Chaumond's avatar
Julien Chaumond committed
700
            attention_mask = torch.ones(input_shape, device=device)
thomwolf's avatar
thomwolf committed
701
        if token_type_ids is None:
Julien Chaumond's avatar
Julien Chaumond committed
702
            token_type_ids = torch.zeros(input_shape, dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
703

704
705
        # We can provide a self-attention mask of dimensions [batch_size, from_seq_length, to_seq_length]
        # ourselves in which case we just need to make it broadcastable to all heads.
706
        if attention_mask.dim() == 3:
707
            extended_attention_mask = attention_mask[:, None, :, :]
thomwolf's avatar
thomwolf committed
708
709
710
711
        elif attention_mask.dim() == 2:
            # Provided a padding mask of dimensions [batch_size, seq_length]
            # - if the model is a decoder, apply a causal mask in addition to the padding mask
            # - if the model is an encoder, make the mask broadcastable to [batch_size, num_heads, seq_length, seq_length]
712
            if self.config.is_decoder:
713
714
                batch_size, seq_length = input_shape
                seq_ids = torch.arange(seq_length, device=device)
715
                causal_mask = seq_ids[None, None, :].repeat(batch_size, seq_length, 1) <= seq_ids[None, :, None]
716
                causal_mask = causal_mask.to(
717
718
                    attention_mask.dtype
                )  # causal and attention masks must have same type with pytorch version < 1.3
719
                extended_attention_mask = causal_mask[:, None, :, :] * attention_mask[:, None, None, :]
720
721
            else:
                extended_attention_mask = attention_mask[:, None, None, :]
thomwolf's avatar
thomwolf committed
722
        else:
723
724
725
726
727
            raise ValueError(
                "Wrong shape for input_ids (shape {}) or attention_mask (shape {})".format(
                    input_shape, attention_mask.shape
                )
            )
thomwolf's avatar
thomwolf committed
728
729
730
731
732
733

        # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
        # masked positions, this operation will create a tensor which is 0.0 for
        # positions we want to attend and -10000.0 for masked positions.
        # Since we are adding it to the raw scores before the softmax, this is
        # effectively the same as removing these entirely.
Rémi Louf's avatar
Rémi Louf committed
734
        extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype)  # fp16 compatibility
thomwolf's avatar
thomwolf committed
735
736
        extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0

Rémi Louf's avatar
Rémi Louf committed
737
        # If a 2D ou 3D attention mask is provided for the cross-attention
Rémi Louf's avatar
Rémi Louf committed
738
        # we need to make broadcastabe to [batch_size, num_heads, seq_length, seq_length]
739
740
741
        if self.config.is_decoder and encoder_hidden_states is not None:
            encoder_batch_size, encoder_sequence_length, _ = encoder_hidden_states.size()
            encoder_hidden_shape = (encoder_batch_size, encoder_sequence_length)
742
            if encoder_attention_mask is None:
743
                encoder_attention_mask = torch.ones(encoder_hidden_shape, device=device)
Rémi Louf's avatar
Rémi Louf committed
744

745
746
            if encoder_attention_mask.dim() == 3:
                encoder_extended_attention_mask = encoder_attention_mask[:, None, :, :]
thomwolf's avatar
thomwolf committed
747
            elif encoder_attention_mask.dim() == 2:
748
                encoder_extended_attention_mask = encoder_attention_mask[:, None, None, :]
thomwolf's avatar
thomwolf committed
749
            else:
750
751
752
753
754
755
756
757
758
                raise ValueError(
                    "Wrong shape for encoder_hidden_shape (shape {}) or encoder_attention_mask (shape {})".format(
                        encoder_hidden_shape, encoder_attention_mask.shape
                    )
                )

            encoder_extended_attention_mask = encoder_extended_attention_mask.to(
                dtype=next(self.parameters()).dtype
            )  # fp16 compatibility
759
760
761
            encoder_extended_attention_mask = (1.0 - encoder_extended_attention_mask) * -10000.0
        else:
            encoder_extended_attention_mask = None
Rémi Louf's avatar
Rémi Louf committed
762

thomwolf's avatar
thomwolf committed
763
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
764
        # 1.0 in head_mask indicate we keep the head
thomwolf's avatar
thomwolf committed
765
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
766
767
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
thomwolf's avatar
thomwolf committed
768
769
        if head_mask is not None:
            if head_mask.dim() == 1:
770
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
thomwolf's avatar
thomwolf committed
771
                head_mask = head_mask.expand(self.config.num_hidden_layers, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
772
            elif head_mask.dim() == 2:
773
774
775
776
777
778
                head_mask = (
                    head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)
                )  # We can specify head_mask for each layer
            head_mask = head_mask.to(
                dtype=next(self.parameters()).dtype
            )  # switch to fload if need + fp16 compatibility
779
780
        else:
            head_mask = [None] * self.config.num_hidden_layers
thomwolf's avatar
thomwolf committed
781

