modeling_tf_gpt2.py 34 KB
Newer Older
thomwolf's avatar
WIP  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OpenAI GPT-2 model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import math
import os
import sys
from io import open

import numpy as np
import tensorflow as tf

thomwolf's avatar
thomwolf committed
31
from .modeling_tf_utils import TFPreTrainedModel, TFConv1D, TFSequenceSummary, shape_list
thomwolf's avatar
WIP  
thomwolf committed
32
33
34
35
36
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)

thomwolf's avatar
thomwolf committed
37
TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-tf_model.h5",
thomwolf's avatar
WIP  
thomwolf committed
38
39
40
41
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-tf_model.h5",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-tf_model.h5"}


42
def load_gpt2_pt_weights_in_tf2(tf_model, config, pytorch_checkpoint_path):
thomwolf's avatar
WIP  
thomwolf committed
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
    """ Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format
        We use HDF5 to easily do transfer learning
        (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
    """
    try:
        import re
        import torch
        import numpy
        from tensorflow.python.keras import backend as K
    except ImportError:
        logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see "
            "https://pytorch.org/ for installation instructions.")
        raise

    pt_path = os.path.abspath(pytorch_checkpoint_path)
    logger.info("Loading PyTorch weights from {}".format(pt_path))
    # Load pytorch model
    state_dict = torch.load(pt_path, map_location='cpu')

    inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
    tf_inputs = tf.constant(inputs_list)
    tfo = tf_model(tf_inputs, training=False)  # build the network

    symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
    weight_value_tuples = []
    for symbolic_weight in symbolic_weights:
        name = symbolic_weight.name
        name = name.replace(':0', '')
71
        name = name.replace('h_', 'h/')
thomwolf's avatar
WIP  
thomwolf committed
72
        name = name.split('/')
73
        name = name[2:]
thomwolf's avatar
WIP  
thomwolf committed
74
75

        transpose = bool(name[-1] == 'kernel')
76
        if name[-1] == 'kernel' or name[-1] == 'embeddings' or name[-1] == 'gamma':
thomwolf's avatar
WIP  
thomwolf committed
77
            name[-1] = 'weight'
78
79
        if name[-1] == 'beta':
            name[-1] = 'bias'
thomwolf's avatar
WIP  
thomwolf committed
80
81

        name = '.'.join(name)
82
        assert name in state_dict, "Weight {} not in PyTorch model".format(name)
thomwolf's avatar
WIP  
thomwolf committed
83
84
85
86
87
        array = state_dict[name].numpy()

        if transpose:
            array = numpy.transpose(array)

88
89
90
91
92
        if len(symbolic_weight.shape) > len(array.shape):
            array = array[None, ...]
        if len(symbolic_weight.shape) < len(array.shape):
            array = np.squeeze(array)

thomwolf's avatar
WIP  
thomwolf committed
93
94
95
96
97
98
99
100
101
102
        try:
            assert list(symbolic_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (symbolic_weight.shape, array.shape)
            raise e

        logger.info("Initialize TF weight {}".format(symbolic_weight.name))

        weight_value_tuples.append((symbolic_weight, array))

thomwolf's avatar
thomwolf committed
103
104
        state_dict.pop(name)

thomwolf's avatar
WIP  
thomwolf committed
105
106
107
    K.batch_set_value(weight_value_tuples)

    tfo = tf_model(tf_inputs, training=False)  # Make sure restore ops are run
thomwolf's avatar
thomwolf committed
108
109
110

    assert not state_dict, "Weights not loaded: {}".format(list(state_dict.keys()))

thomwolf's avatar
WIP  
thomwolf committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
    return tf_model


def gelu(x):
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf


class TFAttention(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
129
130
    def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
        super(TFAttention, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
131
132
133
134
135
        self.output_attentions = config.output_attentions

        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
136
        self.n_ctx = n_ctx
thomwolf's avatar
WIP  
thomwolf committed
137
138
139
140
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

thomwolf's avatar
thomwolf committed
141
142
        self.c_attn = TFConv1D(n_state * 3, nx, name='c_attn')
        self.c_proj = TFConv1D(n_state, nx, name='c_proj')
thomwolf's avatar
thomwolf committed
143
144
        self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
        self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
145
146
147
        self.pruned_heads = set()

