modeling_tf_gpt2.py 41.9 KB
Newer Older
thomwolf's avatar
WIP  
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 The OpenAI Team Authors and HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" TF 2.0 OpenAI GPT-2 model. """

from __future__ import absolute_import, division, print_function, unicode_literals

import collections
import json
import logging
import math
import os
import sys
from io import open

import numpy as np
import tensorflow as tf

thomwolf's avatar
thomwolf committed
31
from .modeling_tf_utils import TFPreTrainedModel, TFConv1D
thomwolf's avatar
WIP  
thomwolf committed
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
from .configuration_gpt2 import GPT2Config
from .file_utils import add_start_docstrings

logger = logging.getLogger(__name__)

GPT2_PRETRAINED_MODEL_ARCHIVE_MAP = {"gpt2": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-tf_model.h5",
                                     "gpt2-medium": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-medium-tf_model.h5",
                                     "gpt2-large": "https://s3.amazonaws.com/models.huggingface.co/bert/gpt2-large-tf_model.h5"}


def load_gpt2_pt_weights_in_tf(tf_model, config, pytorch_checkpoint_path):
    """ Load pytorch checkpoints in a TF 2.0 model and save it using HDF5 format
        We use HDF5 to easily do transfer learning
        (see https://github.com/tensorflow/tensorflow/blob/ee16fcac960ae660e0e4496658a366e2f745e1f0/tensorflow/python/keras/engine/network.py#L1352-L1357).
    """
    try:
        import re
        import torch
        import numpy
        from tensorflow.python.keras import backend as K
    except ImportError:
        logger.error("Loading a PyTorch model in TensorFlow, requires PyTorch to be installed. Please see "
            "https://pytorch.org/ for installation instructions.")
        raise

    pt_path = os.path.abspath(pytorch_checkpoint_path)
    logger.info("Loading PyTorch weights from {}".format(pt_path))
    # Load pytorch model
    state_dict = torch.load(pt_path, map_location='cpu')

    inputs_list = [[7, 6, 0, 0, 1], [1, 2, 3, 0, 0], [0, 0, 0, 4, 5]]
    tf_inputs = tf.constant(inputs_list)
    tfo = tf_model(tf_inputs, training=False)  # build the network

    symbolic_weights = tf_model.trainable_weights + tf_model.non_trainable_weights
    weight_value_tuples = []
    for symbolic_weight in symbolic_weights:
        name = symbolic_weight.name
        name = name.replace('cls_mlm', 'cls')  # We had to split this layer in two in the TF model to be
        name = name.replace('cls_nsp', 'cls')  # able to do transfer learning (Keras only allow to remove full layers)
        name = name.replace(':0', '')
        name = name.replace('layer_', 'layer/')
        name = name.split('/')
        name = name[1:]

        transpose = bool(name[-1] == 'kernel')
        if name[-1] == 'kernel' or name[-1] == 'embeddings':
            name[-1] = 'weight'

        name = '.'.join(name)
        assert name in state_dict
        array = state_dict[name].numpy()

        if transpose:
            array = numpy.transpose(array)

        try:
            assert list(symbolic_weight.shape) == list(array.shape)
        except AssertionError as e:
            e.args += (symbolic_weight.shape, array.shape)
            raise e

        logger.info("Initialize TF weight {}".format(symbolic_weight.name))

        weight_value_tuples.append((symbolic_weight, array))

    K.batch_set_value(weight_value_tuples)

    tfo = tf_model(tf_inputs, training=False)  # Make sure restore ops are run
    return tf_model


def gelu(x):
    """Gaussian Error Linear Unit.
    This is a smoother version of the RELU.
    Original paper: https://arxiv.org/abs/1606.08415
    Args:
        x: float Tensor to perform activation.
    Returns:
        `x` with the GELU activation applied.
    """
    cdf = 0.5 * (1.0 + tf.tanh(
        (np.sqrt(2 / np.pi) * (x + 0.044715 * tf.pow(x, 3)))))
    return x * cdf


class TFAttention(tf.keras.layers.Layer):
thomwolf's avatar
thomwolf committed
119
120
    def __init__(self, nx, n_ctx, config, scale=False, **kwargs):
        super(TFAttention, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
121
122
123
124
125
        self.output_attentions = config.output_attentions

