test_tokenization_common.py 211 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

17
import inspect
18
import itertools
19
import json
thomwolf's avatar
thomwolf committed
20
import os
21
import pickle
22
import re
Aymeric Augustin's avatar
Aymeric Augustin committed
23
import shutil
24
import tempfile
25
import traceback
Sylvain Gugger's avatar
Sylvain Gugger committed
26
import unittest
27
from collections import OrderedDict
28
from itertools import takewhile
29
from typing import TYPE_CHECKING, Any, Dict, List, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
30

31
from parameterized import parameterized
32

33
from transformers import (
34
35
    AlbertTokenizer,
    AlbertTokenizerFast,
Sylvain Gugger's avatar
Sylvain Gugger committed
36
    BertTokenizer,
37
    BertTokenizerFast,
38
39
40
    PreTrainedTokenizer,
    PreTrainedTokenizerBase,
    PreTrainedTokenizerFast,
41
    SpecialTokensMixin,
42
43
    Trainer,
    TrainingArguments,
44
    is_flax_available,
45
46
    is_tf_available,
    is_torch_available,
47
    logging,
48
)
49
from transformers.testing_utils import (
50
    check_json_file_has_correct_format,
51
52
    get_tests_dir,
    is_pt_tf_cross_test,
53
    require_jinja,
54
55
56
    require_tf,
    require_tokenizers,
    require_torch,
57
    run_test_in_subprocess,
58
59
    slow,
)
60
from transformers.tokenization_utils import AddedToken
61

62

63
64
65
66
if is_torch_available():
    import torch.nn as nn


67
if TYPE_CHECKING:
68
    from transformers import PretrainedConfig, PreTrainedModel, TFPreTrainedModel
69
70


71
72
logger = logging.get_logger(__name__)

73
74
NON_ENGLISH_TAGS = ["chinese", "dutch", "french", "finnish", "german", "multilingual"]

75
76
77
78
79
SMALL_TRAINING_CORPUS = [
    ["This is the first sentence.", "This is the second one."],
    ["This sentence (contains #) over symbols and numbers 12 3.", "But not this one."],
]

80
81

def filter_non_english(_, pretrained_name: str):
Patrick von Platen's avatar
Patrick von Platen committed
82
    """Filter all the model for non-english language"""
83
    return not any(lang in pretrained_name for lang in NON_ENGLISH_TAGS)
84
85
86
87
88
89


def filter_roberta_detectors(_, pretrained_name: str):
    return "detector" not in pretrained_name


90
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
91
92
93
94
95
96
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
97
98
99
100
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
101
102
103
104
105
        if configuration in model_mapping and configuration in tokenizer_mapping:
            model = model_mapping[configuration]
            tokenizer = tokenizer_mapping[configuration][0]
            tokenizer_fast = tokenizer_mapping[configuration][1]

106
107
108
            if tokenizer is not None:
                if configuration.__name__.startswith(tokenizer.__name__.replace("Tokenizer", "")):
                    model_tokenizer_mapping.update({tokenizer: (configuration, model)})
109
            if tokenizer_fast is not None:
110
111
                if configuration.__name__.startswith(tokenizer_fast.__name__.replace("TokenizerFast", "")):
                    model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})
112
113
114
115

    return model_tokenizer_mapping


116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
def _test_subword_regularization_tokenizer(in_queue, out_queue, timeout):
    error = None

    try:
        inputs = in_queue.get(timeout=timeout)
        tokenizer = inputs["tokenizer"]
        sp_model_kwargs = inputs["sp_model_kwargs"]
        test_sentencepiece_ignore_case = inputs["test_sentencepiece_ignore_case"]

        unittest.TestCase().assertTrue(hasattr(tokenizer, "sp_model_kwargs"))
        unittest.TestCase().assertIsNotNone(tokenizer.sp_model_kwargs)
        unittest.TestCase().assertTrue(isinstance(tokenizer.sp_model_kwargs, dict))
        unittest.TestCase().assertDictEqual(tokenizer.sp_model_kwargs, sp_model_kwargs)
        check_subword_sampling(tokenizer, test_sentencepiece_ignore_case=test_sentencepiece_ignore_case)

    except Exception:
        error = f"{traceback.format_exc()}"

    results = {"error": error}
    out_queue.put(results, timeout=timeout)
    out_queue.join()


def check_subword_sampling(
    tokenizer: PreTrainedTokenizer,
    text: str = None,
    test_sentencepiece_ignore_case: bool = True,
) -> None:
    """
    Check if the tokenizer generates different results when subword regularization is enabled.

    Subword regularization augments training data with subword sampling.
    This has a random component.

    Args:
        tokenizer: The tokenizer to check.
        text: The text to use for the checks.
        test_sentencepiece_ignore_case: See `TokenizerTesterMixin.test_sentencepiece_ignore_case`.
    """
    text = "This is a test for subword regularization." if text is None else text
    if test_sentencepiece_ignore_case:
        text = text.lower()

    tokens_list = []
    for _ in range(5):
        tokens_list.append(tokenizer.tokenize(text))

    # the list of different pairs of tokens_list
    combinations = itertools.combinations(tokens_list, 2)

    # check of sampling is done
    subword_sampling_found = False
    for combination in combinations:
        if combination[0] != combination[1]:
            subword_sampling_found = True
    unittest.TestCase().assertTrue(subword_sampling_found)

    # check if converting back to original text works
    for tokens in tokens_list:
        if test_sentencepiece_ignore_case:
            unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens).lower())
        else:
            unittest.TestCase().assertEqual(text, tokenizer.convert_tokens_to_string(tokens))


181
182
class TokenizerTesterMixin:
    tokenizer_class = None
183
    rust_tokenizer_class = None
184
185
    test_slow_tokenizer = True
    test_rust_tokenizer = True
186
    space_between_special_tokens = False
187
188
189
    from_pretrained_kwargs = None
    from_pretrained_filter = None
    from_pretrained_vocab_key = "vocab_file"
190
    test_seq2seq = True
191

192
193
194
195
196
197
198
    # set to True to test a sentencepiece tokenizer
    test_sentencepiece = False

    # set to True to ignore casing when testing a sentencepiece tokenizer
    # test_sentencepiece must also be set to True
    test_sentencepiece_ignore_case = False

199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
    def setUp(self) -> None:
        # Tokenizer.filter makes it possible to filter which Tokenizer to case based on all the
        # information available in Tokenizer (name, rust class, python class, vocab key name)
        if self.test_rust_tokenizer:
            tokenizers_list = [
                (
                    self.rust_tokenizer_class,
                    pretrained_name,
                    self.from_pretrained_kwargs if self.from_pretrained_kwargs is not None else {},
                )
                for pretrained_name in self.rust_tokenizer_class.pretrained_vocab_files_map[
                    self.from_pretrained_vocab_key
                ].keys()
                if self.from_pretrained_filter is None
                or (self.from_pretrained_filter is not None and self.from_pretrained_filter(pretrained_name))
            ]
            self.tokenizers_list = tokenizers_list[:1]  # Let's just test the first pretrained vocab for speed
        else:
            self.tokenizers_list = []
        with open(f"{get_tests_dir()}/fixtures/sample_text.txt", encoding="utf-8") as f_data:
            self._data = f_data.read().replace("\n\n", "\n").strip()
220

221
        self.tmpdirname = tempfile.mkdtemp()
222

223
224
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
225

226
227
228
229
    def get_input_output_texts(self, tokenizer):
        input_txt = self.get_clean_sequence(tokenizer)[0]
        return input_txt, input_txt

230
    def get_clean_sequence(self, tokenizer, with_prefix_space=False, max_length=20, min_length=5) -> Tuple[str, list]:
231
232
233
234
        # the length of the tokenizer does not always represent the tokens that it can encode: what if there are holes?
        toks = [
            (i, tokenizer.decode([i], clean_up_tokenization_spaces=False)) for i in set(tokenizer.get_vocab().values())
        ]
235
236
237
238
        toks = list(filter(lambda t: re.match(r"^[ a-zA-Z]+$", t[1]), toks))
        toks = list(filter(lambda t: [t[0]] == tokenizer.encode(t[1], add_special_tokens=False), toks))
        if max_length is not None and len(toks) > max_length:
            toks = toks[:max_length]
239
240
241
        if min_length is not None and len(toks) < min_length and len(toks) > 0:
            while len(toks) < min_length:
                toks = toks + toks
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
        # toks_str = [t[1] for t in toks]
        toks_ids = [t[0] for t in toks]

        # Ensure consistency
        output_txt = tokenizer.decode(toks_ids, clean_up_tokenization_spaces=False)
        if " " not in output_txt and len(toks_ids) > 1:
            output_txt = (
                tokenizer.decode([toks_ids[0]], clean_up_tokenization_spaces=False)
                + " "
                + tokenizer.decode(toks_ids[1:], clean_up_tokenization_spaces=False)
            )
        if with_prefix_space:
            output_txt = " " + output_txt
        output_ids = tokenizer.encode(output_txt, add_special_tokens=False)
        return output_txt, output_ids

258
    def get_tokenizers(self, fast=True, **kwargs) -> List[PreTrainedTokenizerBase]:
259
        if fast and self.test_rust_tokenizer and self.test_slow_tokenizer:
260
            return [self.get_tokenizer(**kwargs), self.get_rust_tokenizer(**kwargs)]
261
262
263
264
265
266
        elif fast and self.test_rust_tokenizer:
            return [self.get_rust_tokenizer(**kwargs)]
        elif self.test_slow_tokenizer:
            return [self.get_tokenizer(**kwargs)]
        else:
            raise ValueError("This tokenizer class has no tokenizer to be tested.")
267

268
269
    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
270

271
    def get_rust_tokenizer(self, **kwargs) -> PreTrainedTokenizerFast:
272
        return self.rust_tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
273

274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
    def tokenizer_integration_test_util(
        self,
        expected_encoding: Dict,
        model_name: str,
        revision: str = None,
        sequences: List[str] = None,
        decode_kwargs: Dict[str, Any] = None,
        padding: bool = True,
    ):
        """
        Util for integration test.

