modeling_tf_gpt2.py 31.6 KB
Newer Older
thomwolf's avatar
WIP  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OpenAI GPT-2 model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import math
import os
import sys
from io import open

import numpy as np
import tensorflow as tf

thomwolf's avatar
thomwolf committed
31
from .modeling_tf_utils import TFPreTrainedModel, TFConv1D
thomwolf's avatar
WIP  
thomwolf committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)

GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-tf_model.h5",
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-tf_model.h5",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-tf_model.h5"}


def load_gpt2_pt_weights_in_tf(tf_model, config, pytorch_checkpoint_path):
    """ Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format
        We use HDF5 to easily do transfer learning
        (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
    """
    try:
        import re
        import torch
        import numpy
        from tensorflow.python.keras import backend as K
    except ImportError:
        logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see "
            "https://pytorch.org/ for installation instructions.")
        raise

    pt_path = os.path.abspath(pytorch_checkpoint_path)
    logger.info("Loading PyTorch weights from {}".format(pt_path))
    # Load pytorch model
    state_dict = torch.load(pt_path, map_location='cpu')

    inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
    tf_inputs = tf.constant(inputs_list)
    tfo = tf_model(tf_inputs, training=False)  # build the network

    symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
    weight_value_tuples = []
    for symbolic_weight in symbolic_weights:
        name = symbolic_weight.name
        name = name.replace('cls_mlm', 'cls')  # We had to split this layer in two in the TF model to be
        name = name.replace('cls_nsp', 'cls')  # able to do transfer learning (Keras only allow to remove full layers)
        name = name.replace(':0', '')
        name = name.replace('layer_', 'layer/')
        name = name.split('/')
        name = name[1:]

        transpose = bool(name[-1] == 'kernel')
        if name[-1] == 'kernel' or name[-1] == 'embeddings':
            name[-1] = 'weight'

        name = '.'.join(name)
        assert name in state_dict
        array = state_dict[name].numpy()

        if transpose:
            array = numpy.transpose(array)

        try:
            assert list(symbolic_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (symbolic_weight.shape, array.shape)
            raise e

        logger.info("Initialize TF weight {}".format(symbolic_weight.name))

        weight_value_tuples.append((symbolic_weight, array))

    K.batch_set_value(weight_value_tuples)

    tfo = tf_model(tf_inputs, training=False)  # Make sure restore ops are run
    return tf_model


def gelu(x):
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf


class TFAttention(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
119
120
    def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
        super(TFAttention, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
121
122
123
124
125
        self.output_attentions = config.output_attentions

        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
126
        self.n_ctx = n_ctx
thomwolf's avatar
WIP  
thomwolf committed
127
128
129
130
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

thomwolf's avatar
thomwolf committed
131
132
133
134
        self.c_attn = TFConv1D(n_state * 3, nx)
        self.c_proj = TFConv1D(n_state, nx)
        self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
        self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
135
136
137
        self.pruned_heads = set()

    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
        pass

    @staticmethod
    @tf.function
    def attention_mask(nd, ns, *, dtype):
        """1's in the lower triangle, counting from the lower right corner.
        Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
        """
        i = tf.range(nd)[:,None]
        j = tf.range(ns)
        m = i >= j - ns + nd
        return tf.cast(m, dtype)

    @tf.function
    def _attn(self, inputs, training=False):
        q, k, v, head_mask = inputs
        # q, k, v have shape [batch, heads, sequence, features]
        w = tf.matmul(q, k, transpose_b=True)
thomwolf's avatar
WIP  
thomwolf committed
156
        if self.scale:
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
            n_state = shape_list(v)[-1]
            w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))

        # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
        _, _, nd, ns = shape_list(w)
        b = self.attention_mask(nd, ns, dtype=w.dtype)
        b = tf.reshape(b, [1, 1, nd, ns])
thomwolf's avatar
WIP  
thomwolf committed
164
165
        w = w * b - 1e4 * (1 - b)

thomwolf's avatar
thomwolf committed
166
167
        w = tf.nn.softmax(w)
        w = self.attn_dropout(w, training=training)
thomwolf's avatar
WIP  
thomwolf committed
168
169
170
171
172

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
173
        outputs = [tf.matmul(w, v)]
thomwolf's avatar
WIP  
thomwolf committed
174
175
176
177
        if self.output_attentions:
            outputs.append(w)
        return outputs

thomwolf's avatar
thomwolf committed
178
    @tf.function
thomwolf's avatar
WIP  
thomwolf committed
179
    def merge_heads(self, x):
thomwolf's avatar
thomwolf committed
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
        x = tf.transpose(x, [0, 2, 1, 3])
        x_shape = tf.shape(x)
        new_x_shape = x_shape[:-2] + (x_shape[-2] * x_shape[-1],)
        return tf.reshape(x, new_x_shape)

    @tf.function
    def split_heads(self, x):
        x_shape = tf.shape(x)
        new_x_shape = x_shape[:-1] + (self.n_head, x_shape[-1] // self.n_head)
        x = tf.reshape(x, new_x_shape)
        return tf.transpose(x, (0, 2, 1, 3))  # (batch, head, seq_length, head_features)