        n_state = nx  # in Attention: n_state=768 (nx=n_embd)
        # [switch nx => n_state from Block to Attention to keep identical to TF implem]
        assert n_state % config.n_head == 0
thomwolf's avatar
thomwolf committed
126
        self.n_ctx = n_ctx
thomwolf's avatar
WIP  
thomwolf committed
127
128
129
130
        self.n_head = config.n_head
        self.split_size = n_state
        self.scale = scale

thomwolf's avatar
thomwolf committed
131
132
        self.c_attn = TFConv1D(n_state * 3, nx, name='c_attn')
        self.c_proj = TFConv1D(n_state, nx, name='c_proj')
thomwolf's avatar
thomwolf committed
133
134
        self.attn_dropout = tf.keras.layers.Dropout(config.attn_pdrop)
        self.resid_dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
135
136
137
        self.pruned_heads = set()

    def prune_heads(self, heads):
thomwolf's avatar
thomwolf committed
138
139
140
141
        pass

    @staticmethod
    @tf.function
thomwolf's avatar
thomwolf committed
142
    def attention_mask(nd, ns, dtype):
thomwolf's avatar
thomwolf committed
143
144
145
146
147
148
149
150
151
152
153
154
155
        """1's in the lower triangle, counting from the lower right corner.
        Same as tf.matrix_band_part(tf.ones([nd, ns]), -1, ns-nd), but doesn't produce garbage on TPUs.
        """
        i = tf.range(nd)[:,None]
        j = tf.range(ns)
        m = i >= j - ns + nd
        return tf.cast(m, dtype)

    @tf.function
    def _attn(self, inputs, training=False):
        q, k, v, head_mask = inputs
        # q, k, v have shape [batch, heads, sequence, features]
        w = tf.matmul(q, k, transpose_b=True)
thomwolf's avatar
WIP  
thomwolf committed
156
        if self.scale:
thomwolf's avatar
thomwolf committed
157
158
159
160
161
162
163
            n_state = shape_list(v)[-1]
            w = w * tf.rsqrt(tf.cast(v.shape[-1].value, w.dtype))

        # w has shape [batch, heads, dst_sequence, src_sequence], where information flows from src to dst.
        _, _, nd, ns = shape_list(w)
        b = self.attention_mask(nd, ns, dtype=w.dtype)
        b = tf.reshape(b, [1, 1, nd, ns])
thomwolf's avatar
WIP  
thomwolf committed
164
165
        w = w * b - 1e4 * (1 - b)

thomwolf's avatar
thomwolf committed
166
        w = tf.nn.softmax(w)
thomwolf's avatar
thomwolf committed
167
168
        if training:
            w = self.attn_dropout(w)
thomwolf's avatar
WIP  
thomwolf committed
169
170
171
172
173

        # Mask heads if we want to
        if head_mask is not None:
            w = w * head_mask

thomwolf's avatar
thomwolf committed
174
        outputs = [tf.matmul(w, v)]
thomwolf's avatar
WIP  
thomwolf committed
175
176
177
178
        if self.output_attentions:
            outputs.append(w)
        return outputs

thomwolf's avatar
thomwolf committed
179
    @tf.function
thomwolf's avatar
WIP  
thomwolf committed
180
    def merge_heads(self, x):
thomwolf's avatar
thomwolf committed
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
        x = tf.transpose(x, [0, 2, 1, 3])
        x_shape = tf.shape(x)
        new_x_shape = x_shape[:-2] + (x_shape[-2] * x_shape[-1],)
        return tf.reshape(x, new_x_shape)

    @tf.function
    def split_heads(self, x):
        x_shape = tf.shape(x)
        new_x_shape = x_shape[:-1] + (self.n_head, x_shape[-1] // self.n_head)
        x = tf.reshape(x, new_x_shape)
        return tf.transpose(x, (0, 2, 1, 3))  # (batch, head, seq_length, head_features)