        Text is tokenized and then reverted back to text. Both results are then checked.

        Args:
            expected_encoding:
                The expected result of the tokenizer output.
            model_name:
                The model name of the tokenizer to load and use.
            revision:
                The full git revision number of the model. This is to pin the
                tokenizer config and to avoid that tests start to fail if the
                config gets changed upstream.
            sequences:
                Can overwrite the texts that are used to check the tokenizer.
                This is useful if the tokenizer supports non english languages
                like france.
            decode_kwargs:
                Additional args for the ``decode`` function which reverts the
                tokenized text back to a string.
            padding:
                Activates and controls padding of the tokenizer.
        """
        decode_kwargs = {} if decode_kwargs is None else decode_kwargs

        if sequences is None:
            sequences = [
                "Transformers (formerly known as pytorch-transformers and pytorch-pretrained-bert) provides "
                "general-purpose architectures (BERT, GPT-2, RoBERTa, XLM, DistilBert, XLNet...) for Natural "
                "Language Understanding (NLU) and Natural Language Generation (NLG) with over 32+ pretrained "
                "models in 100+ languages and deep interoperability between Jax, PyTorch and TensorFlow.",
                "BERT is designed to pre-train deep bidirectional representations from unlabeled text by jointly "
                "conditioning on both left and right context in all layers.",
                "The quick brown fox jumps over the lazy dog.",
            ]

320
321
322
        if self.test_sentencepiece_ignore_case:
            sequences = [sequence.lower() for sequence in sequences]

323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
        tokenizer_classes = [self.tokenizer_class]
        if self.test_rust_tokenizer:
            tokenizer_classes.append(self.rust_tokenizer_class)

        for tokenizer_class in tokenizer_classes:
            tokenizer = tokenizer_class.from_pretrained(
                model_name,
                revision=revision,  # to pin the tokenizer version
            )

            encoding = tokenizer(sequences, padding=padding)
            decoded_sequences = [
                tokenizer.decode(seq, skip_special_tokens=True, **decode_kwargs) for seq in encoding["input_ids"]
            ]

            encoding_data = encoding.data
            self.assertDictEqual(encoding_data, expected_encoding)

            for expected, decoded in zip(sequences, decoded_sequences):
                if self.test_sentencepiece_ignore_case:
                    expected = expected.lower()
                self.assertEqual(expected, decoded)
thomwolf's avatar
thomwolf committed
345

346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
    def assert_padded_input_match(self, input_r: list, input_p: list, max_length: int, pad_token_id: int):
        # Ensure we match max_length
        self.assertEqual(len(input_r), max_length)
        self.assertEqual(len(input_p), max_length)

        # Ensure the number of padded tokens is the same
        padded_tokens_r = list(takewhile(lambda i: i == pad_token_id, reversed(input_r)))
        padded_tokens_p = list(takewhile(lambda i: i == pad_token_id, reversed(input_p)))
        self.assertSequenceEqual(padded_tokens_r, padded_tokens_p)

    def assert_batch_padded_input_match(
        self,
        input_r: dict,
        input_p: dict,
        max_length: int,
        pad_token_id: int,
        model_main_input_name: str = "input_ids",
    ):
        for i_r in input_r.values():
365
366
367
368
            (
                self.assertEqual(len(i_r), 2),
                self.assertEqual(len(i_r[0]), max_length),
                self.assertEqual(len(i_r[1]), max_length),
369
            )
370
371
372
373
            (
                self.assertEqual(len(i_r), 2),
                self.assertEqual(len(i_r[0]), max_length),
                self.assertEqual(len(i_r[1]), max_length),
374
375
376
377
378
379
380
381
            )

        for i_r, i_p in zip(input_r[model_main_input_name], input_p[model_main_input_name]):
            self.assert_padded_input_match(i_r, i_p, max_length, pad_token_id)

        for i_r, i_p in zip(input_r["attention_mask"], input_p["attention_mask"]):
            self.assertSequenceEqual(i_r, i_p)

382
383
384
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
385
        # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
386
387
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
388
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
389
390
        ]

391
392
393
    # TODO: this test can be combined with `test_sentencepiece_tokenize_and_convert_tokens_to_string` after the latter is extended to all tokenizers.
    def test_tokenize_special_tokens(self):
        """Test `tokenize` with special tokens."""
394
        tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
395
396
397
398
399
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                SPECIAL_TOKEN_1 = "[SPECIAL_TOKEN_1]"
                SPECIAL_TOKEN_2 = "[SPECIAL_TOKEN_2]"

400
                # Both methods should add the token to `_additional_special_tokens` and `added_tokens_decoder`
401
                tokenizer.add_tokens([SPECIAL_TOKEN_1], special_tokens=True)
402
403
404
                tokenizer.add_special_tokens(
                    {"additional_special_tokens": [SPECIAL_TOKEN_2]}, replace_additional_special_tokens=False
                )
405
406
407
408
409
410
411

                token_1 = tokenizer.tokenize(SPECIAL_TOKEN_1)
                token_2 = tokenizer.tokenize(SPECIAL_TOKEN_2)

                self.assertEqual(len(token_1), 1)
                self.assertEqual(len(token_2), 1)
                self.assertEqual(token_1[0], SPECIAL_TOKEN_1)
412
413
                # next is failing for almost all the Fast tokenizers now.
                # self.assertEqual(token_2[0], SPECIAL_TOKEN_2)
414

415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
    # TODO: this test could be extended to all tokenizers - not just the sentencepiece
    def test_sentencepiece_tokenize_and_convert_tokens_to_string(self):
        """Test ``_tokenize`` and ``convert_tokens_to_string``."""
        if not self.test_sentencepiece:
            return

        tokenizer = self.get_tokenizer()
        text = "This is text to test the tokenizer."

        if self.test_sentencepiece_ignore_case:
            text = text.lower()

        tokens = tokenizer.tokenize(text)

        self.assertTrue(len(tokens) > 0)

        # check if converting back to original text works
        reverse_text = tokenizer.convert_tokens_to_string(tokens)

        if self.test_sentencepiece_ignore_case:
            reverse_text = reverse_text.lower()

        self.assertEqual(reverse_text, text)

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
        special_tokens = tokenizer.all_special_tokens
        special_tokens_string = tokenizer.convert_tokens_to_string(special_tokens)
        for special_token in special_tokens:
            self.assertIn(special_token, special_tokens_string)

        if self.test_rust_tokenizer:
            rust_tokenizer = self.get_rust_tokenizer()
            special_tokens_string_rust = rust_tokenizer.convert_tokens_to_string(special_tokens)
            self.assertEqual(special_tokens_string, special_tokens_string_rust)

    def test_sentencepiece_tokenize_and_decode(self):
        if not self.test_sentencepiece:
            return

        text = "This is text to test the tokenizer."
        if self.test_rust_tokenizer:
            tokenizer = self.get_tokenizer()
            rust_tokenizer = self.get_rust_tokenizer()

            slow_ids = tokenizer(text).input_ids
            fast_ids = rust_tokenizer(text).input_ids
            self.assertEqual(slow_ids, fast_ids)

            slow_decoded = tokenizer.decode(slow_ids)
            fast_decoded = rust_tokenizer.decode(slow_ids)
            self.assertEqual(slow_decoded, fast_decoded)

466
467
468
469
470
471
472
473
    def test_subword_regularization_tokenizer(self) -> None:
        if not self.test_sentencepiece:
            return

        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)

474
475
476
477
478
479
480
481
482
        run_test_in_subprocess(
            test_case=self,
            target_func=_test_subword_regularization_tokenizer,
            inputs={
                "tokenizer": tokenizer,
                "sp_model_kwargs": sp_model_kwargs,
                "test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case,
            },
        )
483
484
485
486
487
488
489
490
491
492
493
494
495

    def test_pickle_subword_regularization_tokenizer(self) -> None:
        if not self.test_sentencepiece:
            return

        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
        # Subword regularization is only available for the slow tokenizer.
        sp_model_kwargs = {"enable_sampling": True, "alpha": 0.1, "nbest_size": -1}
        tokenizer = self.get_tokenizer(sp_model_kwargs=sp_model_kwargs)
        tokenizer_bin = pickle.dumps(tokenizer)
        del tokenizer
        tokenizer_new = pickle.loads(tokenizer_bin)

496
497
498
499
500
501
502
503
504
        run_test_in_subprocess(
            test_case=self,
            target_func=_test_subword_regularization_tokenizer,
            inputs={
                "tokenizer": tokenizer_new,
                "sp_model_kwargs": sp_model_kwargs,
                "test_sentencepiece_ignore_case": self.test_sentencepiece_ignore_case,
            },
        )
505

506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
    def test_save_sentencepiece_tokenizer(self) -> None:
        if not self.test_sentencepiece or not self.test_slow_tokenizer:
            return
        # We want to verify that we will be able to save the tokenizer even if the original files that were used to
        # build the tokenizer have been deleted in the meantime.
        text = "This is text to test the tokenizer."

        tokenizer_slow_1 = self.get_tokenizer()
        encoding_tokenizer_slow_1 = tokenizer_slow_1(text)

        tmpdirname_1 = tempfile.mkdtemp()
        tmpdirname_2 = tempfile.mkdtemp()

        tokenizer_slow_1.save_pretrained(tmpdirname_1)
        tokenizer_slow_2 = self.tokenizer_class.from_pretrained(tmpdirname_1)
        encoding_tokenizer_slow_2 = tokenizer_slow_2(text)

        shutil.rmtree(tmpdirname_1)
        tokenizer_slow_2.save_pretrained(tmpdirname_2)

        tokenizer_slow_3 = self.tokenizer_class.from_pretrained(tmpdirname_2)
        encoding_tokenizer_slow_3 = tokenizer_slow_3(text)
        shutil.rmtree(tmpdirname_2)

        self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_2)
        self.assertEqual(encoding_tokenizer_slow_1, encoding_tokenizer_slow_3)

