test_pipelines_image_segmentation.py 23.2 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest
17
from typing import Dict
18

19
import datasets
20
import numpy as np
21
from datasets import load_dataset
22

23
import requests
24
25
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
26
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
27
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
28
29
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
30
    AutoModelForInstanceSegmentation,
31
    DetrForSegmentation,
32
    ImageSegmentationPipeline,
33
    MaskFormerForInstanceSegmentation,
34
35
36
    is_vision_available,
    pipeline,
)
37
from transformers.testing_utils import nested_simplify, require_tf, require_timm, require_torch, require_vision, slow
38
39
40
41
42
43
44
45
46
47
48
49
50
51

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


52
53
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
54
55
56
57
58
59
60
61
    return m.hexdigest()[:10]


def mask_to_test_readable(mask: Image) -> Dict:
    npimg = np.array(mask)
    white_pixels = (npimg == 255).sum()
    shape = npimg.shape
    return {"hash": hashimage(mask), "white_pixels": white_pixels, "shape": shape}
62
63


64
65
66
67
68
69
def mask_to_test_readable_only_shape(mask: Image) -> Dict:
    npimg = np.array(mask)
    shape = npimg.shape
    return {"shape": shape}


70
71
72
73
@require_vision
@require_timm
@require_torch
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
74
75
76
77
78
79
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
80
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
81
    }
82

83
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
84
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
85
86
87
88
89
90
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
91
92
93
94
95
96
        outputs = image_segmenter(
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            threshold=0.0,
            mask_threshold=0,
            overlap_mask_area_threshold=0,
        )
97
98
        self.assertIsInstance(outputs, list)
        n = len(outputs)
99
100
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation, DetrForSegmentation)):
            # Instance segmentation (maskformer, and detr) have a slot for null class
101
102
103
104
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
105
106
107
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
108

109
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
110

111
        # RGBA
112
        outputs = image_segmenter(dataset[0]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
113
114
115
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
116
        outputs = image_segmenter(dataset[1]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
117
118
119
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
120
        outputs = image_segmenter(dataset[2]["file"], threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0)
121
122
123
124
125
126
127
128
129
130
131
132
133
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
134
        batch = [
135
136
137
138
139
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
140
        ]
141
142
143
        outputs = image_segmenter(
            batch, threshold=0.0, mask_threshold=0, overlap_mask_area_threshold=0, batch_size=batch_size
        )
144
        self.assertEqual(len(batch), len(outputs))
145
        self.assertEqual(len(outputs[0]), n)
146
147
        self.assertEqual(
            [
148
149
150
151
152
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
153
            ],
154
155
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
156
157
158
159
160
161
162
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
    @require_torch
    def test_small_model_pt_no_panoptic(self):
        model_id = "hf-internal-testing/tiny-random-mobilevit"
        # The default task is `image-classification` we need to override
        pipe = pipeline(task="image-segmentation", model=model_id)

        # This model does NOT support neither `instance` nor  `panoptic`
        # We should error out
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="panoptic")
        self.assertEqual(
            str(e.exception),
            "Subtask panoptic is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )
        with self.assertRaises(ValueError) as e:
            pipe("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        self.assertEqual(
            str(e.exception),
            "Subtask instance is not supported for model <class"
            " 'transformers.models.mobilevit.modeling_mobilevit.MobileViTForSemanticSegmentation'>",
        )

186
187
    @require_torch
    def test_small_model_pt(self):
188
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
189
190
191

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
192
193
194
        image_segmenter = ImageSegmentationPipeline(
            model=model,
            feature_extractor=feature_extractor,
195
196
197
198
            subtask="panoptic",
            threshold=0.0,
            mask_threshold=0.0,
            overlap_mask_area_threshold=0.0,
199
200
        )

201
202
203
204
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

205
        # Shortening by hashing
206
        for o in outputs:
207
            o["mask"] = mask_to_test_readable(o["mask"])
208

209
        # This is extremely brittle, and those values are made specific for the CI.
210
211
212
213
        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
214
                    "score": 0.004,
215
                    "label": "LABEL_215",
216
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
217
                },
218
            ],
219
220
221
222
223
224
225
226
227
228
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
        for output in outputs:
            for o in output:
229
                o["mask"] = mask_to_test_readable(o["mask"])
230
231
232
233
234
235