    @tf.function
    def call(self, inputs, training=False):
        x, layer_past, head_mask = inputs
thomwolf's avatar
WIP  
thomwolf committed
196
197

        x = self.c_attn(x)
thomwolf's avatar
thomwolf committed
198
        query, key, value = tf.split(x, 3, axis=2)
thomwolf's avatar
WIP  
thomwolf committed
199
        query = self.split_heads(query)
thomwolf's avatar
thomwolf committed
200
        key = self.split_heads(key)
thomwolf's avatar
WIP  
thomwolf committed
201
202
        value = self.split_heads(value)
        if layer_past is not None:
thomwolf's avatar
thomwolf committed
203
204
205
206
            past_key, past_value = tf.unstack(layer_past, axis=1)
            key = tf.concat([past_key, key], axis=-2)
            value = tf.concat([past_value, value], axis=-2)
        present = tf.stack([key, value], axis=1)
thomwolf's avatar
WIP  
thomwolf committed
207

thomwolf's avatar
thomwolf committed
208
        attn_outputs = self._attn(query, key, value, head_mask, training=training)
thomwolf's avatar
WIP  
thomwolf committed
209
210
211
212
        a = attn_outputs[0]

        a = self.merge_heads(a)
        a = self.c_proj(a)
thomwolf's avatar
thomwolf committed
213
214
        if training:
            a = self.resid_dropout(a)
thomwolf's avatar
WIP  
thomwolf committed
215
216
217
218
219

        outputs = [a, present] + attn_outputs[1:]
        return outputs  # a, present, (attentions)


thomwolf's avatar
thomwolf committed
220
221
222
class TFMLP(nn.Module):
    def __init__(self, n_state, config, **kwargs):
        super(TFMLP, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
223
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
224
225
        self.c_fc = TFConv1D(n_state, nx, name='c_fc')
        self.c_proj = TFConv1D(nx, n_state, name='c_proj')
thomwolf's avatar
WIP  
thomwolf committed
226
        self.act = gelu
thomwolf's avatar
thomwolf committed
227
        self.dropout = tf.keras.layers.Dropout(config.resid_pdrop)
thomwolf's avatar
WIP  
thomwolf committed
228

thomwolf's avatar
thomwolf committed
229
230
    @tf.function
    def call(self, x, training=False):
thomwolf's avatar
WIP  
thomwolf committed
231
232
        h = self.act(self.c_fc(x))
        h2 = self.c_proj(h)
thomwolf's avatar
thomwolf committed
233
234
235
        if training:
            h2 = self.dropout(h2)
        return h2
thomwolf's avatar
WIP  
thomwolf committed
236
237


thomwolf's avatar
thomwolf committed
238
239
240
class TFBlock(tf.keras.layers.Layer):
    def __init__(self, n_ctx, config, scale=False, **kwargs):
        super(TFBlock, self).__init__(**kwargs)
thomwolf's avatar
WIP  
thomwolf committed
241
        nx = config.n_embd
thomwolf's avatar
thomwolf committed
242
243
244
245
        self.ln_1 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_1')
        self.attn = TFAttention(nx, n_ctx, config, scale, name='attn')
        self.ln_2 = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_2')
        self.mlp = TFMLP(4 * nx, config, name='mlp')
thomwolf's avatar
WIP  
thomwolf committed
246

thomwolf's avatar
thomwolf committed
247
248
249
250
251
252
    @tf.function
    def call(self, x, layer_past=None, head_mask=None, training=False):
        output_attn = self.attn(self.ln_1(x),
                                layer_past=layer_past,
                                head_mask=head_mask,
                                training=training)
thomwolf's avatar
WIP  
thomwolf committed
253
254
255
        a = output_attn[0]  # output_attn: a, present, (attentions)

        x = x + a
thomwolf's avatar
thomwolf committed
256
        m = self.mlp(self.ln_2(x), training=training)
thomwolf's avatar
WIP  
thomwolf committed
257
258
259
260
261
        x = x + m

        outputs = [x] + output_attn[1:]
        return outputs  # x, present, (attentions)

thomwolf's avatar
thomwolf committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
class TFGPT2Embeddings(tf.keras.layers.Layer):
    """Construct the embeddings from word, position and token_type embeddings.
    """
    def __init__(self, config, **kwargs):
        super(TFGPT2Embeddings, self).__init__(**kwargs)
        self.vocab_size = config.vocab_size
        self.hidden_size = config.hidden_size

    def build(self, input_shape):
        """Build shared word embedding layer
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        self.weight = self.add_weight(
            "weight",
            shape=[self.vocab_size, self.n_embed],
            initializer=tf.random_normal_initializer(
                mean=0., stddev=self.n_embed**-0.5))
        super(TFBertEmbeddings, self).build(input_shape)