    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
148
149
150
        pass

    @staticmethod
thomwolf's avatar
thomwolf committed
151
    def causal_attention_mask(nd, ns, dtype):
thomwolf's avatar
thomwolf committed
152
153
154
155
156
157
158
159
160
        """1's in the lower triangle, counting from the lower right corner.
        Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
        """
        i = tf.range(nd)[:,None]
        j = tf.range(ns)
        m = i >= j - ns + nd
        return tf.cast(m, dtype)

    def _attn(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
161
        q, k, v, attention_mask, head_mask = inputs
thomwolf's avatar
thomwolf committed
162
163
        # q, k, v have shape [batch, heads, sequence, features]
        w = tf.matmul(q, k, transpose_b=True)
thomwolf's avatar
WIP  
thomwolf committed
164
        if self.scale:
thomwolf's avatar
thomwolf committed
165
166
            dk = tf.cast(tf.shape(k)[-1], tf.float32) # scale attention_scores
            w = w / tf.math.sqrt(dk)
thomwolf's avatar
thomwolf committed
167
168
169

        # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
        _, _, nd, ns = shape_list(w)
thomwolf's avatar
thomwolf committed
170
        b = self.causal_attention_mask(nd, ns, dtype=w.dtype)
thomwolf's avatar
thomwolf committed
171
        b = tf.reshape(b, [1, 1, nd, ns])
thomwolf's avatar
WIP  
thomwolf committed
172
173
        w = w * b - 1e4 * (1 - b)

thomwolf's avatar
thomwolf committed
174
175
176
177
178
        if attention_mask is not None:
            # Apply the attention mask
            w = w + attention_mask

        w = tf.nn.softmax(w, axis=-1)
thomwolf's avatar
thomwolf committed
179
180
        if training:
            w = self.attn_dropout(w)
thomwolf's avatar
WIP  
thomwolf committed
181
182
183
184
185

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
186
        outputs = [tf.matmul(w, v)]
thomwolf's avatar
WIP  
thomwolf committed
187
188
189
190
191
        if self.output_attentions:
            outputs.append(w)
        return outputs

    def merge_heads(self, x):
thomwolf's avatar
thomwolf committed
192
        x = tf.transpose(x, [0, 2, 1, 3])
thomwolf's avatar
thomwolf committed
193
194
        x_shape = shape_list(x)
        new_x_shape = x_shape[:-2] + [x_shape[-2] * x_shape[-1]]
thomwolf's avatar
thomwolf committed
195
196
197
        return tf.reshape(x, new_x_shape)

    def split_heads(self, x):
thomwolf's avatar
thomwolf committed
198
199
        x_shape = shape_list(x)
        new_x_shape = x_shape[:-1] + [self.n_head, x_shape[-1] // self.n_head]
thomwolf's avatar
thomwolf committed
200
201
202
203
        x = tf.reshape(x, new_x_shape)
        return tf.transpose(x, (0, 2, 1, 3))  # (batch, head, seq_length, head_features)

    def call(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
204
        x, layer_past, attention_mask, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
205
206

        x = self.c_attn(x)
thomwolf's avatar
thomwolf committed
207
        query, key, value = tf.split(x, 3, axis=2)
thomwolf's avatar
WIP  
thomwolf committed
208
        query = self.split_heads(query)
thomwolf's avatar
thomwolf committed
209
        key = self.split_heads(key)
thomwolf's avatar
WIP  
thomwolf committed
210
211
        value = self.split_heads(value)
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
212
213
214
215
            past_key, past_value = tf.unstack(layer_past, axis=1)
            key = tf.concat([past_key, key], axis=-2)
            value = tf.concat([past_value, value], axis=-2)
        present = tf.stack([key, value], axis=1)
thomwolf's avatar
WIP  
thomwolf committed
216

thomwolf's avatar
thomwolf committed
217
        attn_outputs = self._attn([query, key, value, attention_mask, head_mask], training=training)
thomwolf's avatar
WIP  
thomwolf committed
218
219
220
221
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
thomwolf's avatar
thomwolf committed
222
223
        if training:
            a = self.resid_dropout(a)
thomwolf's avatar
WIP  
thomwolf committed
224
225
226
227
228