782
783
784
785
786
787
788
789
790
791
        embedding_output = self.embeddings(
            input_ids=input_ids, position_ids=position_ids, token_type_ids=token_type_ids, inputs_embeds=inputs_embeds
        )
        encoder_outputs = self.encoder(
            embedding_output,
            attention_mask=extended_attention_mask,
            head_mask=head_mask,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_extended_attention_mask,
        )
792
        sequence_output = encoder_outputs[0]
thomwolf's avatar
thomwolf committed
793
        pooled_output = self.pooler(sequence_output)
794

795
796
797
        outputs = (sequence_output, pooled_output,) + encoder_outputs[
            1:
        ]  # add hidden_states and attentions if they are here
798
        return outputs  # sequence_output, pooled_output, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
799
800


801
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
802
    """Bert Model with two heads on top as done during the pre-training: a `masked language modeling` head and
Lysandre's avatar
Lysandre committed
803
    a `next sentence prediction (classification)` head. """,
804
805
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
806
class BertForPreTraining(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
807
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
808
        super().__init__(config)
809

thomwolf's avatar
thomwolf committed
810
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
811
        self.cls = BertPreTrainingHeads(config)
thomwolf's avatar
thomwolf committed
812

813
        self.init_weights()
thomwolf's avatar
thomwolf committed
814

thomwolf's avatar
thomwolf committed
815
    def get_output_embeddings(self):
816
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
817

Lysandre's avatar
Lysandre committed
818
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
819
820
821
822
823
824
825
826
827
828
829
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        next_sentence_label=None,
    ):
Lysandre's avatar
Lysandre committed
830
831
832
        r"""
        masked_lm_labels (``torch.LongTensor`` of shape ``(batch_size, sequence_length)``, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
833
834
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
835
836
837
838
839
840
841
842
843
844
845
846
847
            in ``[0, ..., config.vocab_size]``
        next_sentence_label (``torch.LongTensor`` of shape ``(batch_size,)``, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see :obj:`input_ids` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Total loss as the sum of the masked language modeling loss and the next sequence prediction (classification) loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
848
        seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Lysandre's avatar
Lysandre committed
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
            Prediction scores of the next sequence prediction (classification) head (scores of True/False
            continuation before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when :obj:`config.output_hidden_states=True`):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.


    Examples::

Lysandre's avatar
Lysandre committed
866
867
868
        from transformers import BertTokenizer, BertForPreTraining
        import torch

Lysandre's avatar
Lysandre committed
869
870
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForPreTraining.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
871

Lysandre's avatar
Lysandre committed
872
873
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
Lysandre's avatar
Lysandre committed
874

Lysandre's avatar
Lysandre committed
875
876
877
        prediction_scores, seq_relationship_scores = outputs[:2]

        """
878
879
880
881
882
883
884
885
886

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
887
888

        sequence_output, pooled_output = outputs[:2]
thomwolf's avatar
thomwolf committed
889
890
        prediction_scores, seq_relationship_score = self.cls(sequence_output, pooled_output)

891
892
893
        outputs = (prediction_scores, seq_relationship_score,) + outputs[
            2:
        ]  # add hidden states and attention if they are here
894

thomwolf's avatar
thomwolf committed
895
        if masked_lm_labels is not None and next_sentence_label is not None:
LysandreJik's avatar
LysandreJik committed
896
            loss_fct = CrossEntropyLoss()
897
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
898
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
thomwolf's avatar
thomwolf committed
899
            total_loss = masked_lm_loss + next_sentence_loss
900
            outputs = (total_loss,) + outputs
901
902

        return outputs  # (loss), prediction_scores, seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
903
904