    @tf.function
    def call(self, inputs, mode="embedding", training=False):
        """Get token embeddings of inputs.
        Args:
            inputs: list of three int64 tensors with shape [batch_size, length]: (input_ids, position_ids, token_type_ids)
            mode: string, a valid value is one of "embedding" and "linear".
        Returns:
            outputs: (1) If mode == "embedding", output embedding tensor, float32 with
                shape [batch_size, length, embedding_size]; (2) mode == "linear", output
                linear tensor, float32 with shape [batch_size, length, vocab_size].
        Raises:
            ValueError: if mode is not valid.
        
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        if mode == "embedding":
            return self._embedding(inputs, training=training)
        elif mode == "linear":
            return self._linear(inputs)
        else:
            raise ValueError("mode {} is not valid.".format(mode))

    def _embedding(self, input_ids):
        """Applies embedding based on inputs tensor."""
        return tf.gather(self.weight, input_ids)

    def _linear(self, inputs):
        """Computes logits by running inputs through a linear layer.
            Args:
                inputs: A float32 tensor with shape [batch_size, length, hidden_size]
            Returns:
                float32 tensor with shape [batch_size, length, vocab_size].
        """
        batch_size = tf.shape(inputs)[0]
        length = tf.shape(inputs)[1]

        x = tf.reshape(inputs, [-1, self.n_embed])
        logits = tf.matmul(x, self.weight, transpose_b=True)

        return tf.reshape(logits, [batch_size, length, self.vocab_size])

class TFGPT2MainLayer(tf.keras.layers.Layer):
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2MainLayer, self).__init__(config, *inputs, **kwargs)
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
        self.vocab_size = config.vocab_size
        self.n_embd = config.n_embd

        self.wte = TFGPT2Embeddings(config, name='wte')
        self.wpe = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='wpe')
        self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
        self.h = [TFBlock(config.n_ctx, config, scale=Truename='h_{}'.format(i)) for i in range(config.n_layer)]
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f')

    def _resize_token_embeddings(self, new_num_tokens):
        raise NotImplementedError

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
        raise NotImplementedError

    @tf.function
    def call(self, inputs, training=False):
        input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):

        if not isinstance(inputs, (dict, tuple, list)):
            input_ids = inputs
            attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else None
            token_type_ids = inputs[2] if len(inputs) > 2 else None
            position_ids = inputs[3] if len(inputs) > 3 else None
            head_mask = inputs[4] if len(inputs) > 4 else None
            assert len(inputs) <= 5, "Too many inputs."
        else:
            input_ids = inputs.get('input_ids')
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.n_layer

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)

            outputs = block(hidden_states, layer_past, head_mask[i])
            hidden_states, present = outputs[:2]
            presents = presents + (present,)
thomwolf's avatar
WIP  
thomwolf committed
418

thomwolf's avatar
thomwolf committed
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states, presents)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)

class TFGPT2PreTrainedModel(TFPreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
    config_class = GPT2Config
    pretrained_model_archive_map = GPT2_PRETRAINED_MODEL_ARCHIVE_MAP
    load_tf_weights = load_tf_weights_in_gpt2
    base_model_prefix = "transformer"


GPT2_START_DOCSTRING = r"""    OpenAI GPT-2 model was proposed in
    `Language Models are Unsupervised Multitask Learners`_
    by Alec Radford*, Jeffrey Wu*, Rewon Child, David Luan, Dario Amodei** and Ilya Sutskever**.
    It's a causal (unidirectional) transformer pre-trained using  language modeling on a very large
    corpus of ~40 GB of text data.

thomwolf's avatar
thomwolf committed
455
456
    This model is a tf.keras.Model `tf.keras.Model`_ sub-class. Use it as a regular TF 2.0 Keras Model and
    refer to the TF 2.0 documentation for all matter related to general usage and behavior.
thomwolf's avatar
WIP  
thomwolf committed
457
458
459
460