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
236
                        "score": 0.004,
237
                        "label": "LABEL_215",
238
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
239
240
241
242
                    },
                ],
                [
                    {
243
                        "score": 0.004,
244
                        "label": "LABEL_215",
245
                        "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
246
                    },
247
                ],
248
249
250
            ],
        )

251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="instance")
        for o in output:
            o["mask"] = mask_to_test_readable(o["mask"])
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_215",
                    "mask": {"hash": "a01498ca7c", "shape": (480, 640), "white_pixels": 307200},
                },
            ],
        )

        # This must be surprising to the reader.
        # The `panoptic` returns only LABEL_215, and this returns 3 labels.
        #
        output = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", subtask="semantic")
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296

        output_masks = [o["mask"] for o in output]

        # page links (to visualize)
        expected_masks = [
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_0.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_1.png",
            "https://huggingface.co/datasets/hf-internal-testing/mask-for-image-segmentation-tests/blob/main/mask_2.png",
        ]
        # actual links to get files
        expected_masks = [x.replace("/blob/", "/resolve/") for x in expected_masks]
        expected_masks = [Image.open(requests.get(image, stream=True).raw) for image in expected_masks]

        # Convert masks to numpy array
        output_masks = [np.array(x) for x in output_masks]
        expected_masks = [np.array(x) for x in expected_masks]

        self.assertEqual(output_masks[0].shape, expected_masks[0].shape)
        self.assertEqual(output_masks[1].shape, expected_masks[1].shape)
        self.assertEqual(output_masks[2].shape, expected_masks[2].shape)

        # With un-trained tiny random models, the output `logits` tensor is very likely to contain many values
        # close to each other, which cause `argmax` to give quite different results when running the test on 2
        # environments. We use a lower threshold `0.9` here to avoid flakiness.
        self.assertGreaterEqual(np.mean(output_masks[0] == expected_masks[0]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[1] == expected_masks[1]), 0.9)
        self.assertGreaterEqual(np.mean(output_masks[2] == expected_masks[2]), 0.9)

297
        for o in output:
298
            o["mask"] = mask_to_test_readable_only_shape(o["mask"])
299
300
301
302
303
304
        self.maxDiff = None
        self.assertEqual(
            nested_simplify(output, decimals=4),
            [
                {
                    "label": "LABEL_88",
305
                    "mask": {"shape": (480, 640)},
306
307
308
309
                    "score": None,
                },
                {
                    "label": "LABEL_101",
310
                    "mask": {"shape": (480, 640)},
311
312
313
314
                    "score": None,
                },
                {
                    "label": "LABEL_215",
315
                    "mask": {"shape": (480, 640)},
316
317
318
319
320
                    "score": None,
                },
            ],
        )

321
322
323
324
325
326
327
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
328
            o["mask"] = mask_to_test_readable(o["mask"])
329
330
331
332

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
333
334
335
336
337
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": {"hash": "42d0907228", "shape": (480, 640), "white_pixels": 10714},
                },
338
339
340
                {
                    "score": None,
                    "label": "LABEL_1",
341
                    "mask": {"hash": "46b8cc3976", "shape": (480, 640), "white_pixels": 296486},
342
343
344
345
                },
            ],
        )

346
347
348
349
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"
350
351
352
353
354
355
        image_segmenter = pipeline(
            "image-segmentation",
            model=model_id,
            threshold=0.0,
            overlap_mask_area_threshold=0.0,
        )
356

357
358
359
360
361
        outputs = image_segmenter(
            "http://images.cocodataset.org/val2017/000000039769.jpg",
        )

        # Shortening by hashing
362
        for o in outputs:
363
            o["mask"] = mask_to_test_readable(o["mask"])
364
365
366
367

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
                {
                    "score": 0.9094,
                    "label": "blanket",
                    "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                },
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
398
399
400
401
402
403
404
405
406
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
        )
407
408