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)


thomwolf's avatar
thomwolf committed
229
class TFMLP(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
230
231
    def __init__(self, n_state, config, **kwargs):
        super(TFMLP, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
232
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
233
234
        self.c_fc = TFConv1D(n_state, nx, name='c_fc')
        self.c_proj = TFConv1D(nx, n_state, name='c_proj')
thomwolf's avatar
WIP  
thomwolf committed
235
        self.act = gelu
thomwolf's avatar
thomwolf committed
236
        self.dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
237

thomwolf's avatar
thomwolf committed
238
    def call(self, x, training=False):
thomwolf's avatar
WIP  
thomwolf committed
239
240
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
thomwolf's avatar
thomwolf committed
241
242
243
        if training:
            h2 = self.dropout(h2)
        return h2
thomwolf's avatar
WIP  
thomwolf committed
244
245


thomwolf's avatar
thomwolf committed
246
247
248
class TFBlock(tf.keras.layers.Layer):
    def __init__(self, n_ctx, config, scale=False, **kwargs):
        super(TFBlock, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
249
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
250
251
252
253
        self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_1')
        self.attn = TFAttention(nx, n_ctx, config, scale, name='attn')
        self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_2')
        self.mlp = TFMLP(4 * nx, config, name='mlp')
thomwolf's avatar
WIP  
thomwolf committed
254

thomwolf's avatar
thomwolf committed
255
256
    def call(self, inputs, training=False):
        x, layer_past, attention_mask, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
257

thomwolf's avatar
thomwolf committed
258
259
260
        a = self.ln_1(x)
        output_attn = self.attn([a, layer_past, attention_mask, head_mask], training=training)
        a = output_attn[0]  # output_attn: a, present, (attentions)
thomwolf's avatar
WIP  
thomwolf committed
261
        x = x + a
thomwolf's avatar
thomwolf committed
262
263
264

        m = self.ln_2(x)
        m = self.mlp(m, training=training)
thomwolf's avatar
WIP  
thomwolf committed
265
266
267
268
269
        x = x + m

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)

thomwolf's avatar
thomwolf committed
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
class TFGPT2Embeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config, **kwargs):
        super(TFGPT2Embeddings, self).__init__(**kwargs)
        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size

    def build(self, input_shape):
        """Build shared word embedding layer
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        self.weight = self.add_weight(
            "weight",
thomwolf's avatar
thomwolf committed
285
            shape=[self.vocab_size, self.hidden_size],
thomwolf's avatar
thomwolf committed
286
            initializer=tf.random_normal_initializer(
thomwolf's avatar
thomwolf committed
287
288
                mean=0., stddev=self.hidden_size**-0.5))
        super(TFGPT2Embeddings, self).build(input_shape)
thomwolf's avatar
thomwolf committed
289

thomwolf's avatar
thomwolf committed
290
    def call(self, inputs, mode="embedding"):
thomwolf's avatar
thomwolf committed
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
        """Get token embeddings of inputs.
        Args:
            inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.
        
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
thomwolf's avatar
thomwolf committed
306
            return self._embedding(inputs)
thomwolf's avatar
thomwolf committed
307
308
309
310
311
312
313
314
315
316
317
318
        elif mode == "linear":
            return self._linear(inputs)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
            Args:
319
                inputs: A float32 tensor with shape [..., hidden_size]
thomwolf's avatar
thomwolf committed
320
            Returns:
321
                float32 tensor with shape [..., vocab_size].
thomwolf's avatar
thomwolf committed
322
        """
323
        first_dims = shape_list(inputs)[:-1]
thomwolf's avatar
thomwolf committed
324

thomwolf's avatar
thomwolf committed
325
        x = tf.reshape(inputs, [-1, self.hidden_size])
thomwolf's avatar
thomwolf committed
326
327
        logits = tf.matmul(x, self.weight, transpose_b=True)