    .. _`Language Models are Unsupervised Multitask Learners`:
        https://openai.com/blog/better-language-models/

thomwolf's avatar
thomwolf committed
461
462
463
464
465
466
467
468
469
470
471
472
473
474
    .. _`tf.keras.Model`:
        https://www.tensorflow.org/versions/r2.0/api_docs/python/tf/keras/Model

    Important note on the model inputs:
        The inputs of the TF 2.0 models are slightly different from the PyTorch ones since
        TF 2.0 Keras doesn't accept named arguments with defaults values for input Tensor.
        More precisely, input Tensors are gathered in the first arguments of the model call function: `model(inputs)`.
        There are three possibilities to gather and feed the inputs to the model:

        - a single Tensor with input_ids only and nothing else: `model(inputs_ids)
        - a list of varying length with one or several input Tensors IN THE ORDER given in the docstring:
            `model([input_ids, attention_mask])` or `model([input_ids, attention_mask, token_type_ids])`
        - a dictionary with one or several input Tensors associaed to the input names given in the docstring:
            `model({'input_ids': input_ids, 'token_type_ids': token_type_ids})`
thomwolf's avatar
WIP  
thomwolf committed
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508

    Parameters:
        config (:class:`~pytorch_transformers.GPT2Config`): Model configuration class with all the parameters of the model.
            Initializing with a config file does not load the weights associated with the model, only the configuration.
            Check out the :meth:`~pytorch_transformers.PreTrainedModel.from_pretrained` method to load the model weights.
"""

GPT2_INPUTS_DOCSTRING = r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            GPT-2 is a model with absolute position embeddings so it's usually advised to pad the inputs on
            the right rather than the left.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
"""

@add_start_docstrings("The bare GPT2 Model transformer outputing raw hidden-states without any specific head on top.",
                      GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
thomwolf's avatar
thomwolf committed
509
class TFGPT2Model(TFGPT2PreTrainedModel):
thomwolf's avatar
WIP  
thomwolf committed
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
    r"""
    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **last_hidden_state**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, hidden_size)``
            Sequence of hidden-states at the last layer of the model.
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
thomwolf's avatar
thomwolf committed
529
        model = TFGPT2Model.from_pretrained('gpt2')
thomwolf's avatar
WIP  
thomwolf committed
530
531
532
533
534
        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids)
        last_hidden_states = outputs[0]  # The last hidden-state is the first element of the output tuple

    """
thomwolf's avatar
thomwolf committed
535
536
    def __init__(self, config, *inputs, **kwargs):
        super(TFGPT2Model, self).__init__(config, *inputs, **kwargs)
thomwolf's avatar
WIP  
thomwolf committed
537
538
        self.output_hidden_states = config.output_hidden_states
        self.output_attentions = config.output_attentions
thomwolf's avatar
thomwolf committed
539
540
        self.vocab_size = config.vocab_size
        self.n_embd = config.n_embd
thomwolf's avatar
WIP  
thomwolf committed
541

thomwolf's avatar
thomwolf committed
542
543
544
545
        self.wpe = tf.keras.layers.Embedding(config.n_positions, config.n_embd, name='wpe')
        self.drop = tf.keras.layers.Dropout(config.embd_pdrop)
        self.h = [TFBlock(config.n_ctx, config, scale=Truename='h_{}'.format(i)) for i in range(config.n_layer)]
        self.ln_f = tf.keras.layers.LayerNormalization(epsilon=config.layer_norm_epsilon, name='ln_f')
thomwolf's avatar
WIP  
thomwolf committed
546
547
548

        self.init_weights()

thomwolf's avatar
thomwolf committed
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
    def build(self, input_shape):
        """Build shared word embedding layer
        Shared weights logic adapted from
            https://github.com/tensorflow/models/blob/a009f4fb9d2fc4949e32192a944688925ef78659/official/transformer/v2/embedding_layer.py#L24
        """
        with tf.name_scope("wte"):
            # Create and initialize weights. The random normal initializer was chosen
            # arbitrarily, and works well.
            self.wte = self.add_weight(
                "weight",
                shape=[self.vocab_size, self.n_embed],
                initializer=tf.random_normal_initializer(
                    mean=0., stddev=self.n_embed**-0.5))
        super(TFGPT2Model, self).build(input_shape)

thomwolf's avatar
WIP  
thomwolf committed
564
    def _resize_token_embeddings(self, new_num_tokens):
thomwolf's avatar
thomwolf committed
565
        raise NotImplementedError
thomwolf's avatar
WIP  
thomwolf committed
566
567
568
569
570

    def _prune_heads(self, heads_to_prune):
        """ Prunes heads of the model.
            heads_to_prune: dict of {layer_num: list of heads to prune in this layer}
        """
thomwolf's avatar
thomwolf committed
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
        raise NotImplementedError