Lysandre's avatar
Lysandre committed
905
@add_start_docstrings("""Bert Model with a `language modeling` head on top. """, BERT_START_DOCSTRING)
thomwolf's avatar
thomwolf committed
906
class BertForMaskedLM(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
907
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
908
        super().__init__(config)
thomwolf's avatar
thomwolf committed
909

thomwolf's avatar
thomwolf committed
910
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
911
        self.cls = BertOnlyMLMHead(config)
thomwolf's avatar
thomwolf committed
912

913
        self.init_weights()
thomwolf's avatar
thomwolf committed
914

thomwolf's avatar
thomwolf committed
915
    def get_output_embeddings(self):
916
        return self.cls.predictions.decoder
thomwolf's avatar
thomwolf committed
917

Lysandre's avatar
Lysandre committed
918
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
919
920
921
922
923
924
925
926
927
928
929
930
931
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        masked_lm_labels=None,
        encoder_hidden_states=None,
        encoder_attention_mask=None,
        lm_labels=None,
    ):
Lysandre's avatar
Lysandre committed
932
933
934
        r"""
        masked_lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the masked language modeling loss.
Lysandre's avatar
Lysandre committed
935
936
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
937
938
939
            in ``[0, ..., config.vocab_size]``
        lm_labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the left-to-right language modeling loss (next word prediction).
Lysandre's avatar
Lysandre committed
940
941
            Indices should be in ``[-100, 0, ..., config.vocab_size]`` (see ``input_ids`` docstring)
            Tokens with indices set to ``-100`` are ignored (masked), the loss is only computed for the tokens with labels
Lysandre's avatar
Lysandre committed
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
            in ``[0, ..., config.vocab_size]``

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        masked_lm_loss (`optional`, returned when ``masked_lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Masked language modeling loss.
        ltr_lm_loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`lm_labels` is provided):
                Next token prediction loss.
        prediction_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.vocab_size)`)
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

        Examples::

Lysandre's avatar
Lysandre committed
966
967
968
            from transformers import BertTokenizer, BertForMaskedLM
            import torch

Lysandre's avatar
Lysandre committed
969
970
            tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
            model = BertForMaskedLM.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
971

Lysandre's avatar
Lysandre committed
972
973
            input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
            outputs = model(input_ids, masked_lm_labels=input_ids)
Lysandre's avatar
Lysandre committed
974

Lysandre's avatar
Lysandre committed
975
976
977
            loss, prediction_scores = outputs[:2]

        """
978
979
980
981
982
983
984
985
986
987
988

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
            encoder_hidden_states=encoder_hidden_states,
            encoder_attention_mask=encoder_attention_mask,
        )
thomwolf's avatar
thomwolf committed
989
990

        sequence_output = outputs[0]
thomwolf's avatar
thomwolf committed
991
992
        prediction_scores = self.cls(sequence_output)

wangfei's avatar
wangfei committed
993
        outputs = (prediction_scores,) + outputs[2:]  # Add hidden states and attention if they are here
994
995
996
997
998

        # Although this may seem awkward, BertForMaskedLM supports two scenarios:
        # 1. If a tensor that contains the indices of masked labels is provided,
        #    the cross-entropy is the MLM cross-entropy that measures the likelihood
        #    of predictions for masked words.
999
        # 2. If `lm_labels` is provided we are in a causal scenario where we
1000
        #    try to predict the next token for each input in the decoder.
thomwolf's avatar
thomwolf committed
1001
        if masked_lm_labels is not None:
Lysandre's avatar
Lysandre committed
1002
            loss_fct = CrossEntropyLoss()  # -100 index = padding token
1003
            masked_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), masked_lm_labels.view(-1))
1004
            outputs = (masked_lm_loss,) + outputs
thomwolf's avatar
thomwolf committed
1005

1006
        if lm_labels is not None:
1007
            # we are doing next-token prediction; shift prediction scores and input ids by one
Rémi Louf's avatar
Rémi Louf committed
1008
            prediction_scores = prediction_scores[:, :-1, :].contiguous()
1009
            lm_labels = lm_labels[:, 1:].contiguous()
LysandreJik's avatar
LysandreJik committed
1010
            loss_fct = CrossEntropyLoss()
1011
            ltr_lm_loss = loss_fct(prediction_scores.view(-1, self.config.vocab_size), lm_labels.view(-1))
1012
            outputs = (ltr_lm_loss,) + outputs
1013

1014
        return outputs  # (masked_lm_loss), (ltr_lm_loss), prediction_scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1015
1016