328
        return tf.reshape(logits, first_dims + [self.vocab_size])
thomwolf's avatar
thomwolf committed
329
330
331
332
333
334

class TFGPT2MainLayer(tf.keras.layers.Layer):
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2MainLayer, self).__init__(config, *inputs, **kwargs)
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
thomwolf's avatar
thomwolf committed
335
        self.num_hidden_layers = config.n_layer
thomwolf's avatar
thomwolf committed
336
337
338
339
340
341
        self.vocab_size = config.vocab_size
        self.n_embd = config.n_embd

        self.wte = TFGPT2Embeddings(config, name='wte')
        self.wpe = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='wpe')
        self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
thomwolf's avatar
thomwolf committed
342
        self.h = [TFBlock(config.n_ctx, config, scale=True, name='h_{}'.format(i)) for i in range(config.n_layer)]
thomwolf's avatar
thomwolf committed
343
344
345
346
347
348
349
350
351
352
353
354
355
356
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f')

    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        raise NotImplementedError

    def call(self, inputs, training=False):
        if not isinstance(inputs, (dict, tuple, list)):
            input_ids = inputs
thomwolf's avatar
thomwolf committed
357
            past, attention_mask, token_type_ids, position_ids, head_mask = None, None, None, None, None
thomwolf's avatar
thomwolf committed
358
359
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
thomwolf's avatar
thomwolf committed
360
361
362
363
364
365
            past = inputs[1] if len(inputs) > 1 else None
            attention_mask = inputs[2] if len(inputs) > 2 else None
            token_type_ids = inputs[3] if len(inputs) > 3 else None
            position_ids = inputs[4] if len(inputs) > 4 else None
            head_mask = inputs[5] if len(inputs) > 5 else None
            assert len(inputs) <= 6, "Too many inputs."
thomwolf's avatar
thomwolf committed
366
367
        else:
            input_ids = inputs.get('input_ids')
thomwolf's avatar
thomwolf committed
368
            past = inputs.get('past', None)
thomwolf's avatar
thomwolf committed
369
370
371
372
373
374
375
376
377
378
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
thomwolf's avatar
thomwolf committed
379
            past_length = shape_list(past[0][0])[-2]
thomwolf's avatar
thomwolf committed
380
        if position_ids is None:
thomwolf's avatar
thomwolf committed
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
            position_ids = tf.range(past_length, shape_list(input_ids)[-1] + past_length, dtype=tf.int32)[tf.newaxis, :]

        if attention_mask is not None:
            # We create a 3D attention mask from a 2D tensor mask.
            # Sizes are [batch_size, 1, 1, to_seq_length]
            # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length]
            # this attention mask is more simple than the triangular masking of causal attention
            # used in OpenAI GPT, we just need to prepare the broadcast dimension here.
            attention_mask = attention_mask[:, tf.newaxis, tf.newaxis, :]

            # Since attention_mask is 1.0 for positions we want to attend and 0.0 for
            # masked positions, this operation will create a tensor which is 0.0 for
            # positions we want to attend and -10000.0 for masked positions.
            # Since we are adding it to the raw scores before the softmax, this is
            # effectively the same as removing these entirely.

            attention_mask = tf.cast(attention_mask, tf.float32)
            attention_mask = (1.0 - attention_mask) * -10000.0
        else:
            attention_mask = None
thomwolf's avatar
thomwolf committed
401
402
403
404

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
405
406
407
408
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads]
        # and head_mask is converted to shape [num_hidden_layers x batch x num_heads x seq_length x seq_length]
        if not head_mask is None:
            raise NotImplementedError
thomwolf's avatar
thomwolf committed
409
        else:
thomwolf's avatar
thomwolf committed
410
411
            head_mask = [None] * self.num_hidden_layers
            # head_mask = tf.constant([0] * self.num_hidden_layers)
thomwolf's avatar
thomwolf committed
412

thomwolf's avatar
thomwolf committed
413
414
415
        input_shape = shape_list(input_ids)
        input_ids = tf.reshape(input_ids, [-1, input_shape[-1]])
        position_ids = tf.reshape(position_ids, [-1, shape_list(position_ids)[-1]])
thomwolf's avatar
thomwolf committed
416

thomwolf's avatar
thomwolf committed
417
        inputs_embeds = self.wte(input_ids, mode='embedding')
thomwolf's avatar
thomwolf committed
418
419
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
thomwolf's avatar
thomwolf committed
420
421
            token_type_ids = tf.reshape(token_type_ids, [-1, shape_list(token_type_ids)[-1]])
            token_type_embeds = self.wte(token_type_ids, mode='embedding')
thomwolf's avatar
thomwolf committed
422
423
424
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
thomwolf's avatar
thomwolf committed
425
426
        if training:
            hidden_states = self.drop(hidden_states)
thomwolf's avatar
thomwolf committed
427

thomwolf's avatar
thomwolf committed
428
        output_shape = input_shape + [shape_list(hidden_states)[-1]]
thomwolf's avatar
thomwolf committed
429
430
431
432
433
434

