"docs/source/en/pr_checks.md" did not exist on "4c01231e67f0d699e0236c11178c956fb9753a17"
run_xnli.py 16 KB
Newer Older
1
#!/usr/bin/env python
VictorSanh's avatar
VictorSanh committed
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors and The HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
17
""" Finetuning multi-lingual models on XNLI (e.g. Bert, DistilBERT, XLM).
18
    Adapted from `examples/text-classification/run_glue.py`"""
VictorSanh's avatar
VictorSanh committed
19
20
21
22

import logging
import os
import random
23
24
25
import sys
from dataclasses import dataclass, field
from typing import Optional
VictorSanh's avatar
VictorSanh committed
26

27
import datasets
VictorSanh's avatar
VictorSanh committed
28
import numpy as np
29
from datasets import load_dataset, load_metric
VictorSanh's avatar
VictorSanh committed
30

31
import transformers
32
from transformers import (
33
34
35
    AutoConfig,
    AutoModelForSequenceClassification,
    AutoTokenizer,
36
37
38
39
40
41
42
    DataCollatorWithPadding,
    EvalPrediction,
    HfArgumentParser,
    Trainer,
    TrainingArguments,
    default_data_collator,
    set_seed,
43
)
44
from transformers.trainer_utils import get_last_checkpoint
45
from transformers.utils import check_min_version
46
from transformers.utils.versions import require_version
Aymeric Augustin's avatar
Aymeric Augustin committed
47

VictorSanh's avatar
VictorSanh committed
48

49
# Will error if the minimal version of Transformers is not installed. Remove at your own risks.
Patrick von Platen's avatar
Patrick von Platen committed
50
check_min_version("4.16.0.dev0")
Lysandre's avatar
Lysandre committed
51

52
require_version("datasets>=1.8.0", "To fix: pip install -r examples/pytorch/text-classification/requirements.txt")
53

VictorSanh's avatar
VictorSanh committed
54
55
56
logger = logging.getLogger(__name__)


57
58
59
60
@dataclass
class DataTrainingArguments:
    """
    Arguments pertaining to what data we are going to input our model for training and eval.
VictorSanh's avatar
VictorSanh committed
61

62
63
64
65
    Using `HfArgumentParser` we can turn this class
    into argparse arguments to be able to specify them on
    the command line.
    """
VictorSanh's avatar
VictorSanh committed
66

67
68
69
70
71
    max_seq_length: Optional[int] = field(
        default=128,
        metadata={
            "help": "The maximum total input sequence length after tokenization. Sequences longer "
            "than this will be truncated, sequences shorter will be padded."
72
73
        },
    )
74
75
    overwrite_cache: bool = field(
        default=False, metadata={"help": "Overwrite the cached preprocessed datasets or not."}
76
    )
77
78
79
80
81
82
    pad_to_max_length: bool = field(
        default=True,
        metadata={
            "help": "Whether to pad all samples to `max_seq_length`. "
            "If False, will pad the samples dynamically when batching to the maximum length in the batch."
        },
83
    )
84
85
86
87
88
89
90
    max_train_samples: Optional[int] = field(
        default=None,
        metadata={
            "help": "For debugging purposes or quicker training, truncate the number of training examples to this "
            "value if set."
        },
    )
91
    max_eval_samples: Optional[int] = field(
92
93
        default=None,
        metadata={
94
            "help": "For debugging purposes or quicker training, truncate the number of evaluation examples to this "
95
96
97
            "value if set."
        },
    )
98
    max_predict_samples: Optional[int] = field(
99
100
        default=None,
        metadata={
101
            "help": "For debugging purposes or quicker training, truncate the number of prediction examples to this "
102
103
104
            "value if set."
        },
    )
105
106
    server_ip: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
    server_port: Optional[str] = field(default=None, metadata={"help": "For distant debugging."})
VictorSanh's avatar
VictorSanh committed
107
108


109
110
111
112
113
@dataclass
class ModelArguments:
    """
    Arguments pertaining to which model/config/tokenizer we are going to fine-tune from.
    """
VictorSanh's avatar
VictorSanh committed
114