1017
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1018
    """Bert Model with a `next sentence prediction (classification)` head on top. """, BERT_START_DOCSTRING,
1019
)
thomwolf's avatar
thomwolf committed
1020
class BertForNextSentencePrediction(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1021
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1022
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1023

thomwolf's avatar
thomwolf committed
1024
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1025
        self.cls = BertOnlyNSPHead(config)
thomwolf's avatar
thomwolf committed
1026

1027
        self.init_weights()
thomwolf's avatar
thomwolf committed
1028

Lysandre's avatar
Lysandre committed
1029
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        next_sentence_label=None,
    ):
Lysandre's avatar
Lysandre committed
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
        r"""
        next_sentence_label (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the next sequence prediction (classification) loss. Input should be a sequence pair (see ``input_ids`` docstring)
            Indices should be in ``[0, 1]``.
            ``0`` indicates sequence B is a continuation of sequence A,
            ``1`` indicates sequence B is a random sequence.

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`next_sentence_label` is provided):
            Next sequence prediction (classification) loss.
1051
        seq_relationship_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, 2)`):
Lysandre's avatar
Lysandre committed
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
            Prediction scores of the next sequence prediction (classification) head (scores of True/False continuation before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1067
1068
1069
        from transformers import BertTokenizer, BertForNextSentencePrediction
        import torch

Lysandre's avatar
Lysandre committed
1070
1071
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForNextSentencePrediction.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1072

Lysandre's avatar
Lysandre committed
1073
1074
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
Lysandre's avatar
Lysandre committed
1075

Lysandre's avatar
Lysandre committed
1076
1077
1078
        seq_relationship_scores = outputs[0]

        """
1079
1080
1081
1082
1083
1084
1085
1086
1087

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1088

thomwolf's avatar
thomwolf committed
1089
1090
        pooled_output = outputs[1]

1091
        seq_relationship_score = self.cls(pooled_output)
thomwolf's avatar
thomwolf committed
1092

1093
        outputs = (seq_relationship_score,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1094
        if next_sentence_label is not None:
LysandreJik's avatar
LysandreJik committed
1095
            loss_fct = CrossEntropyLoss()
1096
            next_sentence_loss = loss_fct(seq_relationship_score.view(-1, 2), next_sentence_label.view(-1))
1097
            outputs = (next_sentence_loss,) + outputs
thomwolf's avatar
thomwolf committed
1098
1099

        return outputs  # (next_sentence_loss), seq_relationship_score, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1100
1101


1102
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1103
    """Bert Model transformer with a sequence classification/regression head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1104
    the pooled output) e.g. for GLUE tasks. """,
1105
1106
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1107
class BertForSequenceClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1108
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1109
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1110
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1111

thomwolf's avatar
thomwolf committed
1112
        self.bert = BertModel(config)
thomwolf's avatar
thomwolf committed
1113
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1114
        self.classifier = nn.Linear(config.hidden_size, self.config.num_labels)
thomwolf's avatar
thomwolf committed
1115

1116
        self.init_weights()
thomwolf's avatar
thomwolf committed
1117

Lysandre's avatar
Lysandre committed
1118
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
Lysandre's avatar
Lysandre committed
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the sequence classification/regression loss.
            Indices should be in :obj:`[0, ..., config.num_labels - 1]`.
            If :obj:`config.num_labels == 1` a regression loss is computed (Mean-Square loss),
            If :obj:`config.num_labels > 1` a classification loss is computed (Cross-Entropy).

    Returns:
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`label` is provided):
            Classification (or regression if config.num_labels==1) loss.
        logits (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, config.num_labels)`):
            Classification (or regression if config.num_labels==1) scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1156
1157
1158
        from transformers import BertTokenizer, BertForSequenceClassification
        import torch

Lysandre's avatar
Lysandre committed
1159
1160
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForSequenceClassification.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1161

Lysandre's avatar
Lysandre committed
1162
1163
1164
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1]).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
Lysandre's avatar
Lysandre committed
1165

Lysandre's avatar
Lysandre committed
1166
1167
1168
        loss, logits = outputs[:2]

        """
1169
1170
1171
1172
1173
1174
1175
1176
1177

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1178

thomwolf's avatar
thomwolf committed
1179
1180
        pooled_output = outputs[1]

thomwolf's avatar
thomwolf committed
1181
1182
1183
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)