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
435
436
437
                all_hidden_states = all_hidden_states + (tf.reshape(hidden_states, output_shape),)

            outputs = block([hidden_states, layer_past, attention_mask, head_mask[i]], training=training)
thomwolf's avatar
thomwolf committed
438
439
440

            hidden_states, present = outputs[:2]
            presents = presents + (present,)
thomwolf's avatar
WIP  
thomwolf committed
441

thomwolf's avatar
thomwolf committed
442
443
444
445
446
            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.ln_f(hidden_states)

thomwolf's avatar
thomwolf committed
447
        hidden_states = tf.reshape(hidden_states, output_shape)
thomwolf's avatar
thomwolf committed
448
449
450
451
452
453
454
455
456
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states, presents)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
thomwolf's avatar
thomwolf committed
457
458
            attention_output_shape = input_shape[:-1] + [-1] + shape_list(all_attentions[0])[-2:]
            all_attentions = tuple(tf.reshape(t, attention_output_shape) for t in all_attentions)
thomwolf's avatar
thomwolf committed
459
460
461
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)

thomwolf's avatar
thomwolf committed
462

thomwolf's avatar
thomwolf committed
463
class TFGPT2PreTrainedModel(TFPreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
464
465
466
467
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = GPT2Config
thomwolf's avatar
thomwolf committed
468
    pretrained_model_archive_map = TF_GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
469
    load_pt_weights = load_gpt2_pt_weights_in_tf2
thomwolf's avatar
WIP  
thomwolf committed
470
471
472
473
474
475
476
477
478
    base_model_prefix = "transformer"


GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

thomwolf's avatar
thomwolf committed
479
480
    This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.
thomwolf's avatar
WIP  
thomwolf committed
481
482
483
484

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

thomwolf's avatar
thomwolf committed
485
486
487
488
489
490
491
492
493
494
495
496
497
498
    .. _`tf.keras.Model`:
        https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model

    Important note on the model inputs:
        The inputs of the TF 2.0 models are slightly different from the PyTorch ones since
        TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor.
        More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`.
        There are three possibilities to gather and feed the inputs to the model:

        - a single Tensor with input_ids only and nothing else: `model(inputs_ids)
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
            `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associaed to the input names given in the docstring:
            `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
thomwolf's avatar
WIP  
thomwolf committed
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517

    Parameters:
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

GPT2_INPUTS_DOCSTRING = r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
thomwolf's avatar
thomwolf committed
518
519
520
521
522
523
524
525
526
527
528
        **attention_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(batch_size, sequence_length)``:
            Mask to avoid performing attention on padding token indices.
            Mask values selected in ``[0, 1]``:
            ``1`` for tokens that are NOT MASKED, ``0`` for MASKED tokens.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
thomwolf's avatar
WIP  
thomwolf committed
529
530
531
532
533
534
535
536
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
537
class TFGPT2Model(TFGPT2PreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
557
        model = GPT2Model.from_pretrained('gpt2')
thomwolf's avatar
WIP  
thomwolf committed
558
559
560
561
562
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
thomwolf's avatar
thomwolf committed
563
564
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2Model, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
thomwolf committed
565
        self.transformer = TFGPT2MainLayer(config, name='transformer')
thomwolf's avatar
thomwolf committed
566
567

    def call(self, inputs, training=False):
thomwolf's avatar
thomwolf committed
568
569
        outputs = self.transformer(inputs, training=training)
        return outputs
thomwolf's avatar
WIP  
thomwolf committed
570
571
572
573


@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
574
class TFGPT2LMHeadModel(TFGPT2PreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
thomwolf's avatar
thomwolf committed
600
601
        outputs = model(input_ids)
        logits = outputs[:2]
thomwolf's avatar
WIP  
thomwolf committed
602
603