        # Shortening by hashing
409
410
        for output in outputs:
            for o in output:
411
                o["mask"] = mask_to_test_readable(o["mask"])
412
413
414
415
416

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
447
448
                ],
                [
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
                    {
                        "score": 0.9094,
                        "label": "blanket",
                        "mask": {"hash": "dcff19a97a", "shape": (480, 640), "white_pixels": 16617},
                    },
                    {
                        "score": 0.9941,
                        "label": "cat",
                        "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                    },
                    {
                        "score": 0.9987,
                        "label": "remote",
                        "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                    },
                    {
                        "score": 0.9995,
                        "label": "remote",
                        "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                    },
                    {
                        "score": 0.9722,
                        "label": "couch",
                        "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                    },
                    {
                        "score": 0.9994,
                        "label": "cat",
                        "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                    },
479
480
481
482
483
484
485
486
487
488
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        model_id = "facebook/detr-resnet-50-panoptic"
        image_segmenter = pipeline("image-segmentation", model=model_id)

489
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.999)
490
491
        # Shortening by hashing
        for o in outputs:
492
            o["mask"] = mask_to_test_readable(o["mask"])
493
494
495
496

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
497
498
499
500
501
502
503
504
505
506
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "d02404f578", "shape": (480, 640), "white_pixels": 2789},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "eaa115b40c", "shape": (480, 640), "white_pixels": 304411},
                },
507
508
509
            ],
        )

510
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.5)
511
512

        for o in outputs:
513
            o["mask"] = mask_to_test_readable(o["mask"])
514
515
516
517

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
                {
                    "score": 0.9941,
                    "label": "cat",
                    "mask": {"hash": "9c0af87bd0", "shape": (480, 640), "white_pixels": 59185},
                },
                {
                    "score": 0.9987,
                    "label": "remote",
                    "mask": {"hash": "c7870600d6", "shape": (480, 640), "white_pixels": 4182},
                },
                {
                    "score": 0.9995,
                    "label": "remote",
                    "mask": {"hash": "ef899a25fd", "shape": (480, 640), "white_pixels": 2275},
                },
                {
                    "score": 0.9722,
                    "label": "couch",
                    "mask": {"hash": "37b8446ac5", "shape": (480, 640), "white_pixels": 172380},
                },
                {
                    "score": 0.9994,
                    "label": "cat",
                    "mask": {"hash": "6a09d3655e", "shape": (480, 640), "white_pixels": 52561},
                },
543
544
            ],
        )
545
546
547
548

    @require_torch
    @slow
    def test_maskformer(self):
549
        threshold = 0.8
550
551
        model_id = "facebook/maskformer-swin-base-ade"

552
553
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
554
555
556
557

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
558
        file = image[0]["file"]
559
        outputs = image_segmenter(file, threshold=threshold)
560

561
        # Shortening by hashing
562
        for o in outputs:
563
            o["mask"] = mask_to_test_readable(o["mask"])
564
565
566
567

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
                {
                    "score": 0.9974,
                    "label": "wall",
                    "mask": {"hash": "a547b7c062", "shape": (512, 683), "white_pixels": 14252},
                },
                {
                    "score": 0.949,
                    "label": "house",
                    "mask": {"hash": "0da9b7b38f", "shape": (512, 683), "white_pixels": 132177},
                },
                {
                    "score": 0.9995,
                    "label": "grass",
                    "mask": {"hash": "1d07ea0a26", "shape": (512, 683), "white_pixels": 53444},
                },
                {
                    "score": 0.9976,
                    "label": "tree",
                    "mask": {"hash": "6cdc97c7da", "shape": (512, 683), "white_pixels": 7944},
                },
                {
                    "score": 0.8239,
                    "label": "plant",
                    "mask": {"hash": "1ab4ce378f", "shape": (512, 683), "white_pixels": 4136},
                },
                {
                    "score": 0.9942,
                    "label": "road, route",
                    "mask": {"hash": "39c5d17be5", "shape": (512, 683), "white_pixels": 1941},
                },
                {
                    "score": 1.0,
                    "label": "sky",
                    "mask": {"hash": "a3756324a6", "shape": (512, 683), "white_pixels": 135802},
                },
603
604
            ],
        )