1184
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1185

thomwolf's avatar
thomwolf committed
1186
        if labels is not None:
1187
1188
1189
1190
1191
1192
1193
            if self.num_labels == 1:
                #  We are doing regression
                loss_fct = MSELoss()
                loss = loss_fct(logits.view(-1), labels.view(-1))
            else:
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1194
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1195
1196

        return outputs  # (loss), logits, (hidden_states), (attentions)
1197
1198


1199
1200
@add_start_docstrings(
    """Bert Model with a multiple choice classification head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1201
    the pooled output and a softmax) e.g. for RocStories/SWAG tasks. """,
1202
1203
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1204
class BertForMultipleChoice(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1205
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1206
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1207

thomwolf's avatar
thomwolf committed
1208
        self.bert = BertModel(config)
1209
1210
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
        self.classifier = nn.Linear(config.hidden_size, 1)
thomwolf's avatar
thomwolf committed
1211

1212
        self.init_weights()
1213

Lysandre's avatar
Lysandre committed
1214
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
Lysandre's avatar
Lysandre committed
1225
1226
1227
1228
1229
1230
1231
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1232
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre Debut's avatar
Lysandre Debut committed
1233
        loss (:obj:`torch.FloatTensor` of shape `(1,)`, `optional`, returned when :obj:`labels` is provided):
Lysandre's avatar
Lysandre committed
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
            Classification loss.
        classification_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, num_choices)`):
            `num_choices` is the second dimension of the input tensors. (see `input_ids` above).

            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1253
1254
1255
        from transformers import BertTokenizer, BertForMultipleChoice
        import torch

Lysandre's avatar
Lysandre committed
1256
1257
1258
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForMultipleChoice.from_pretrained('bert-base-uncased')
        choices = ["Hello, my dog is cute", "Hello, my cat is amazing"]
Lysandre's avatar
Lysandre committed
1259

Lysandre's avatar
Lysandre committed
1260
1261
1262
        input_ids = torch.tensor([tokenizer.encode(s, add_special_tokens=True) for s in choices]).unsqueeze(0)  # Batch size 1, 2 choices
        labels = torch.tensor(1).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
Lysandre's avatar
Lysandre committed
1263

Lysandre's avatar
Lysandre committed
1264
1265
1266
        loss, classification_scores = outputs[:2]

        """
thomwolf's avatar
thomwolf committed
1267
1268
        num_choices = input_ids.shape[1]

1269
1270
1271
1272
1273
        input_ids = input_ids.view(-1, input_ids.size(-1))
        attention_mask = attention_mask.view(-1, attention_mask.size(-1)) if attention_mask is not None else None
        token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1)) if token_type_ids is not None else None
        position_ids = position_ids.view(-1, position_ids.size(-1)) if position_ids is not None else None

1274
1275
1276
1277
1278
1279
1280
1281
        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1282

thomwolf's avatar
thomwolf committed
1283
1284
        pooled_output = outputs[1]

1285
1286
        pooled_output = self.dropout(pooled_output)
        logits = self.classifier(pooled_output)
thomwolf's avatar
thomwolf committed
1287
        reshaped_logits = logits.view(-1, num_choices)
1288

1289
        outputs = (reshaped_logits,) + outputs[2:]  # add hidden states and attention if they are here
thomwolf's avatar
thomwolf committed
1290

1291
1292
1293
        if labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(reshaped_logits, labels)
1294
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1295
1296

        return outputs  # (loss), reshaped_logits, (hidden_states), (attentions)
1297
1298


1299
1300
@add_start_docstrings(
    """Bert Model with a token classification head on top (a linear layer on top of
Lysandre's avatar
Lysandre committed
1301
    the hidden-states output) e.g. for Named-Entity-Recognition (NER) tasks. """,
1302
1303
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1304
class BertForTokenClassification(BertPreTrainedModel):
thomwolf's avatar
thomwolf committed
1305
    def __init__(self, config):
Julien Chaumond's avatar
Julien Chaumond committed
1306
        super().__init__(config)
thomwolf's avatar
thomwolf committed
1307
        self.num_labels = config.num_labels
thomwolf's avatar
thomwolf committed
1308

thomwolf's avatar
thomwolf committed
1309
        self.bert = BertModel(config)
1310
        self.dropout = nn.Dropout(config.hidden_dropout_prob)
thomwolf's avatar
thomwolf committed
1311
        self.classifier = nn.Linear(config.hidden_size, config.num_labels)
thomwolf's avatar
thomwolf committed
1312

1313
        self.init_weights()
1314

Lysandre's avatar
Lysandre committed
1315
    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        labels=None,
    ):
Lysandre's avatar
Lysandre committed
1326
1327
1328
1329
1330
1331
        r"""
        labels (:obj:`torch.LongTensor` of shape :obj:`(batch_size, sequence_length)`, `optional`, defaults to :obj:`None`):
            Labels for computing the token classification loss.
            Indices should be in ``[0, ..., config.num_labels - 1]``.