115
116
    model_name_or_path: str = field(
        default=None, metadata={"help": "Path to pretrained model or model identifier from huggingface.co/models"}
117
    )
118
119
    language: str = field(
        default=None, metadata={"help": "Evaluation language. Also train language if `train_language` is set to None."}
120
    )
121
122
    train_language: Optional[str] = field(
        default=None, metadata={"help": "Train language if it is different from the evaluation language."}
123
    )
124
125
    config_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained config name or path if not the same as model_name"}
126
    )
127
128
    tokenizer_name: Optional[str] = field(
        default=None, metadata={"help": "Pretrained tokenizer name or path if not the same as model_name"}
129
    )
130
    cache_dir: Optional[str] = field(
131
        default=None,
132
        metadata={"help": "Where do you want to store the pretrained models downloaded from huggingface.co"},
133
    )
134
135
136
    do_lower_case: Optional[bool] = field(
        default=False,
        metadata={"help": "arg to indicate if tokenizer should do lower case in AutoTokenizer.from_pretrained()"},
137
    )
138
139
140
    use_fast_tokenizer: bool = field(
        default=True,
        metadata={"help": "Whether to use one of the fast tokenizer (backed by the tokenizers library) or not."},
141
    )
142
143
144
    model_revision: str = field(
        default="main",
        metadata={"help": "The specific model version to use (can be a branch name, tag name or commit id)."},
145
    )
146
147
148
149
150
151
    use_auth_token: bool = field(
        default=False,
        metadata={
            "help": "Will use the token generated when running `transformers-cli login` (necessary to use this script "
            "with private models)."
        },
152
153
    )

154
155
156
157
158
159
160
161
162

def main():
    # See all possible arguments in src/transformers/training_args.py
    # or by passing the --help flag to this script.
    # We now keep distinct sets of args, for a cleaner separation of concerns.

    parser = HfArgumentParser((ModelArguments, DataTrainingArguments, TrainingArguments))
    model_args, data_args, training_args = parser.parse_args_into_dataclasses()

VictorSanh's avatar
VictorSanh committed
163
    # Setup distant debugging if needed
164
    if data_args.server_ip and data_args.server_port:
VictorSanh's avatar
VictorSanh committed
165
166
        # Distant debugging - see https://code.visualstudio.com/docs/python/debugging#_attach-to-a-local-script
        import ptvsd
167

VictorSanh's avatar
VictorSanh committed
168
        print("Waiting for debugger attach")
169
        ptvsd.enable_attach(address=(data_args.server_ip, data_args.server_port), redirect_output=True)
VictorSanh's avatar
VictorSanh committed
170
171
172
        ptvsd.wait_for_attach()

    # Setup logging
173
    logging.basicConfig(
174
        format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
175
        datefmt="%m/%d/%Y %H:%M:%S",
176
        handlers=[logging.StreamHandler(sys.stdout)],
177
    )
178
179
180
181
182
183
184

    log_level = training_args.get_process_log_level()
    logger.setLevel(log_level)
    datasets.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.set_verbosity(log_level)
    transformers.utils.logging.enable_default_handler()
    transformers.utils.logging.enable_explicit_format()
185
186

    # Log on each process the small summary:
187
    logger.warning(
188
189
        f"Process rank: {training_args.local_rank}, device: {training_args.device}, n_gpu: {training_args.n_gpu}"
        + f"distributed training: {bool(training_args.local_rank != -1)}, 16-bits training: {training_args.fp16}"
190
    )
191
192
    logger.info(f"Training/evaluation parameters {training_args}")

193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
    # Detecting last checkpoint.
    last_checkpoint = None
    if os.path.isdir(training_args.output_dir) and training_args.do_train and not training_args.overwrite_output_dir:
        last_checkpoint = get_last_checkpoint(training_args.output_dir)
        if last_checkpoint is None and len(os.listdir(training_args.output_dir)) > 0:
            raise ValueError(
                f"Output directory ({training_args.output_dir}) already exists and is not empty. "
                "Use --overwrite_output_dir to overcome."
            )
        elif last_checkpoint is not None:
            logger.info(
                f"Checkpoint detected, resuming training at {last_checkpoint}. To avoid this behavior, change "
                "the `--output_dir` or add `--overwrite_output_dir` to train from scratch."
            )