    @tf.function
    def call(self, inputs, training=False):
        input_ids, position_ids=None, token_type_ids=None, past=None, head_mask=None):

        if not isinstance(inputs, (dict, tuple, list)):
            input_ids = inputs
            attention_mask, head_mask, position_ids, token_type_ids = None, None, None, None
        elif isinstance(inputs, (tuple, list)):
            input_ids = inputs[0]
            attention_mask = inputs[1] if len(inputs) > 1 else None
            token_type_ids = inputs[2] if len(inputs) > 2 else None
            position_ids = inputs[3] if len(inputs) > 3 else None
            head_mask = inputs[4] if len(inputs) > 4 else None
            assert len(inputs) <= 5, "Too many inputs."
        else:
            input_ids = inputs.get('input_ids')
            attention_mask = inputs.get('attention_mask', None)
            token_type_ids = inputs.get('token_type_ids', None)
            position_ids = inputs.get('position_ids', None)
            head_mask = inputs.get('head_mask', None)
            assert len(inputs) <= 5, "Too many inputs."
thomwolf's avatar
WIP  
thomwolf committed
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869

        if past is None:
            past_length = 0
            past = [None] * len(self.h)
        else:
            past_length = past[0][0].size(-2)
        if position_ids is None:
            position_ids = torch.arange(past_length, input_ids.size(-1) + past_length, dtype=torch.long, device=input_ids.device)
            position_ids = position_ids.unsqueeze(0).expand_as(input_ids)

        # Prepare head mask if needed
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
        # head_mask has shape n_layer x batch x n_heads x N x N
        if head_mask is not None:
            if head_mask.dim() == 1:
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(-1).unsqueeze(-1)
                head_mask = head_mask.expand(self.config.n_layer, -1, -1, -1, -1)
            elif head_mask.dim() == 2:
                head_mask = head_mask.unsqueeze(1).unsqueeze(-1).unsqueeze(-1)  # We can specify head_mask for each layer
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
            head_mask = [None] * self.config.n_layer

        input_shape = input_ids.size()
        input_ids = input_ids.view(-1, input_ids.size(-1))
        position_ids = position_ids.view(-1, position_ids.size(-1))

        inputs_embeds = self.wte(input_ids)
        position_embeds = self.wpe(position_ids)
        if token_type_ids is not None:
            token_type_ids = token_type_ids.view(-1, token_type_ids.size(-1))
            token_type_embeds = self.wte(token_type_ids)
        else:
            token_type_embeds = 0
        hidden_states = inputs_embeds + position_embeds + token_type_embeds
        hidden_states = self.drop(hidden_states)

        output_shape = input_shape + (hidden_states.size(-1),)

        presents = ()
        all_attentions = []
        all_hidden_states = ()
        for i, (block, layer_past) in enumerate(zip(self.h, past)):
            if self.output_hidden_states:
                all_hidden_states = all_hidden_states + (hidden_states.view(*output_shape),)

            outputs = block(hidden_states, layer_past, head_mask[i])
            hidden_states, present = outputs[:2]
            presents = presents + (present,)

            if self.output_attentions:
                all_attentions.append(outputs[2])

        hidden_states = self.ln_f(hidden_states)

        hidden_states = hidden_states.view(*output_shape)
        # Add last hidden state
        if self.output_hidden_states:
            all_hidden_states = all_hidden_states + (hidden_states,)

        outputs = (hidden_states, presents)
        if self.output_hidden_states:
            outputs = outputs + (all_hidden_states,)
        if self.output_attentions:
            # let the number of heads free (-1) so we can extract attention even after head pruning
            attention_output_shape = input_shape[:-1] + (-1,) + all_attentions[0].shape[-2:]
            all_attentions = tuple(t.view(*attention_output_shape) for t in all_attentions)
            outputs = outputs + (all_attentions,)
        return outputs  # last hidden state, presents, (all hidden_states), (attentions)