    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1332
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when ``labels`` is provided) :
            Classification loss.
        scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length, config.num_labels)`)
            Classification scores (before SoftMax).
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.

    Examples::

Lysandre's avatar
Lysandre committed
1351
1352
1353
        from transformers import BertTokenizer, BertForTokenClassification
        import torch

Lysandre's avatar
Lysandre committed
1354
1355
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
        model = BertForTokenClassification.from_pretrained('bert-base-uncased')
Lysandre's avatar
Lysandre committed
1356

Lysandre's avatar
Lysandre committed
1357
1358
1359
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute", add_special_tokens=True)).unsqueeze(0)  # Batch size 1
        labels = torch.tensor([1] * input_ids.size(1)).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=labels)
Lysandre's avatar
Lysandre committed
1360

Lysandre's avatar
Lysandre committed
1361
1362
1363
        loss, scores = outputs[:2]

        """
1364
1365
1366
1367
1368
1369
1370
1371
1372

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1373

thomwolf's avatar
thomwolf committed
1374
1375
        sequence_output = outputs[0]

1376
1377
        sequence_output = self.dropout(sequence_output)
        logits = self.classifier(sequence_output)
1378

1379
        outputs = (logits,) + outputs[2:]  # add hidden states and attention if they are here
1380
1381
        if labels is not None:
            loss_fct = CrossEntropyLoss()
1382
1383
1384
            # Only keep active parts of the loss
            if attention_mask is not None:
                active_loss = attention_mask.view(-1) == 1
1385
1386
1387
1388
                active_logits = logits.view(-1, self.num_labels)
                active_labels = torch.where(
                    active_loss, labels.view(-1), torch.tensor(loss_fct.ignore_index).type_as(labels)
                )
1389
1390
1391
                loss = loss_fct(active_logits, active_labels)
            else:
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1392
            outputs = (loss,) + outputs
thomwolf's avatar
thomwolf committed
1393

thomwolf's avatar
thomwolf committed
1394
        return outputs  # (loss), scores, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
1395
1396


1397
@add_start_docstrings(
Lysandre's avatar
Lysandre committed
1398
    """Bert Model with a span classification head on top for extractive question-answering tasks like SQuAD (a linear
Lysandre's avatar
Lysandre committed
1399
    layers on top of the hidden-states output to compute `span start logits` and `span end logits`). """,
1400
1401
    BERT_START_DOCSTRING,
)
thomwolf's avatar
thomwolf committed
1402
class BertForQuestionAnswering(BertPreTrainedModel):
Lysandre's avatar
Lysandre committed
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
    def __init__(self, config):
        super(BertForQuestionAnswering, self).__init__(config)
        self.num_labels = config.num_labels

        self.bert = BertModel(config)
        self.qa_outputs = nn.Linear(config.hidden_size, config.num_labels)

        self.init_weights()

    @add_start_docstrings_to_callable(BERT_INPUTS_DOCSTRING)
    def forward(
        self,
        input_ids=None,
        attention_mask=None,
        token_type_ids=None,
        position_ids=None,
        head_mask=None,
        inputs_embeds=None,
        start_positions=None,
        end_positions=None,
    ):
        r"""
        start_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
1426
            Labels for position (index) of the start of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1427
1428
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.
Lysandre's avatar
Lysandre committed
1429
        end_positions (:obj:`torch.LongTensor` of shape :obj:`(batch_size,)`, `optional`, defaults to :obj:`None`):
thomwolf's avatar
thomwolf committed
1430
            Labels for position (index) of the end of the labelled span for computing the token classification loss.
thomwolf's avatar
thomwolf committed
1431
1432
1433
            Positions are clamped to the length of the sequence (`sequence_length`).
            Position outside of the sequence are not taken into account for computing the loss.