533
534
535
536
537
538
539
540
541
542
543
544
    def test_model_input_names_signature(self):
        accepted_model_main_input_names = [
            "input_ids",  # nlp models
            "input_values",  # speech models
        ]

        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            # first name of model_input_names has to correspond to main model input name
            # to make sure `tokenizer.pad(...)` works correctly
            self.assertTrue(tokenizer.model_input_names[0] in accepted_model_main_input_names)

545
546
547
548
549
550
551
552
553
    def test_rust_tokenizer_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)

        self.assertIn("tokenizer_file", signature.parameters)
        self.assertIsNone(signature.parameters["tokenizer_file"].default)

554
    def test_tokenizer_slow_store_full_signature(self):
555
556
557
        if not self.test_slow_tokenizer:
            return

558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
        signature = inspect.signature(self.tokenizer_class.__init__)
        tokenizer = self.get_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
            if parameter.default != inspect.Parameter.empty:
                self.assertIn(parameter_name, tokenizer.init_kwargs)

    def test_tokenizer_fast_store_full_signature(self):
        if not self.test_rust_tokenizer:
            return

        signature = inspect.signature(self.rust_tokenizer_class.__init__)
        tokenizer = self.get_rust_tokenizer()

        for parameter_name, parameter in signature.parameters.items():
573
574
575
576
577
            if parameter.default != inspect.Parameter.empty and parameter_name not in [
                "vocab_file",
                "merges_file",
                "tokenizer_file",
            ]:
578
579
                self.assertIn(parameter_name, tokenizer.init_kwargs)

580
581
582
583
    def test_rust_and_python_full_tokenizers(self):
        if not self.test_rust_tokenizer:
            return

584
585
586
587
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
        tokenizer = self.get_tokenizer()
        rust_tokenizer = self.get_rust_tokenizer()

        sequence, _ = self.get_input_output_texts(tokenizer)

        # We don't have an exact equivalence on `tokenize()` between Rust and Slow
        # Slow tokenizer only split tokens, Rust tokenizers will replace with <unk>
        # tokens = tokenizer.tokenize(sequence)
        # rust_tokens = rust_tokenizer.tokenize(sequence)
        # self.assertListEqual(tokens, rust_tokens)

        ids = tokenizer.encode(sequence, add_special_tokens=False)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=False)
        self.assertListEqual(ids, rust_ids)

        ids = tokenizer.encode(sequence, add_special_tokens=True)
        rust_ids = rust_tokenizer.encode(sequence, add_special_tokens=True)
        self.assertListEqual(ids, rust_ids)

607
    def test_tokenizers_common_properties(self):
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
                    self.assertTrue(hasattr(tokenizer, attr + "_id"))

                self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
                self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))

                attributes_list = [
                    "model_max_length",
                    "init_inputs",
                    "init_kwargs",
                ]
                if not isinstance(tokenizer, PreTrainedTokenizerFast):
                    attributes_list += [
                        "added_tokens_encoder",
                        "added_tokens_decoder",
                    ]
                for attr in attributes_list:
                    self.assertTrue(hasattr(tokenizer, attr))
639

640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
    def test_tokenizers_common_ids_setters(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                ]

                vocab = tokenizer.get_vocab()
                token_id_to_test_setters = next(iter(vocab.values()))
                token_to_test_setters = tokenizer.convert_ids_to_tokens(
                    token_id_to_test_setters, skip_special_tokens=False
                )

                for attr in attributes_list:
                    setattr(tokenizer, attr + "_id", None)
                    self.assertEqual(getattr(tokenizer, attr), None)
                    self.assertEqual(getattr(tokenizer, attr + "_id"), None)

                    setattr(tokenizer, attr + "_id", token_id_to_test_setters)
                    self.assertEqual(getattr(tokenizer, attr), token_to_test_setters)
                    self.assertEqual(getattr(tokenizer, attr + "_id"), token_id_to_test_setters)

                setattr(tokenizer, "additional_special_tokens_ids", [])
                self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [])
                self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [])

                setattr(tokenizer, "additional_special_tokens_ids", [token_id_to_test_setters])
                self.assertListEqual(getattr(tokenizer, "additional_special_tokens"), [token_to_test_setters])
                self.assertListEqual(getattr(tokenizer, "additional_special_tokens_ids"), [token_id_to_test_setters])

677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
    @parameterized.expand([(True,), (False,)])
    def test_tokenizers_special_tokens_properties_unset(self, verbose):
        tokenizers = self.get_tokenizers(verbose=verbose)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                attributes_list = [
                    "bos_token",
                    "eos_token",
                    "unk_token",
                    "sep_token",
                    "pad_token",
                    "cls_token",
                    "mask_token",
                    "additional_special_tokens",
                ]
                for attr in attributes_list:
                    setattr(tokenizer, attr, None)
                    self.assertIsNone(getattr(tokenizer, attr))

696
697
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
698
        tokenizers = self.get_tokenizers()
699
700
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
Stas Bekman's avatar
Stas Bekman committed
701
                self.assertNotEqual(tokenizer.model_max_length, 42)
702

703
        # Now let's start the test
704
        tokenizers = self.get_tokenizers()
705
706
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
707
708
709
710
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
711
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
712
713
714
715
716
717
718
719
720
721
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)

                shutil.rmtree(tmpdirname)
722

723
724
725
726
727
728
729
730
731
732
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
733
734
735
                tokenizer.add_special_tokens(
                    {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False
                )
736
737
738
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)
739

740
741
742
                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
743
                self.assertListEqual(before_tokens, after_tokens)
744

745
746
747
748
749
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)
750

751
                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
752
                self.assertEqual(tokenizer.model_max_length, 43)
753

754
755
                shutil.rmtree(tmpdirname)

756
757
758
759
760
761
762
763
764
765
766
767
768
        # Test that we can also use the non-legacy saving format for fast tokenizers
        tokenizers = self.get_tokenizers(model_max_length=42)
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Isolate this from the other tests because we save additional tokens/etc
                tmpdirname = tempfile.mkdtemp()

                sample_text = " He is very happy, UNwant\u00E9d,running"
                tokenizer.add_tokens(["bim", "bambam"])
                additional_special_tokens = tokenizer.additional_special_tokens
                additional_special_tokens.append("new_additional_special_token")
769
770
771
                tokenizer.add_special_tokens(
                    {"additional_special_tokens": additional_special_tokens}, replace_additional_special_tokens=False
                )
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
                before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
                before_vocab = tokenizer.get_vocab()
                tokenizer.save_pretrained(tmpdirname)

                after_tokenizer = tokenizer.__class__.from_pretrained(tmpdirname)
                after_tokens = after_tokenizer.encode(sample_text, add_special_tokens=False)
                after_vocab = after_tokenizer.get_vocab()
                self.assertListEqual(before_tokens, after_tokens)
                self.assertDictEqual(before_vocab, after_vocab)
                self.assertIn("bim", after_vocab)
                self.assertIn("bambam", after_vocab)
                self.assertIn("new_additional_special_token", after_tokenizer.additional_special_tokens)
                self.assertEqual(after_tokenizer.model_max_length, 42)

                tokenizer = tokenizer.__class__.from_pretrained(tmpdirname, model_max_length=43)
                self.assertEqual(tokenizer.model_max_length, 43)

                shutil.rmtree(tmpdirname)

791
    def test_pickle_tokenizer(self):
792
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
793
794
795
796
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                self.assertIsNotNone(tokenizer)
797

798
799
                text = "Munich and Berlin are nice cities"
                subwords = tokenizer.tokenize(text)
800

801
802
803
                filename = os.path.join(self.tmpdirname, "tokenizer.bin")
                with open(filename, "wb") as handle:
                    pickle.dump(tokenizer, handle)
804

805
806
                with open(filename, "rb") as handle:
                    tokenizer_new = pickle.load(handle)
807

808
                subwords_loaded = tokenizer_new.tokenize(text)
809

810
                self.assertListEqual(subwords, subwords_loaded)
811

812
    @require_tokenizers
Anthony MOI's avatar
Anthony MOI committed
813
814
815
816
817
818
    def test_pickle_added_tokens(self):
        tok1 = AddedToken("<s>", rstrip=True, lstrip=True, normalized=False, single_word=True)
        tok2 = pickle.loads(pickle.dumps(tok1))

        self.assertEqual(tok1.__getstate__(), tok2.__getstate__())

819
    def test_added_tokens_do_lower_case(self):
820
        tokenizers = self.get_tokenizers(do_lower_case=True)
821
822
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
823
824
825
                if not hasattr(tokenizer, "do_lower_case") or not tokenizer.do_lower_case:
                    continue

826
                special_token = tokenizer.all_special_tokens[0]
827

828
829
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
830

831
                toks_before_adding = tokenizer.tokenize(text)  # toks before adding new_toks
832

833
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
834
                added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
835

836
837
                toks_after_adding = tokenizer.tokenize(text)
                toks_after_adding2 = tokenizer.tokenize(text2)
838

839
840
841
842
843
844
845
846
                # Rust tokenizers dont't lowercase added tokens at the time calling `tokenizer.add_tokens`,
                # while python tokenizers do, so new_toks 0 and 2 would be treated as the same, so do new_toks 1 and 3.
                self.assertIn(added, [2, 4])

                self.assertListEqual(toks_after_adding, toks_after_adding2)
                self.assertTrue(
                    len(toks_before_adding) > len(toks_after_adding),  # toks_before_adding should be longer
                )
847

848
849
                # Check that none of the special tokens are lowercased
                sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
850
851
852
853
                # Convert the tokenized list to str as some special tokens are tokenized like normal tokens
                # which have a prefix spacee e.g. the mask token of Albert, and cannot match the original
                # special tokens exactly.
                tokenized_sequence = "".join(tokenizer.tokenize(sequence_with_special_tokens))
854