    @tf.function
    def call(self, inputs, training=False):
        x, layer_past, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
195
196

        x = self.c_attn(x)
thomwolf's avatar
thomwolf committed
197
        query, key, value = tf.split(x, 3, axis=2)
thomwolf's avatar
WIP  
thomwolf committed
198
        query = self.split_heads(query)
thomwolf's avatar
thomwolf committed
199
        key = self.split_heads(key)
thomwolf's avatar
WIP  
thomwolf committed
200
201
        value = self.split_heads(value)
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
202
203
204
205
            past_key, past_value = tf.unstack(layer_past, axis=1)
            key = tf.concat([past_key, key], axis=-2)
            value = tf.concat([past_value, value], axis=-2)
        present = tf.stack([key, value], axis=1)
thomwolf's avatar
WIP  
thomwolf committed
206
207
208
209
210
211

        attn_outputs = self._attn(query, key, value, head_mask)
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
thomwolf's avatar
thomwolf committed
212
        a = self.resid_dropout(a, training=training)
thomwolf's avatar
WIP  
thomwolf committed
213
214
215
216
217
218
219
220
221

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)


class MLP(nn.Module):
    def __init__(self, n_state, config):  # in MLP: n_state=3072 (4 * n_embd)
        super(MLP, self).__init__()
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
222
223
        self.c_fc = TFConv1D(n_state, nx)
        self.c_proj = TFConv1D(nx, n_state)
thomwolf's avatar
WIP  
thomwolf committed
224
225
226
227
228
229
230
231
232
        self.act = gelu
        self.dropout = nn.Dropout(config.resid_pdrop)

    def forward(self, x):
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
        return self.dropout(h2)


thomwolf's avatar
thomwolf committed
233
234
235
class TFBlock(tf.keras.layers.Layer):
    def __init__(self, n_ctx, config, scale=False, **kwargs):
        super(TFBlock, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
        nx = config.n_embd
        self.ln_1 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.attn = Attention(nx, n_ctx, config, scale)
        self.ln_2 = nn.LayerNorm(nx, eps=config.layer_norm_epsilon)
        self.mlp = MLP(4 * nx, config)

    def forward(self, x, layer_past=None, head_mask=None):
        output_attn = self.attn(self.ln_1(x), layer_past=layer_past, head_mask=head_mask)
        a = output_attn[0]  # output_attn: a, present, (attentions)

        x = x + a
        m = self.mlp(self.ln_2(x))
        x = x + m

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)


class GPT2PreTrainedModel(PreTrainedModel):
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = GPT2Config
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(GPT2PreTrainedModel, self).__init__(*inputs, **kwargs)

    def _init_weights(self, module):
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding, Conv1D)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
            if isinstance(module, (nn.Linear, Conv1D)) and module.bias is not None:
                module.bias.data.zero_()
        elif isinstance(module, nn.LayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)


GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

    This model is a PyTorch `torch.nn.Module`_ sub-class. Use it as a regular PyTorch Module and
    refer to the PyTorch documentation for all matter related to general usage and behavior.

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

    .. _`torch.nn.Module`:
        https://pytorch.org/docs/stable/nn.html#module

    Parameters:
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

GPT2_INPUTS_DOCSTRING = r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
class GPT2Model(GPT2PreTrainedModel):
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2Model.from_pretrained('gpt2')
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
    def __init__(self, config):
        super(GPT2Model, self).__init__(config)
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions

        self.wte = nn.Embedding(config.vocab_size, config.n_embd)
        self.wpe = nn.Embedding(config.n_positions, config.n_embd)
        self.drop = nn.Dropout(config.embd_pdrop)
        self.h = nn.ModuleList([Block(config.n_ctx, config, scale=True) for _ in range(config.n_layer)])
        self.ln_f = nn.LayerNorm(config.n_embd, eps=config.layer_norm_epsilon)

        self.init_weights()

    def _resize_token_embeddings(self, new_num_tokens):
        self.wte = self._get_resized_embeddings(self.wte, new_num_tokens)
        return self.wte

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        for layer, heads in heads_to_prune.items():
            self.h[layer].attn.prune_heads(heads)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):
        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.n_layer

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)

            outputs = block(hidden_states, layer_past, head_mask[i])
            hidden_states, present = outputs[:2]
            presents = presents + (present,)

            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states, presents)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)


@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
class GPT2LMHeadModel(GPT2PreTrainedModel):
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]

    """
    def __init__(self, config):
        super(GPT2LMHeadModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None):
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        outputs = (lm_logits,) + transformer_outputs[1:]
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)


@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the input sequence).
""", GPT2_START_DOCSTRING)
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]

    """
    def __init__(self, config):
        super(GPT2DoubleHeadsModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.multiple_choice_head = SequenceSummary(config)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)

    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, past=None, head_mask=None):
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)

        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
            outputs = (loss,) + outputs
        if lm_labels is not None:
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)