Lysandre's avatar
Lysandre committed
1434
    Returns:
Lysandre's avatar
Fixes  
Lysandre committed
1435
        :obj:`tuple(torch.FloatTensor)` comprising various elements depending on the configuration (:class:`~transformers.BertConfig`) and inputs:
Lysandre's avatar
Lysandre committed
1436
        loss (:obj:`torch.FloatTensor` of shape :obj:`(1,)`, `optional`, returned when :obj:`labels` is provided):
thomwolf's avatar
thomwolf committed
1437
            Total span extraction loss is the sum of a Cross-Entropy for the start and end positions.
Lysandre's avatar
Lysandre committed
1438
        start_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
thomwolf's avatar
thomwolf committed
1439
            Span-start scores (before SoftMax).
Lysandre's avatar
Lysandre committed
1440
        end_scores (:obj:`torch.FloatTensor` of shape :obj:`(batch_size, sequence_length,)`):
thomwolf's avatar
thomwolf committed
1441
            Span-end scores (before SoftMax).
Lysandre's avatar
Lysandre committed
1442
1443
1444
1445
        hidden_states (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_hidden_states=True``):
            Tuple of :obj:`torch.FloatTensor` (one for the output of the embeddings + one for the output of each layer)
            of shape :obj:`(batch_size, sequence_length, hidden_size)`.

thomwolf's avatar
thomwolf committed
1446
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
Lysandre's avatar
Lysandre committed
1447
1448
1449
1450
1451
1452
        attentions (:obj:`tuple(torch.FloatTensor)`, `optional`, returned when ``config.output_attentions=True``):
            Tuple of :obj:`torch.FloatTensor` (one for each layer) of shape
            :obj:`(batch_size, num_heads, sequence_length, sequence_length)`.

            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
            heads.
thomwolf's avatar
thomwolf committed
1453
1454
1455

    Examples::

Lysandre's avatar
Lysandre committed
1456
1457
1458
        from transformers import BertTokenizer, BertForQuestionAnswering
        import torch

wangfei's avatar
wangfei committed
1459
        tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
1460
        model = BertForQuestionAnswering.from_pretrained('bert-large-uncased-whole-word-masking-finetuned-squad')
Lysandre's avatar
Lysandre committed
1461

1462
        question, text = "Who was Jim Henson?", "Jim Henson was a nice puppet"
1463
        input_ids = tokenizer.encode(question, text)
1464
        token_type_ids = [0 if i <= input_ids.index(102) else 1 for i in range(len(input_ids))]
1465
        start_scores, end_scores = model(torch.tensor([input_ids]), token_type_ids=torch.tensor([token_type_ids]))
Lysandre's avatar
Lysandre committed
1466

1467
        all_tokens = tokenizer.convert_ids_to_tokens(input_ids)
Lysandre's avatar
Lysandre committed
1468
1469
1470
        answer = ' '.join(all_tokens[torch.argmax(start_scores) : torch.argmax(end_scores)+1])

        assert answer == "a nice puppet"
1471

Lysandre's avatar
Lysandre committed
1472
        """
1473
1474
1475
1476
1477
1478
1479
1480
1481

        outputs = self.bert(
            input_ids,
            attention_mask=attention_mask,
            token_type_ids=token_type_ids,
            position_ids=position_ids,
            head_mask=head_mask,
            inputs_embeds=inputs_embeds,
        )
1482

thomwolf's avatar
thomwolf committed
1483
1484
        sequence_output = outputs[0]

thomwolf's avatar
thomwolf committed
1485
1486
1487
1488
1489
        logits = self.qa_outputs(sequence_output)
        start_logits, end_logits = logits.split(1, dim=-1)
        start_logits = start_logits.squeeze(-1)
        end_logits = end_logits.squeeze(-1)

1490
        outputs = (start_logits, end_logits,) + outputs[2:]
thomwolf's avatar
thomwolf committed
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, split add a dimension
            if len(start_positions.size()) > 1:
                start_positions = start_positions.squeeze(-1)
            if len(end_positions.size()) > 1:
                end_positions = end_positions.squeeze(-1)
            # sometimes the start/end positions are outside our model inputs, we ignore these terms
            ignored_index = start_logits.size(1)
            start_positions.clamp_(0, ignored_index)
            end_positions.clamp_(0, ignored_index)

            loss_fct = CrossEntropyLoss(ignore_index=ignored_index)
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1506
            outputs = (total_loss,) + outputs
thomwolf's avatar
thomwolf committed
1507
1508

        return outputs  # (loss), start_logits, end_logits, (hidden_states), (attentions)