@add_start_docstrings("""The GPT2 Model transformer with a language modeling head on top
(linear layer with weights tied to the input embeddings). """, GPT2_START_DOCSTRING, GPT2_INPUTS_DOCSTRING)
class GPT2LMHeadModel(GPT2PreTrainedModel):
    r"""
        **labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **loss**: (`optional`, returned when ``labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2LMHeadModel

        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2LMHeadModel.from_pretrained('gpt2')

        input_ids = torch.tensor(tokenizer.encode("Hello, my dog is cute")).unsqueeze(0)  # Batch size 1
        outputs = model(input_ids, labels=input_ids)
        loss, logits = outputs[:2]

    """
    def __init__(self, config):
        super(GPT2LMHeadModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)

    def forward(self, input_ids, position_ids=None, token_type_ids=None, labels=None, past=None, head_mask=None):
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)

        outputs = (lm_logits,) + transformer_outputs[1:]
        if labels is not None:
            # Shift so that tokens < n predict n
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = labels[..., 1:].contiguous()
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (loss), lm_logits, presents, (all hidden_states), (attentions)


@add_start_docstrings("""The GPT2 Model transformer with a language modeling and a multiple-choice classification
head on top e.g. for RocStories/SWAG tasks. The two heads are two linear layers.
The language modeling head has its weights tied to the input embeddings,
the classification head takes as input the input of a specified classification token index in the input sequence).
""", GPT2_START_DOCSTRING)
class GPT2DoubleHeadsModel(GPT2PreTrainedModel):
    r"""    Inputs:
        **input_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of input sequence tokens in the vocabulary.
            The second dimension of the input (`num_choices`) indicates the number of choices to score.
            Indices can be obtained using :class:`pytorch_transformers.BPT2Tokenizer`.
            See :func:`pytorch_transformers.PreTrainedTokenizer.encode` and
            :func:`pytorch_transformers.PreTrainedTokenizer.convert_tokens_to_ids` for details.
        **mc_token_ids**: ``torch.LongTensor`` of shape ``(batch_size, num_choices)``:
            Index of the classification token in each input sequence.
            Selected in the range ``[0, input_ids.size(-1) - 1[``.
        **position_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            Indices of positions of each input sequence tokens in the position embeddings.
            Selected in the range ``[0, config.max_position_embeddings - 1]``.
        **token_type_ids**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, num_choices, sequence_length)``:
            A parallel sequence of tokens (can be used to indicate various portions of the inputs).
            The embeddings from these tokens will be summed with the respective token embeddings.
            Indices are selected in the vocabulary (unlike BERT which has a specific vocabulary for segment indices).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer):
            that contains pre-computed hidden-states (key and values in the attention blocks) as computed by the model
            (see `past` output below). Can be used to speed up sequential decoding.
        **head_mask**: (`optional`) ``torch.FloatTensor`` of shape ``(num_heads,)`` or ``(num_layers, num_heads)``:
            Mask to nullify selected heads of the self-attention modules.
            Mask values selected in ``[0, 1]``:
            ``1`` indicates the head is **not masked**, ``0`` indicates the head is **masked**.
        **lm_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size, sequence_length)``:
            Labels for language modeling.
            Note that the labels **are shifted** inside the model, i.e. you can set ``lm_labels = input_ids``
            Indices are selected in ``[-1, 0, ..., config.vocab_size]``
            All labels set to ``-1`` are ignored (masked), the loss is only
            computed for labels in ``[0, ..., config.vocab_size]``
        **mc_labels**: (`optional`) ``torch.LongTensor`` of shape ``(batch_size)``:
            Labels for computing the multiple choice classification loss.
            Indices should be in ``[0, ..., num_choices]`` where `num_choices` is the size of the second dimension
            of the input tensors. (see `input_ids` above)