855
                for special_token in tokenizer.all_special_tokens:
856
                    self.assertTrue(special_token in tokenized_sequence or special_token.lower() in tokenized_sequence)
857

858
        tokenizers = self.get_tokenizers(do_lower_case=True)
859
860
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
861
862
863
                if hasattr(tokenizer, "do_lower_case") and tokenizer.do_lower_case:
                    continue

864
                special_token = tokenizer.all_special_tokens[0]
865

866
867
                text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
                text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
868

869
                toks_before_adding = tokenizer.tokenize(text)  # toks before adding new_toks
thomwolf's avatar
thomwolf committed
870

871
872
                new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
                added = tokenizer.add_tokens([AddedToken(tok, lstrip=True, rstrip=True) for tok in new_toks])
873
                self.assertIn(added, [2, 4])
874

875
876
                toks_after_adding = tokenizer.tokenize(text)
                toks_after_adding2 = tokenizer.tokenize(text2)
877

878
879
880
881
882
883
884
                self.assertEqual(len(toks_after_adding), len(toks_after_adding2))  # Length should still be the same
                self.assertNotEqual(
                    toks_after_adding[1], toks_after_adding2[1]
                )  # But at least the first non-special tokens should differ
                self.assertTrue(
                    len(toks_before_adding) > len(toks_after_adding),  # toks_before_adding should be longer
                )
885

886
    # TODO @ArthurZ Nuke this
887
888
889
890
891
892
893
894
    def test_add_tokens_tokenizer(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab_size = tokenizer.vocab_size
                all_size = len(tokenizer)

                self.assertNotEqual(vocab_size, 0)
895

896
                # We usually have added tokens from the start in tests (but also otherwise) because our vocab fixtures are
897
898
                # smaller than the original vocabs - let's not assert this
                # self.assertEqual(vocab_size, all_size)
899

900
901
902
903
                new_toks = [
                    AddedToken("aaaaa bbbbbb", rstrip=True, lstrip=True),
                    AddedToken("cccccccccdddddddd", rstrip=True, lstrip=True),
                ]
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
                added_toks = tokenizer.add_tokens(new_toks)
                vocab_size_2 = tokenizer.vocab_size
                all_size_2 = len(tokenizer)

                self.assertNotEqual(vocab_size_2, 0)
                self.assertEqual(vocab_size, vocab_size_2)
                self.assertEqual(added_toks, len(new_toks))
                self.assertEqual(all_size_2, all_size + len(new_toks))

                tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)

                self.assertGreaterEqual(len(tokens), 4)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)

919
920
921
922
                new_toks_2 = {
                    "eos_token": AddedToken(">>>>|||<||<<|<<", rstrip=True, lstrip=True),
                    "pad_token": AddedToken("<<<<<|||>|>>>>|>", rstrip=True, lstrip=True),
                }
923
924
925
926
927
928
929
930
931
932
                added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
                vocab_size_3 = tokenizer.vocab_size
                all_size_3 = len(tokenizer)

                self.assertNotEqual(vocab_size_3, 0)
                self.assertEqual(vocab_size, vocab_size_3)
                self.assertEqual(added_toks_2, len(new_toks_2))
                self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))

                tokens = tokenizer.encode(
933
                    ">>>>|||<||<<|<< aaaaa bbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
934
935
936
937
938
                )

                self.assertGreaterEqual(len(tokens), 6)
                self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[0], tokens[1])
939

940
941
942
943
                self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
                self.assertGreater(tokens[-2], tokens[-3])
                self.assertEqual(tokens[0], tokenizer.eos_token_id)
                self.assertEqual(tokens[-2], tokenizer.pad_token_id)
944

945
    def test_add_special_tokens(self):
946
947
948
949
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, ids = self.get_clean_sequence(tokenizer)
950

951
                special_token = AddedToken("[SPECIAL_TOKEN]", lstrip=True, rstrip=True)
952

953
                tokenizer.add_special_tokens({"cls_token": special_token})
954
                special_token = str(special_token)
955
956
                encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(len(encoded_special_token), 1)
957

958
959
                text = tokenizer.decode(ids + encoded_special_token, clean_up_tokenization_spaces=False)
                encoded = tokenizer.encode(text, add_special_tokens=False)
960

961
962
963
                input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
                special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
                self.assertEqual(encoded, input_encoded + special_token_id)
964

965
966
                decoded = tokenizer.decode(encoded, skip_special_tokens=True)
                self.assertTrue(special_token not in decoded)
967

968
    def test_internal_consistency(self):
969
970
971
972
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                input_text, output_text = self.get_input_output_texts(tokenizer)
973

974
975
976
977
                tokens = tokenizer.tokenize(input_text)
                ids = tokenizer.convert_tokens_to_ids(tokens)
                ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
                self.assertListEqual(ids, ids_2)
978

979
980
981
982
                tokens_2 = tokenizer.convert_ids_to_tokens(ids)
                self.assertNotEqual(len(tokens_2), 0)
                text_2 = tokenizer.decode(ids)
                self.assertIsInstance(text_2, str)
983

984
                self.assertEqual(text_2, output_text)
985

986
    @require_tokenizers
987
    def test_encode_decode_with_spaces(self):
988
        tokenizers = self.get_tokenizers(do_lower_case=False, fast=False)
989
990
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
991
                new_toks = [
992
993
994
995
                    # These are added tokens, they will be normalized....
                    AddedToken("[ABC]", normalized=True, lstrip=True, rstrip=True),
                    AddedToken("[DEF]", normalized=True, lstrip=True, rstrip=True),
                    AddedToken("GHI IHG", normalized=True, lstrip=True, rstrip=True),
996
                ]
997
                tokenizer.add_tokens(new_toks)
998
                tokenizer.add_tokens([AddedToken("[SAMPLE]", normalized=True)], special_tokens=True)
999
                input = "[ABC][DEF][ABC]GHI IHG[DEF]"
1000
                if self.space_between_special_tokens:
1001
                    output = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
1002
1003
                else:
                    output = input
1004
                encoded = tokenizer.encode(input, add_special_tokens=False)
1005
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=self.space_between_special_tokens)
1006

1007
                self.assertIn(decoded, [output, output.lower()])
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
                return
                # TODO  @ArthurZ Refactor testing as now the do_normalize works for special and non special
                encoded = tokenizer.encode("[ABC] [DEF][SAMPLE]", add_special_tokens=False)
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=False)
                self.assertIn(decoded, ["[ABC] [DEF] [SAMPLE]", "[ABC] [DEF] [SAMPLE]".lower()])

                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True, skip_special_tokens=True)
                self.assertIn(decoded, ["[ABC] [DEF]", "[ABC] [DEF]".lower()])

                encoded = tokenizer.encode("[ABC][SAMPLE][DEF]", add_special_tokens=False)
                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=True)
                self.assertIn(decoded, ["[ABC] [SAMPLE] [DEF]", "[ABC][SAMPLE][DEF]".lower()])

                decoded = tokenizer.decode(encoded, spaces_between_special_tokens=False)
                self.assertIn(decoded, ["[ABC][SAMPLE][DEF]", "[ABC][SAMPLE][DEF]".lower()])
1023

1024
    def test_pretrained_model_lists(self):
1025
1026
1027
1028
1029
1030
1031
1032
1033
        # We should have at least one default checkpoint for each tokenizer
        # We should specify the max input length as well (used in some part to list the pretrained checkpoints)
        self.assertGreaterEqual(len(self.tokenizer_class.pretrained_vocab_files_map), 1)
        self.assertGreaterEqual(len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]), 1)
        self.assertEqual(
            len(list(self.tokenizer_class.pretrained_vocab_files_map.values())[0]),
            len(self.tokenizer_class.max_model_input_sizes),
        )

1034
1035
1036
1037
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
1038

1039
1040
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
1041

1042
    def test_mask_output(self):
1043
        tokenizers = self.get_tokenizers(do_lower_case=False)
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if (
                    tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
                    and "token_type_ids" in tokenizer.model_input_names
                ):
                    seq_0 = "Test this method."
                    seq_1 = "With these inputs."
                    information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
                    sequences, mask = information["input_ids"], information["token_type_ids"]
                    self.assertEqual(len(sequences), len(mask))
1055

1056
1057
1058
1059
1060
1061
1062
1063
    def test_token_type_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
NielsRogge's avatar
NielsRogge committed
1064
                # (regardless of whether the model use token type ids)
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(seq_0, return_token_type_ids=True)
                self.assertIn(0, output["token_type_ids"])

    def test_sequence_ids(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            if not tokenizer.is_fast:
                continue
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."
                seq_1 = "With these inputs."