208
209
210
211
212
213
    # Set seed before initializing model.
    set_seed(training_args.seed)

    # In distributed training, the load_dataset function guarantees that only one local process can concurrently
    # download the dataset.
    # Downloading and loading xnli dataset from the hub.
214
215
    if training_args.do_train:
        if model_args.train_language is None:
216
            train_dataset = load_dataset("xnli", model_args.language, split="train", cache_dir=model_args.cache_dir)
217
        else:
218
219
220
            train_dataset = load_dataset(
                "xnli", model_args.train_language, split="train", cache_dir=model_args.cache_dir
            )
221
222
223
        label_list = train_dataset.features["label"].names

    if training_args.do_eval:
224
        eval_dataset = load_dataset("xnli", model_args.language, split="validation", cache_dir=model_args.cache_dir)
225
226
227
        label_list = eval_dataset.features["label"].names

    if training_args.do_predict:
228
229
        predict_dataset = load_dataset("xnli", model_args.language, split="test", cache_dir=model_args.cache_dir)
        label_list = predict_dataset.features["label"].names
230
231

    # Labels
VictorSanh's avatar
VictorSanh committed
232
233
234
    num_labels = len(label_list)

    # Load pretrained model and tokenizer
235
236
    # In distributed training, the .from_pretrained methods guarantee that only one local process can concurrently
    # download model & vocab.
237
    config = AutoConfig.from_pretrained(
238
        model_args.config_name if model_args.config_name else model_args.model_name_or_path,
239
        num_labels=num_labels,
240
241
242
243
        finetuning_task="xnli",
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
244
    )
245
    tokenizer = AutoTokenizer.from_pretrained(
246
247
248
249
250
251
        model_args.tokenizer_name if model_args.tokenizer_name else model_args.model_name_or_path,
        do_lower_case=model_args.do_lower_case,
        cache_dir=model_args.cache_dir,
        use_fast=model_args.use_fast_tokenizer,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
252
    )
253
    model = AutoModelForSequenceClassification.from_pretrained(
254
255
        model_args.model_name_or_path,
        from_tf=bool(".ckpt" in model_args.model_name_or_path),
256
        config=config,
257
258
259
        cache_dir=model_args.cache_dir,
        revision=model_args.model_revision,
        use_auth_token=True if model_args.use_auth_token else None,
260
    )
VictorSanh's avatar
VictorSanh committed
261

262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
    # Preprocessing the datasets
    # Padding strategy
    if data_args.pad_to_max_length:
        padding = "max_length"
    else:
        # We will pad later, dynamically at batch creation, to the max sequence length in each batch
        padding = False

    def preprocess_function(examples):
        # Tokenize the texts
        return tokenizer(
            examples["premise"],
            examples["hypothesis"],
            padding=padding,
            max_length=data_args.max_seq_length,
            truncation=True,
        )
VictorSanh's avatar
VictorSanh committed
279

280
281
282
    if training_args.do_train:
        if data_args.max_train_samples is not None:
            train_dataset = train_dataset.select(range(data_args.max_train_samples))
283
284
285
286
287
288
289
        with training_args.main_process_first(desc="train dataset map pre-processing"):
            train_dataset = train_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on train dataset",
            )
290
291
292
        # Log a few random samples from the training set:
        for index in random.sample(range(len(train_dataset)), 3):
            logger.info(f"Sample {index} of the training set: {train_dataset[index]}.")
293
294

    if training_args.do_eval:
295
296
        if data_args.max_eval_samples is not None:
            eval_dataset = eval_dataset.select(range(data_args.max_eval_samples))
297
298
299
300
301
302
303
        with training_args.main_process_first(desc="validation dataset map pre-processing"):
            eval_dataset = eval_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on validation dataset",
            )
VictorSanh's avatar
VictorSanh committed
304