    Outputs: `Tuple` comprising various elements depending on the configuration (config) and inputs:
        **lm_loss**: (`optional`, returned when ``lm_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Language modeling loss.
        **mc_loss**: (`optional`, returned when ``multiple_choice_labels`` is provided) ``torch.FloatTensor`` of shape ``(1,)``:
            Multiple choice classification loss.
        **lm_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices, sequence_length, config.vocab_size)``
            Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
        **mc_prediction_scores**: ``torch.FloatTensor`` of shape ``(batch_size, num_choices)``
            Prediction scores of the multiplechoice classification head (scores for each choice before SoftMax).
        **past**:
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            that contains pre-computed hidden-states (key and values in the attention blocks).
            Can be used (see `past` input) to speed up sequential decoding.
        **hidden_states**: (`optional`, returned when ``config.output_hidden_states=True``)
            list of ``torch.FloatTensor`` (one for the output of each layer + the output of the embeddings)
            of shape ``(batch_size, sequence_length, hidden_size)``:
            Hidden-states of the model at the output of each layer plus the initial embedding outputs.
        **attentions**: (`optional`, returned when ``config.output_attentions=True``)
            list of ``torch.FloatTensor`` (one for each layer) of shape ``(batch_size, num_heads, sequence_length, sequence_length)``:
            Attentions weights after the attention softmax, used to compute the weighted average in the self-attention heads.

    Examples::

        import torch
        from pytorch_transformers import GPT2Tokenizer, GPT2DoubleHeadsModel
        
        tokenizer = GPT2Tokenizer.from_pretrained('gpt2')
        model = GPT2DoubleHeadsModel.from_pretrained('gpt2')
        
        # Add a [CLS] to the vocabulary (we should train it also!)
        tokenizer.add_special_tokens({'cls_token': '[CLS]'})
        model.resize_token_embeddings(len(tokenizer))  # Update the model embeddings with the new vocabulary size
        print(tokenizer.cls_token_id, len(tokenizer))  # The newly token the last token of the vocabulary
        
        choices = ["Hello, my dog is cute [CLS]", "Hello, my cat is cute [CLS]"]
        encoded_choices = [tokenizer.encode(s) for s in choices]
        cls_token_location = [tokens.index(tokenizer.cls_token_id) for tokens in encoded_choices]

        input_ids = torch.tensor(encoded_choices).unsqueeze(0)  # Batch size: 1, number of choices: 2
        mc_token_ids = torch.tensor([cls_token_location])  # Batch size: 1

        outputs = model(input_ids, mc_token_ids=mc_token_ids)
        lm_prediction_scores, mc_prediction_scores = outputs[:2]

    """
    def __init__(self, config):
        super(GPT2DoubleHeadsModel, self).__init__(config)
        self.transformer = GPT2Model(config)
        self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False)
        self.multiple_choice_head = SequenceSummary(config)

        self.init_weights()
        self.tie_weights()

    def tie_weights(self):
        """ Make sure we are sharing the input and output embeddings.
            Export to TorchScript can't handle parameter sharing so we are cloning them instead.
        """
        self._tie_or_clone_weights(self.lm_head,
                                   self.transformer.wte)

    def forward(self, input_ids, mc_token_ids=None, lm_labels=None, mc_labels=None, token_type_ids=None,
                position_ids=None, past=None, head_mask=None):
        transformer_outputs = self.transformer(input_ids, position_ids=position_ids, token_type_ids=token_type_ids,
                                               past=past, head_mask=head_mask)
        hidden_states = transformer_outputs[0]

        lm_logits = self.lm_head(hidden_states)
        mc_logits = self.multiple_choice_head(hidden_states, mc_token_ids).squeeze(-1)

        outputs = (lm_logits, mc_logits) + transformer_outputs[1:]
        if mc_labels is not None:
            loss_fct = CrossEntropyLoss()
            loss = loss_fct(mc_logits.view(-1, mc_logits.size(-1)),
                            mc_labels.view(-1))
            outputs = (loss,) + outputs
        if lm_labels is not None:
            shift_logits = lm_logits[..., :-1, :].contiguous()
            shift_labels = lm_labels[..., 1:].contiguous()
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)),
                            shift_labels.view(-1))
            outputs = (loss,) + outputs

        return outputs  # (lm loss), (mc loss), lm logits, mc logits, presents, (all hidden_states), (attentions)