                # We want to have sequence 0 and sequence 1 are tagged
                # respectively with 0 and 1 token_ids
NielsRogge's avatar
NielsRogge committed
1080
                # (regardless of whether the model use token type ids)
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
                # We use this assumption in the QA pipeline among other place
                output = tokenizer(seq_0)
                self.assertIn(0, output.sequence_ids())

                output = tokenizer(seq_0, seq_1)
                self.assertIn(0, output.sequence_ids())
                self.assertIn(1, output.sequence_ids())

                if tokenizer.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, output.sequence_ids())

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
    @require_jinja
    def test_chat_template(self):
        dummy_template = "{% for message in messages %}{{message['role'] + message['content']}}{% endfor %}"
        dummy_conversation = [
            {"role": "system", "content": "system message"},
            {"role": "user", "content": "user message"},
            {"role": "assistant", "content": "assistant message"},
        ]
        expected_output = "systemsystem messageuseruser messageassistantassistant message"
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                output = tokenizer.apply_chat_template(
                    dummy_conversation, chat_template=dummy_template, tokenize=False
                )
                self.assertEqual(output, expected_output)  # Test we can pass chat_template arg
                # Check that no error raised when tokenize=True
                tokenizer.apply_chat_template(dummy_conversation, chat_template=dummy_template, tokenize=True)

                tokenizer.chat_template = dummy_template
                self.assertEqual(tokenizer.chat_template, dummy_template)  # Test property setter
                output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False)
                self.assertEqual(output, expected_output)  # Test chat_template attribute is used if no arg is passed
                tokenizer.apply_chat_template(dummy_conversation, tokenize=True)  # Check that no error raised

                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    tokenizer.save_pretrained(tmp_dir_name)
                    tokenizer = tokenizer.from_pretrained(tmp_dir_name)

                self.assertEqual(tokenizer.chat_template, dummy_template)  # Test template has persisted
                output = tokenizer.apply_chat_template(dummy_conversation, tokenize=False)
                self.assertEqual(output, expected_output)  # Test output is the same after reloading
                tokenizer.apply_chat_template(dummy_conversation, tokenize=True)  # Check that no error raised

1126
    def test_number_of_added_tokens(self):
1127
1128
1129
1130
1131
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                seq_0 = "Test this method."
                seq_1 = "With these inputs."
1132

1133
                sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
1134
                attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True)
1135

1136
1137
1138
1139
1140
                # Method is implemented (e.g. not GPT-2)
                if len(attached_sequences) != 2:
                    self.assertEqual(
                        tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences)
                    )
1141
1142

    def test_maximum_encoding_length_single_input(self):
1143
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
1144
1145
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
1146
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
1147
1148
1149

                sequence = tokenizer.encode(seq_0, add_special_tokens=False)
                total_length = len(sequence)
1150

Yulv-git's avatar
Yulv-git committed
1151
1152
1153
                self.assertGreater(
                    total_length, 4, "Issue with the testing sequence, please update it, it's too short"
                )
1154
1155
1156
1157
1158
1159
1160
1161

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_1 = seq_0 * model_max_length

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
Nicolas Patry's avatar
Nicolas Patry committed
1162
                self.assertGreater(
Yulv-git's avatar
Yulv-git committed
1163
1164
1165
                    total_length1,
                    model_max_length,
                    "Issue with the testing sequence, please update it, it's too short",
Nicolas Patry's avatar
Nicolas Patry committed
1166
                )
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
                    with self.subTest(f"Padding: {padding_state}"):
                        for truncation_state in [True, "longest_first", "only_first"]:
                            with self.subTest(f"Truncation: {truncation_state}"):
                                output = tokenizer(seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer([seq_1], padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
1183
1184
1185
1186
1187
1188
1189
1190
                        # Reset warnings
                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer(seq_1, padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
Sylvain Gugger's avatar
Sylvain Gugger committed
1191
1192
                                "Token indices sequence length is longer than the specified maximum sequence length"
                                " for this model"
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
                            )
                        )

                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer([seq_1], padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
Sylvain Gugger's avatar
Sylvain Gugger committed
1203
1204
                                "Token indices sequence length is longer than the specified maximum sequence length"
                                " for this model"
1205
1206
                            )
                        )
1207
1208
1209
1210

                # Overflowing tokens
                stride = 2
                information = tokenizer(
1211
1212
1213
1214
1215
1216
                    seq_0,
                    max_length=total_length - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="longest_first",
                    return_overflowing_tokens=True,
1217
                    # add_prefix_space=False,
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
                else:
                    truncated_sequence = information["input_ids"]
                    overflowing_tokens = information["overflowing_tokens"]
1234

1235
1236
                    self.assertEqual(len(truncated_sequence), total_length - 2)
                    self.assertEqual(truncated_sequence, sequence[:-2])
1237

1238
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
1239
                    self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
1240

1241
    def test_maximum_encoding_length_pair_input(self):
1242
        tokenizers = self.get_tokenizers(do_lower_case=False, model_max_length=100)
1243
1244
1245
1246
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Build a sequence from our model's vocabulary
                stride = 2
1247
                seq_0, ids = self.get_clean_sequence(tokenizer, max_length=20)
1248
                if len(ids) <= 2 + stride:
1249
1250
                    seq_0 = (seq_0 + " ") * (2 + stride)
                    ids = None
1251
1252

                seq0_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
Nicolas Patry's avatar
Nicolas Patry committed
1253
                self.assertGreater(len(seq0_tokens), 2 + stride)
1254
1255
1256

                seq_1 = "This is another sentence to be encoded."
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)
1257
                if abs(len(seq0_tokens) - len(seq1_tokens)) <= 2:
1258
1259
1260
1261
                    seq1_tokens = seq1_tokens + seq1_tokens
                    seq_1 = tokenizer.decode(seq1_tokens, clean_up_tokenization_spaces=False)
                seq1_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

Nicolas Patry's avatar
Nicolas Patry committed
1262
                self.assertGreater(len(seq1_tokens), 2 + stride)
1263
1264
1265
1266
1267

                smallest = seq1_tokens if len(seq0_tokens) > len(seq1_tokens) else seq0_tokens

                # We are not using the special tokens - a bit too hard to test all the tokenizers with this
                # TODO try this again later
1268
                sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)  # , add_prefix_space=False)
1269
1270
1271
1272
1273

                # Test with max model input length
                model_max_length = tokenizer.model_max_length
                self.assertEqual(model_max_length, 100)
                seq_2 = seq_0 * model_max_length
Nicolas Patry's avatar
Nicolas Patry committed
1274
                self.assertGreater(len(seq_2), model_max_length)
1275
1276
1277
1278
1279

                sequence1 = tokenizer(seq_1, add_special_tokens=False)
                total_length1 = len(sequence1["input_ids"])
                sequence2 = tokenizer(seq_2, seq_1, add_special_tokens=False)
                total_length2 = len(sequence2["input_ids"])
Nicolas Patry's avatar
Nicolas Patry committed
1280
1281
1282
1283
1284
1285
                self.assertLess(
                    total_length1, model_max_length - 10, "Issue with the testing sequence, please update it."
                )
                self.assertGreater(
                    total_length2, model_max_length, "Issue with the testing sequence, please update it."
                )
1286
1287
1288
1289
1290
1291

                # Simple
                padding_strategies = (
                    [False, True, "longest"] if tokenizer.pad_token and tokenizer.pad_token_id >= 0 else [False]
                )
                for padding_state in padding_strategies:
1292
                    with self.subTest(f"{tokenizer.__class__.__name__} Padding: {padding_state}"):
1293
                        for truncation_state in [True, "longest_first", "only_first"]:
1294
                            with self.subTest(f"{tokenizer.__class__.__name__} Truncation: {truncation_state}"):
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
                                output = tokenizer(seq_2, seq_1, padding=padding_state, truncation=truncation_state)
                                self.assertEqual(len(output["input_ids"]), model_max_length)

                                output = tokenizer(
                                    [seq_2], [seq_1], padding=padding_state, truncation=truncation_state
                                )
                                self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple
                        output = tokenizer(seq_1, seq_2, padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"]), model_max_length)

                        output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation="only_second")
                        self.assertEqual(len(output["input_ids"][0]), model_max_length)

                        # Simple with no truncation
1311
1312
1313
1314
1315
1316
1317
1318
                        # Reset warnings
                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer(seq_1, seq_2, padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
Sylvain Gugger's avatar
Sylvain Gugger committed
1319
1320
                                "Token indices sequence length is longer than the specified maximum sequence length"
                                " for this model"
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
                            )
                        )

                        tokenizer.deprecation_warnings = {}
                        with self.assertLogs("transformers", level="WARNING") as cm:
                            output = tokenizer([seq_1], [seq_2], padding=padding_state, truncation=False)
                            self.assertNotEqual(len(output["input_ids"][0]), model_max_length)
                        self.assertEqual(len(cm.records), 1)
                        self.assertTrue(
                            cm.records[0].message.startswith(
Sylvain Gugger's avatar
Sylvain Gugger committed
1331
1332
                                "Token indices sequence length is longer than the specified maximum sequence length"
                                " for this model"
1333
1334
                            )
                        )
1335

1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
                truncated_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[:-2] + tokenizer.encode(
                    seq_1, add_special_tokens=False
                )
                truncated_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[:-2]
                )
                truncated_longest_sequence = (
                    truncated_first_sequence if len(seq0_tokens) > len(seq1_tokens) else truncated_second_sequence
                )

                overflow_first_sequence = tokenizer.encode(seq_0, add_special_tokens=False)[
                    -(2 + stride) :
                ] + tokenizer.encode(seq_1, add_special_tokens=False)
                overflow_second_sequence = (
                    tokenizer.encode(seq_0, add_special_tokens=False)
                    + tokenizer.encode(seq_1, add_special_tokens=False)[-(2 + stride) :]
                )
                overflow_longest_sequence = (
                    overflow_first_sequence if len(seq0_tokens) > len(seq1_tokens) else overflow_second_sequence
                )

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
                    information = tokenizer(
                        seq_0,
                        seq_1,
                        max_length=len(sequence) - 2,
                        add_special_tokens=False,
                        stride=stride,
                        truncation="longest_first",
                        return_overflowing_tokens=True,
                        # add_prefix_space=False,
                    )
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
                    # No overflowing tokens when using 'longest' in python tokenizers
                    with self.assertRaises(ValueError) as context:
                        information = tokenizer(
                            seq_0,
                            seq_1,
                            max_length=len(sequence) - 2,
                            add_special_tokens=False,
                            stride=stride,
                            truncation="longest_first",
                            return_overflowing_tokens=True,
                            # add_prefix_space=False,
                        )
1392

1393
1394
1395
1396
1397
1398
1399
                    self.assertTrue(
                        context.exception.args[0].startswith(
                            "Not possible to return overflowing tokens for pair of sequences with the "
                            "`longest_first`. Please select another truncation strategy than `longest_first`, "
                            "for instance `only_second` or `only_first`."
                        )
                    )
1400
1401