305
    if training_args.do_predict:
306
307
        if data_args.max_predict_samples is not None:
            predict_dataset = predict_dataset.select(range(data_args.max_predict_samples))
308
309
310
311
312
313
314
        with training_args.main_process_first(desc="prediction dataset map pre-processing"):
            predict_dataset = predict_dataset.map(
                preprocess_function,
                batched=True,
                load_from_cache_file=not data_args.overwrite_cache,
                desc="Running tokenizer on prediction dataset",
            )
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337

    # Get the metric function
    metric = load_metric("xnli")

    # You can define your custom compute_metrics function. It takes an `EvalPrediction` object (a namedtuple with a
    # predictions and label_ids field) and has to return a dictionary string to float.
    def compute_metrics(p: EvalPrediction):
        preds = p.predictions[0] if isinstance(p.predictions, tuple) else p.predictions
        preds = np.argmax(preds, axis=1)
        return metric.compute(predictions=preds, references=p.label_ids)

    # Data collator will default to DataCollatorWithPadding, so we change it if we already did the padding.
    if data_args.pad_to_max_length:
        data_collator = default_data_collator
    elif training_args.fp16:
        data_collator = DataCollatorWithPadding(tokenizer, pad_to_multiple_of=8)
    else:
        data_collator = None

    # Initialize our Trainer
    trainer = Trainer(
        model=model,
        args=training_args,
338
        train_dataset=train_dataset if training_args.do_train else None,
339
340
341
342
343
        eval_dataset=eval_dataset if training_args.do_eval else None,
        compute_metrics=compute_metrics,
        tokenizer=tokenizer,
        data_collator=data_collator,
    )
VictorSanh's avatar
VictorSanh committed
344
345

    # Training
346
    if training_args.do_train:
347
        checkpoint = None
348
349
350
        if training_args.resume_from_checkpoint is not None:
            checkpoint = training_args.resume_from_checkpoint
        elif last_checkpoint is not None:
351
352
            checkpoint = last_checkpoint
        train_result = trainer.train(resume_from_checkpoint=checkpoint)
353
        metrics = train_result.metrics
354
355
356
357
        max_train_samples = (
            data_args.max_train_samples if data_args.max_train_samples is not None else len(train_dataset)
        )
        metrics["train_samples"] = min(max_train_samples, len(train_dataset))
VictorSanh's avatar
VictorSanh committed
358

359
        trainer.save_model()  # Saves the tokenizer too for easy upload
360

361
362
363
        trainer.log_metrics("train", metrics)
        trainer.save_metrics("train", metrics)
        trainer.save_state()
VictorSanh's avatar
VictorSanh committed
364

365
366
367
    # Evaluation
    if training_args.do_eval:
        logger.info("*** Evaluate ***")
368
369
        metrics = trainer.evaluate(eval_dataset=eval_dataset)

370
371
        max_eval_samples = data_args.max_eval_samples if data_args.max_eval_samples is not None else len(eval_dataset)
        metrics["eval_samples"] = min(max_eval_samples, len(eval_dataset))
372

373
374
        trainer.log_metrics("eval", metrics)
        trainer.save_metrics("eval", metrics)
VictorSanh's avatar
VictorSanh committed
375

376
377
378
    # Prediction
    if training_args.do_predict:
        logger.info("*** Predict ***")
379
        predictions, labels, metrics = trainer.predict(predict_dataset, metric_key_prefix="predict")
380

381
382
383
384
        max_predict_samples = (
            data_args.max_predict_samples if data_args.max_predict_samples is not None else len(predict_dataset)
        )
        metrics["predict_samples"] = min(max_predict_samples, len(predict_dataset))
385

386
387
        trainer.log_metrics("predict", metrics)
        trainer.save_metrics("predict", metrics)
388
389

        predictions = np.argmax(predictions, axis=1)
390
        output_predict_file = os.path.join(training_args.output_dir, "predictions.txt")
391
        if trainer.is_world_process_zero():
392
            with open(output_predict_file, "w") as writer:
393
394
395
396
397
                writer.write("index\tprediction\n")
                for index, item in enumerate(predictions):
                    item = label_list[item]
                    writer.write(f"{index}\t{item}\n")

VictorSanh's avatar
VictorSanh committed
398
399
400

if __name__ == "__main__":
    main()