    """
thomwolf's avatar
thomwolf committed
604
605
606
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2LMHeadModel, self).__init__(config, *inputs, **kwargs)
        self.transformer = TFGPT2MainLayer(config, name='transformer')
thomwolf's avatar
WIP  
thomwolf committed
607

thomwolf's avatar
thomwolf committed
608
609
    def call(self, inputs, training=False):
        transformer_outputs = self.transformer(inputs, training=training)
thomwolf's avatar
WIP  
thomwolf committed
610
611
        hidden_states = transformer_outputs[0]

thomwolf's avatar
thomwolf committed
612
        lm_logits = self.transformer.wte(hidden_states, mode="linear")
thomwolf's avatar
WIP  
thomwolf committed
613
614
615

        outputs = (lm_logits,) + transformer_outputs[1:]

thomwolf's avatar
thomwolf committed
616
        return outputs  # lm_logits, presents, (all hidden_states), (attentions)
thomwolf's avatar
WIP  
thomwolf committed
617
618
619
620
621
622


@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the input sequence).
thomwolf's avatar
thomwolf committed
623
624
625
626
""", GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
class TFGPT2DoubleHeadsModel(TFGPT2PreTrainedModel):
    r"""
        **mc_token_ids**: (`optional`, default to index of the last token of the input) ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
thomwolf's avatar
WIP  
thomwolf committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]

    """
thomwolf's avatar
thomwolf committed
671
672
673
674
675
676
677
678
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2DoubleHeadsModel, self).__init__(config, *inputs, **kwargs)
        self.transformer = TFGPT2MainLayer(config, name='transformer')
        self.multiple_choice_head = TFSequenceSummary(config, name='multiple_choice_head')


    def call(self, inputs, training=False):
        if not isinstance(inputs, (dict, tuple, list)):
679
680
            input_ids = inputs
            mc_token_ids, past, attention_mask, token_type_ids, position_ids, head_mask = None, None, None, None, None
thomwolf's avatar
thomwolf committed
681
682
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
683
            mc_token_ids = inputs[1] if len(inputs) > 1 else None
thomwolf's avatar
thomwolf committed
684
685
686
687
688
689
690
691
            past = inputs[2] if len(inputs) > 2 else None
            attention_mask = inputs[3] if len(inputs) > 3 else None
            token_type_ids = inputs[4] if len(inputs) > 4 else None
            position_ids = inputs[5] if len(inputs) > 5 else None
            head_mask = inputs[6] if len(inputs) > 6 else None
            assert len(inputs) <= 7, "Too many inputs."
        else:
            input_ids = inputs.get('input_ids')
692
            mc_token_ids = inputs.get('mc_token_ids', None)
thomwolf's avatar
thomwolf committed
693
694
695
696
697
698
699
            past = inputs.get('past', None)
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."

700
701
702
        input_shapes = shape_list(input_ids)

        seq_length = input_shapes[-1]
thomwolf's avatar
thomwolf committed
703
704
705
706
707
708
709
710

        flat_input_ids = tf.reshape(input_ids, (-1, seq_length))
        flat_attention_mask = tf.reshape(attention_mask, (-1, seq_length)) if attention_mask is not None else None
        flat_token_type_ids = tf.reshape(token_type_ids, (-1, seq_length)) if token_type_ids is not None else None
        flat_position_ids = tf.reshape(position_ids, (-1, seq_length)) if position_ids is not None else None

        flat_inputs = [flat_input_ids, past, flat_attention_mask, flat_token_type_ids, flat_position_ids, head_mask]

711
        transformer_outputs = self.transformer(flat_inputs, training=training)
thomwolf's avatar
WIP  
thomwolf committed
712
713
        hidden_states = transformer_outputs[0]

714
715
        hidden_states = tf.reshape(hidden_states, input_shapes + shape_list(hidden_states)[-1:])

thomwolf's avatar
thomwolf committed
716
717
        lm_logits = self.transformer.wte(hidden_states, mode="linear")
        mc_logits = self.multiple_choice_head([hidden_states, mc_token_ids], training=training)
thomwolf's avatar
WIP  
thomwolf committed
718

719
720
        mc_logits = tf.squeeze(mc_logits, axis=-1)

thomwolf's avatar
WIP  
thomwolf committed
721
722
723
        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)