                # Overflowing tokens are handled quite differently in slow and fast tokenizers
1402
                if isinstance(tokenizer, PreTrainedTokenizerFast):
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
                    information = tokenizer(
                        seq_0,
                        seq_1,
                        max_length=len(sequence) - 2,
                        add_special_tokens=False,
                        stride=stride,
                        truncation=True,
                        return_overflowing_tokens=True,
                        # add_prefix_space=False,
                    )
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
                    truncated_sequence = information["input_ids"][0]
                    overflowing_tokens = information["input_ids"][1]
                    self.assertEqual(len(information["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_longest_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(smallest))
                    self.assertEqual(overflowing_tokens, overflow_longest_sequence)
                else:
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
                    # No overflowing tokens when using 'longest' in python tokenizers
                    with self.assertRaises(ValueError) as context:
                        information = tokenizer(
                            seq_0,
                            seq_1,
                            max_length=len(sequence) - 2,
                            add_special_tokens=False,
                            stride=stride,
                            truncation=True,
                            return_overflowing_tokens=True,
                            # add_prefix_space=False,
                        )
1435

1436
1437
1438
1439
1440
1441
1442
                    self.assertTrue(
                        context.exception.args[0].startswith(
                            "Not possible to return overflowing tokens for pair of sequences with the "
                            "`longest_first`. Please select another truncation strategy than `longest_first`, "
                            "for instance `only_second` or `only_first`."
                        )
                    )
1443

1444
                information_first_truncated = tokenizer(
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_first",
                    return_overflowing_tokens=True,
                    # add_prefix_space=False,
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_first_truncated["input_ids"][0]
                    overflowing_tokens = information_first_truncated["input_ids"][1]
                    self.assertEqual(len(information_first_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq1_tokens))
                    self.assertEqual(overflowing_tokens, overflow_first_sequence)
                else:
                    truncated_sequence = information_first_truncated["input_ids"]
                    overflowing_tokens = information_first_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_first_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq0_tokens[-(2 + stride) :])

1475
                information_second_truncated = tokenizer(
1476
1477
1478
1479
1480
1481
1482
                    seq_0,
                    seq_1,
                    max_length=len(sequence) - 2,
                    add_special_tokens=False,
                    stride=stride,
                    truncation="only_second",
                    return_overflowing_tokens=True,
1483
                    # add_prefix_space=False,
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
                )
                # Overflowing tokens are handled quite differently in slow and fast tokenizers
                if isinstance(tokenizer, PreTrainedTokenizerFast):
                    truncated_sequence = information_second_truncated["input_ids"][0]
                    overflowing_tokens = information_second_truncated["input_ids"][1]
                    self.assertEqual(len(information_second_truncated["input_ids"]), 2)

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)

                    self.assertEqual(len(overflowing_tokens), 2 + stride + len(seq0_tokens))
                    self.assertEqual(overflowing_tokens, overflow_second_sequence)
                else:
                    truncated_sequence = information_second_truncated["input_ids"]
                    overflowing_tokens = information_second_truncated["overflowing_tokens"]

                    self.assertEqual(len(truncated_sequence), len(sequence) - 2)
                    self.assertEqual(truncated_sequence, truncated_second_sequence)
1502

1503
1504
                    self.assertEqual(len(overflowing_tokens), 2 + stride)
                    self.assertEqual(overflowing_tokens, seq1_tokens[-(2 + stride) :])
1505

1506
1507
1508
1509
1510
    # def test_encode_input_type(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             sequence = "Let's encode this sequence"
1511

1512
1513
1514
    #             tokens = sequence.split()  # tokenizer.tokenize(sequence)
    #             # input_ids = tokenizer.convert_tokens_to_ids(tokens)
    #             formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
1515

1516
    #             self.assertEqual(
1517
    #                 tokenizer.encode(tokens, is_split_into_words=True, add_special_tokens=True), formatted_input
1518
1519
1520
    #             )
    #             # This is not supported with the Rust tokenizers
    #             # self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)
1521

1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
    # def test_swap_special_token(self):
    #     tokenizers = self.get_tokenizers(do_lower_case=False)
    #     for tokenizer in tokenizers:
    #         with self.subTest(f"{tokenizer.__class__.__name__}"):
    #             # Our mask token
    #             mask = "<mask>"
    #             # We take a single word in the middle of the vocabulary
    #             all_tokens = sorted(tokenizer.get_vocab().keys())
    #             word = tokenizer.decode(tokenizer.encode(all_tokens[len(all_tokens)//2], add_special_tokens=False)[:1])

    #             sequence_0 = "Encode " + word + " sequence"
    #             sequence_masked_0 = "Encode " + mask + " sequence"

    #             sequence_1 = word + " this sequence"
    #             sequence_masked_1 = mask + " this sequence"

    #             # Add tokens so that masked token isn't split
    #             # tokens = [AddedToken(t, lstrip=True, normalized=False) for t in sequence.split()]
    #             # tokenizer.add_tokens(tokens)
    #             tokenizer.add_special_tokens(
    #                 {"mask_token": AddedToken(mask, normalized=False)}
    #             )  # Eat left space on Byte-level BPE tokenizers
    #             mask_ind = tokenizer.convert_tokens_to_ids(mask)

    #             # Test first masked sequence
    #             encoded_0 = tokenizer.encode(sequence_0, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
Nicolas Patry's avatar
Nicolas Patry committed
1549
    #             self.assertEqual(len(encoded_masked), len(encoded_0))
1550
1551
1552
1553
1554
1555
1556
1557
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_0[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_0)

    #             # Test second masked sequence
    #             encoded_1 = tokenizer.encode(sequence_1, add_special_tokens=False)
    #             encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
Nicolas Patry's avatar
Nicolas Patry committed
1558
    #             self.assertEqual(len(encoded_masked), len(encoded_1))
1559
1560
1561
1562
    #             mask_loc = encoded_masked.index(mask_ind)
    #             encoded_masked[mask_loc] = encoded_1[mask_loc]

    #             self.assertEqual(encoded_masked, encoded_1)
1563

1564
    def test_special_tokens_mask(self):
1565
1566
1567
1568
1569
1570
1571
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                # Testing single inputs
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
1572
1573
1574
                    sequence_0,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,  # , add_prefix_space=False
1575
1576
1577
1578
1579
1580
1581
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
                self.assertEqual(encoded_sequence, filtered_sequence)
1582

1583
    def test_special_tokens_mask_input_pairs(self):
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence_0 = "Encode this."
                sequence_1 = "This one too please."
                encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
                encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
                encoded_sequence_dict = tokenizer.encode_plus(
                    sequence_0,
                    sequence_1,
                    add_special_tokens=True,
                    return_special_tokens_mask=True,
1596
                    # add_prefix_space=False,
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
                )
                encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
                special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
                self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

                filtered_sequence = [
                    (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
                ]
                filtered_sequence = [x for x in filtered_sequence if x is not None]
                self.assertEqual(encoded_sequence, filtered_sequence)
1607

1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
    def test_padding_side_in_kwargs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                if self.test_rust_tokenizer:
                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, padding_side="left", **kwargs
                    )
                    self.assertEqual(tokenizer_r.padding_side, "left")

                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, padding_side="right", **kwargs
                    )
                    self.assertEqual(tokenizer_r.padding_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.rust_tokenizer_class.from_pretrained,
                        pretrained_name,
                        padding_side="unauthorized",
                        **kwargs,
                    )

                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="left", **kwargs)
                    self.assertEqual(tokenizer_p.padding_side, "left")

                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, padding_side="right", **kwargs)
                    self.assertEqual(tokenizer_p.padding_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.tokenizer_class.from_pretrained,
                        pretrained_name,
                        padding_side="unauthorized",
                        **kwargs,
                    )

1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
    def test_truncation_side_in_kwargs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                if self.test_rust_tokenizer:
                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="left", **kwargs
                    )
                    self.assertEqual(tokenizer_r.truncation_side, "left")

                    tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="right", **kwargs
                    )
                    self.assertEqual(tokenizer_r.truncation_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.rust_tokenizer_class.from_pretrained,
                        pretrained_name,
                        truncation_side="unauthorized",
                        **kwargs,
                    )

                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="left", **kwargs
                    )
                    self.assertEqual(tokenizer_p.truncation_side, "left")

                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, truncation_side="right", **kwargs
                    )
                    self.assertEqual(tokenizer_p.truncation_side, "right")

                    self.assertRaises(
                        ValueError,
                        self.tokenizer_class.from_pretrained,
                        pretrained_name,
                        truncation_side="unauthorized",
                        **kwargs,
                    )

1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
    def test_right_and_left_padding(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
Nicolas Patry's avatar
Nicolas Patry committed
1706
1707
                self.assertEqual(sequence_length + padding_size, padded_sequence_length)
                self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
1708
1709
1710
1711
1712
1713
1714
1715
1716

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "left"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, padding="max_length"
                )
                padded_sequence_length = len(padded_sequence)
Nicolas Patry's avatar
Nicolas Patry committed
1717
1718
                self.assertEqual(sequence_length + padding_size, padded_sequence_length)
                self.assertEqual([padding_idx] * padding_size + encoded_sequence, padded_sequence)
1719
1720
1721
1722
1723
1724
1725
1726

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_padding'
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, padding=True)
                padded_sequence_right_length = len(padded_sequence_right)
Nicolas Patry's avatar
Nicolas Patry committed
1727
1728
                self.assertEqual(sequence_length, padded_sequence_right_length)
                self.assertEqual(encoded_sequence, padded_sequence_right)
1729
1730
1731
1732

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding="longest")
                padded_sequence_left_length = len(padded_sequence_left)
Nicolas Patry's avatar
Nicolas Patry committed
1733
1734
                self.assertEqual(sequence_length, padded_sequence_left_length)
                self.assertEqual(encoded_sequence, padded_sequence_left)
1735
1736
1737
1738

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence)
                padded_sequence_right_length = len(padded_sequence_right)
Nicolas Patry's avatar
Nicolas Patry committed
1739
1740
                self.assertEqual(sequence_length, padded_sequence_right_length)
                self.assertEqual(encoded_sequence, padded_sequence_right)
1741
1742
1743
1744

                tokenizer.padding_side = "left"
                padded_sequence_left = tokenizer.encode(sequence, padding=False)
                padded_sequence_left_length = len(padded_sequence_left)
Nicolas Patry's avatar
Nicolas Patry committed
1745
1746
                self.assertEqual(sequence_length, padded_sequence_left_length)
                self.assertEqual(encoded_sequence, padded_sequence_left)
1747

1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
    def test_right_and_left_truncation(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "This is a test sequence"

                # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                truncation_size = 3
                tokenizer.truncation_side = "right"
                encoded_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                sequence_length = len(encoded_sequence)
                # Remove EOS/BOS tokens
                truncated_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False
                )
                truncated_sequence_length = len(truncated_sequence)
                self.assertEqual(sequence_length, truncated_sequence_length + truncation_size)
                self.assertEqual(encoded_sequence[:-truncation_size], truncated_sequence)

                # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the truncation flag set to True
                tokenizer.truncation_side = "left"
                sequence_length = len(encoded_sequence)
                truncated_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length - truncation_size, truncation=True, add_special_tokens=False
                )
                truncated_sequence_length = len(truncated_sequence)
                self.assertEqual(sequence_length, truncated_sequence_length + truncation_size)
                self.assertEqual(encoded_sequence[truncation_size:], truncated_sequence)

                # RIGHT & LEFT PADDING - Check that nothing is done for 'longest' and 'no_truncation'
                sequence_length = len(encoded_sequence)

                tokenizer.truncation_side = "right"
                truncated_sequence_right = tokenizer.encode(sequence, truncation=True, add_special_tokens=False)
                truncated_sequence_right_length = len(truncated_sequence_right)
                self.assertEqual(sequence_length, truncated_sequence_right_length)
                self.assertEqual(encoded_sequence, truncated_sequence_right)

                tokenizer.truncation_side = "left"
                truncated_sequence_left = tokenizer.encode(
                    sequence, truncation="longest_first", add_special_tokens=False
                )
                truncated_sequence_left_length = len(truncated_sequence_left)
                self.assertEqual(sequence_length, truncated_sequence_left_length)
                self.assertEqual(encoded_sequence, truncated_sequence_left)

                tokenizer.truncation_side = "right"
                truncated_sequence_right = tokenizer.encode(sequence, add_special_tokens=False)
                truncated_sequence_right_length = len(truncated_sequence_right)
                self.assertEqual(sequence_length, truncated_sequence_right_length)
                self.assertEqual(encoded_sequence, truncated_sequence_right)

                tokenizer.truncation_side = "left"
                truncated_sequence_left = tokenizer.encode(sequence, truncation=False, add_special_tokens=False)
                truncated_sequence_left_length = len(truncated_sequence_left)
                self.assertEqual(sequence_length, truncated_sequence_left_length)
                self.assertEqual(encoded_sequence, truncated_sequence_left)

1806
    def test_padding_to_max_length(self):
1807
        """We keep this test for backward compatibility but it should be remove when `pad_to_max_length` is deprecated."""
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"
                padding_size = 10

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_idx = tokenizer.pad_token_id

                # Check that it correctly pads when a maximum length is specified along with the padding flag set to True
                tokenizer.padding_side = "right"
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)
1823
                # FIXME: the next line should be padding(max_length) to avoid warning
1824
1825
1826
1827
                padded_sequence = tokenizer.encode(
                    sequence, max_length=sequence_length + padding_size, pad_to_max_length=True
                )
                padded_sequence_length = len(padded_sequence)
Nicolas Patry's avatar
Nicolas Patry committed
1828
1829
                self.assertEqual(sequence_length + padding_size, padded_sequence_length)
                self.assertEqual(encoded_sequence + [padding_idx] * padding_size, padded_sequence)
1830
1831
1832
1833
1834
1835
1836
1837

                # Check that nothing is done when a maximum length is not specified
                encoded_sequence = tokenizer.encode(sequence)
                sequence_length = len(encoded_sequence)

                tokenizer.padding_side = "right"
                padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
                padded_sequence_right_length = len(padded_sequence_right)
Nicolas Patry's avatar
Nicolas Patry committed
1838
1839
                self.assertEqual(sequence_length, padded_sequence_right_length)
                self.assertEqual(encoded_sequence, padded_sequence_right)
1840

1841
1842
1843
    def test_padding_to_multiple_of(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
1844
1845
1846
1847
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                else:
1848
1849
1850
                    empty_tokens = tokenizer("", padding=True, pad_to_multiple_of=8)
                    normal_tokens = tokenizer("This is a sample input", padding=True, pad_to_multiple_of=8)
                    for key, value in empty_tokens.items():
1851
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1852
                    for key, value in normal_tokens.items():
1853
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1854
1855
1856

                    normal_tokens = tokenizer("This", pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
1857
                        self.assertNotEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1858
1859
1860
1861

                    # Should also work with truncation
                    normal_tokens = tokenizer("This", padding=True, truncation=True, pad_to_multiple_of=8)
                    for key, value in normal_tokens.items():
1862
                        self.assertEqual(len(value) % 8, 0, f"BatchEncoding.{key} is not multiple of 8")
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874

                    # truncation to something which is not a multiple of pad_to_multiple_of raises an error
                    self.assertRaises(
                        ValueError,
                        tokenizer.__call__,
                        "This",
                        padding=True,
                        truncation=True,
                        max_length=12,
                        pad_to_multiple_of=8,
                    )

1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
    def test_padding_with_attention_mask(self):
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.pad_token is None:
                    self.skipTest("No padding token.")
                if "attention_mask" not in tokenizer.model_input_names:
                    self.skipTest("This model does not use attention mask.")

                features = [
                    {"input_ids": [1, 2, 3, 4, 5, 6], "attention_mask": [1, 1, 1, 1, 1, 0]},
                    {"input_ids": [1, 2, 3], "attention_mask": [1, 1, 0]},
                ]
                padded_features = tokenizer.pad(features)
                if tokenizer.padding_side == "right":
                    self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [1, 1, 0, 0, 0, 0]])
                else:
                    self.assertListEqual(padded_features["attention_mask"], [[1, 1, 1, 1, 1, 0], [0, 0, 0, 1, 1, 0]])

1894
    def test_encode_plus_with_padding(self):
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequence = "Sequence"

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequence)

                padding_size = 10
                padding_idx = tokenizer.pad_token_id
                token_type_padding_idx = tokenizer.pad_token_type_id

                encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
                input_ids = encoded_sequence["input_ids"]
                special_tokens_mask = encoded_sequence["special_tokens_mask"]
                sequence_length = len(input_ids)

                # Test 'longest' and 'no_padding' don't do anything
                tokenizer.padding_side = "right"

Lysandre's avatar
Lysandre committed
1915
1916
1917
1918
1919
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=True,
                    return_special_tokens_mask=True,
                )
1920
1921
1922
1923
1924
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1925
1926
1927
                self.assertEqual(sequence_length, not_padded_sequence_length)
                self.assertEqual(input_ids, not_padded_input_ids)
                self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask)
1928

Lysandre's avatar
Lysandre committed
1929
1930
1931
1932
1933
                not_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    padding=False,
                    return_special_tokens_mask=True,
                )
1934
1935
1936
1937
1938
                not_padded_input_ids = not_padded_sequence["input_ids"]

                not_padded_special_tokens_mask = not_padded_sequence["special_tokens_mask"]
                not_padded_sequence_length = len(not_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1939
1940
1941
                self.assertEqual(sequence_length, not_padded_sequence_length)
                self.assertEqual(input_ids, not_padded_input_ids)
                self.assertEqual(special_tokens_mask, not_padded_special_tokens_mask)
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956

                # Test right padding
                tokenizer.padding_side = "right"

                right_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                right_padded_input_ids = right_padded_sequence["input_ids"]

                right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
                right_padded_sequence_length = len(right_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1957
1958
1959
                self.assertEqual(sequence_length + padding_size, right_padded_sequence_length)
                self.assertEqual(input_ids + [padding_idx] * padding_size, right_padded_input_ids)
                self.assertEqual(special_tokens_mask + [1] * padding_size, right_padded_special_tokens_mask)
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972

                # Test left padding
                tokenizer.padding_side = "left"
                left_padded_sequence = tokenizer.encode_plus(
                    sequence,
                    max_length=sequence_length + padding_size,
                    padding="max_length",
                    return_special_tokens_mask=True,
                )
                left_padded_input_ids = left_padded_sequence["input_ids"]
                left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
                left_padded_sequence_length = len(left_padded_input_ids)

Nicolas Patry's avatar
Nicolas Patry committed
1973
1974
1975
                self.assertEqual(sequence_length + padding_size, left_padded_sequence_length)
                self.assertEqual([padding_idx] * padding_size + input_ids, left_padded_input_ids)
                self.assertEqual([1] * padding_size + special_tokens_mask, left_padded_special_tokens_mask)
1976
1977
1978
1979
1980
1981

                if "token_type_ids" in tokenizer.model_input_names:
                    token_type_ids = encoded_sequence["token_type_ids"]
                    left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
                    right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

Nicolas Patry's avatar
Nicolas Patry committed
1982
1983
1984
1985
1986
1987
                    self.assertEqual(
                        token_type_ids + [token_type_padding_idx] * padding_size, right_padded_token_type_ids
                    )
                    self.assertEqual(
                        [token_type_padding_idx] * padding_size + token_type_ids, left_padded_token_type_ids
                    )
1988
1989
1990
1991
1992
1993

                if "attention_mask" in tokenizer.model_input_names:
                    attention_mask = encoded_sequence["attention_mask"]
                    right_padded_attention_mask = right_padded_sequence["attention_mask"]
                    left_padded_attention_mask = left_padded_sequence["attention_mask"]

Nicolas Patry's avatar
Nicolas Patry committed
1994
1995
                    self.assertEqual(attention_mask + [0] * padding_size, right_padded_attention_mask)
                    self.assertEqual([0] * padding_size + attention_mask, left_padded_attention_mask)
1996

1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
    def test_padding_warning_message_fast_tokenizer(self):
        if not self.test_rust_tokenizer:
            return

        sequence = "This is a text"

        tokenizer_fast = self.get_rust_tokenizer()
        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer_fast, sequence)

        encoding_fast = tokenizer_fast(sequence)

        with self.assertLogs("transformers", level="WARNING") as cm:
            tokenizer_fast.pad(encoding_fast)
        self.assertEqual(len(cm.records), 1)
        self.assertIn(
            "Please note that with a fast tokenizer, using the `__call__` method is faster than using a method to"
            " encode the text followed by a call to the `pad` method to get a padded encoding.",
            cm.records[0].message,
        )

        if not self.test_slow_tokenizer:
            return

        tokenizer_slow = self.get_tokenizer()
        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer_slow, sequence)

        encoding_slow = tokenizer_slow(sequence)

        with self.assertLogs(level="WARNING") as cm:
            # We want to assert there are no warnings, but the 'assertLogs' method does not support that.
            # Therefore, we are adding a dummy warning, and then we will assert it is the only warning.
            logger.warning("Dummy warning")
            tokenizer_slow.pad(encoding_slow)
        self.assertEqual(len(cm.records), 1)
        self.assertIn(
            "Dummy warning",
            cm.records[0].message,
        )

2038
2039
2040
2041
    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

2042
2043
2044
2045
2046
        tokenizers = self.get_tokenizers(random_argument=True)
        new_tokenizers = self.get_tokenizers(random_argument=False)

        for tokenizer, new_tokenizer in zip(tokenizers, new_tokenizers):
            with self.subTest(f"{tokenizer.__class__.__name__}"):
Nicolas Patry's avatar
Nicolas Patry committed
2047
2048
2049
                self.assertTrue(tokenizer.init_kwargs["random_argument"])
                self.assertTrue(tokenizer.init_kwargs["random_argument"])
                self.assertFalse(new_tokenizer.init_kwargs["random_argument"])
2050
2051

    def test_get_vocab(self):
2052
2053
2054
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
2055
2056
2057
                vocab_dict = tokenizer.get_vocab()
                self.assertIsInstance(vocab_dict, dict)
                self.assertGreaterEqual(len(tokenizer), len(vocab_dict))
2058

2059
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
2060
                self.assertEqual(len(vocab), len(tokenizer))
2061

2062
                tokenizer.add_tokens(["asdfasdfasdfasdf"])
2063
                vocab = [tokenizer.convert_ids_to_tokens(i) for i in range(len(tokenizer))]
2064
                self.assertEqual(len(vocab), len(tokenizer))
2065

2066
    def test_conversion_reversible(self):
2067
2068
2069
2070
2071
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                vocab = tokenizer.get_vocab()
                for word, ind in vocab.items():
2072
2073
                    if word == tokenizer.unk_token:
                        continue
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
                    self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
                    self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

    def test_call(self):
        # Tests that all call wrap to encode_plus and batch_encode_plus
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # Test not batched
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0])
                encoded_sequences_2 = tokenizer(sequences[0])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test not batched pairs
                encoded_sequences_1 = tokenizer.encode_plus(sequences[0], sequences[1])
                encoded_sequences_2 = tokenizer(sequences[0], sequences[1])
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched
                encoded_sequences_1 = tokenizer.batch_encode_plus(sequences)
                encoded_sequences_2 = tokenizer(sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)

                # Test batched pairs
                encoded_sequences_1 = tokenizer.batch_encode_plus(list(zip(sequences, sequences)))
                encoded_sequences_2 = tokenizer(sequences, sequences)
                self.assertEqual(encoded_sequences_1, encoded_sequences_2)
2107
2108
2109

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                encoded_sequences = [tokenizer.encode_plus(sequence) for sequence in sequences]
                encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, padding=False)
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

                maximum_length = len(
                    max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len)
                )

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences_padded = [
                    tokenizer.encode_plus(sequence, max_length=maximum_length, padding="max_length")
                    for sequence in sequences
                ]

                encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, padding=True)
                self.assertListEqual(
                    encoded_sequences_padded,
                    self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
                )

                # check 'longest' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=True)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding="longest"
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
2150
2151
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
2152
2153
2154
2155
2156
2157
2158
2159
2160
                    )

                # check 'no_padding' is unsensitive to a max length
                encoded_sequences_batch_padded_1 = tokenizer.batch_encode_plus(sequences, padding=False)
                encoded_sequences_batch_padded_2 = tokenizer.batch_encode_plus(
                    sequences, max_length=maximum_length + 10, padding=False
                )
                for key in encoded_sequences_batch_padded_1.keys():
                    self.assertListEqual(
Lysandre's avatar
Lysandre committed
2161
2162
                        encoded_sequences_batch_padded_1[key],
                        encoded_sequences_batch_padded_2[key],
2163
                    )
2164

2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
    @require_tokenizers
    def test_added_token_are_matched_longest_first(self):
        if not self.test_slow_tokenizer:
            self.skipTest("This test is only for slow tokenizers")
            return
        tokenizers = self.get_tokenizers(fast=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                try:
                    tokenizer.add_tokens([AddedToken("extra_id_1")])
                    tokenizer.add_tokens([AddedToken("extra_id_100")])
                except Exception:
                    # Canine cannot add tokens which are not codepoints
                    self.skipTest("Cannot add those Added tokens")

                # XXX: This used to split on `extra_id_1` first we're matching
                # longest first now.
                tokens = tokenizer.tokenize("This is some extra_id_100")
                self.assertIn("extra_id_100", tokens)

        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.add_tokens([AddedToken("extra_id_100")])
                tokenizer.add_tokens([AddedToken("extra_id_1")])

                tokens = tokenizer.tokenize("This is some extra_id_100")
                self.assertIn("extra_id_100", tokens)

2193
    @require_tokenizers
2194
    def test_added_token_serializable(self):
2195
        # TODO this is tested 10_000 times....
2196
2197
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
2198
2199
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                new_token = AddedToken("new_token", lstrip=True)
2200
                tokenizer.add_tokens([new_token])
2201

2202
2203
2204
                with tempfile.TemporaryDirectory() as tmp_dir_name:
                    tokenizer.save_pretrained(tmp_dir_name)
                    tokenizer.from_pretrained(tmp_dir_name)
2205

2206
2207
2208
2209
    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )
2234
2235

        # Left padding tests
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokenizer.padding_side = "left"
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                max_length = 100

                # check correct behaviour if no pad_token_id exists and add it eventually
                self._check_no_pad_token_padding(tokenizer, sequences)

                encoded_sequences = [
                    tokenizer.encode_plus(sequence, max_length=max_length, padding="max_length")
                    for sequence in sequences
                ]
                encoded_sequences_batch = tokenizer.batch_encode_plus(
                    sequences, max_length=max_length, padding="max_length"
                )
                self.assertListEqual(
                    encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
                )

    def test_pretokenized_inputs(self):
        # Test when inputs are pretokenized

2265
        tokenizers = self.get_tokenizers(do_lower_case=False)  # , add_prefix_space=True)
2266
2267
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
2268
2269
2270
                if hasattr(tokenizer, "add_prefix_space") and not tokenizer.add_prefix_space:
                    continue

2271
2272
2273
2274
2275
2276
2277
                # Prepare a sequence from our tokenizer vocabulary
                sequence, ids = self.get_clean_sequence(tokenizer, with_prefix_space=True, max_length=20)
                # sequence = " " + sequence  # To be sure the byte-level tokenizers are feeling good
                token_sequence = sequence.split()
                # sequence_no_prefix_space = sequence.strip()

                # Test encode for pretokenized inputs
2278
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=False)
2279
2280
2281
                output_sequence = tokenizer.encode(sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)

2282
                output = tokenizer.encode(token_sequence, is_split_into_words=True, add_special_tokens=True)
2283
2284
2285
2286
                output_sequence = tokenizer.encode(sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs
2287
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=False)
2288
2289
2290
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
2291
                output = tokenizer.encode_plus(token_sequence, is_split_into_words=True, add_special_tokens=True)
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
                output_sequence = tokenizer.encode_plus(sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs
                sequence_batch = [sequence.strip()] * 2 + [sequence.strip() + " " + sequence.strip()]
                token_sequence_batch = [s.split() for s in sequence_batch]
                sequence_batch_cleaned_up_spaces = [" " + " ".join(s) for s in token_sequence_batch]

                output = tokenizer.batch_encode_plus(
2302
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=False
2303
2304
2305
2306
2307
2308
2309
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
2310
                    token_sequence_batch, is_split_into_words=True, add_special_tokens=True
2311
2312
2313
2314
2315
2316
2317
2318
2319
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test encode for pretokenized inputs pairs
                output = tokenizer.encode(
2320
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
2321
2322
2323
2324
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=False)
                self.assertEqual(output, output_sequence)
                output = tokenizer.encode(
2325
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
2326
2327
2328
2329
2330
2331
                )
                output_sequence = tokenizer.encode(sequence, sequence, add_special_tokens=True)
                self.assertEqual(output, output_sequence)

                # Test encode_plus for pretokenized inputs pairs
                output = tokenizer.encode_plus(
2332
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=False
2333
2334
2335
2336
2337
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=False)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.encode_plus(
2338
                    token_sequence, token_sequence, is_split_into_words=True, add_special_tokens=True
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
                )
                output_sequence = tokenizer.encode_plus(sequence, sequence, add_special_tokens=True)
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])

                # Test batch_encode_plus for pretokenized inputs pairs
                sequence_pair_batch = [(sequence.strip(), sequence.strip())] * 2 + [
                    (sequence.strip() + " " + sequence.strip(), sequence.strip())
                ]
                token_sequence_pair_batch = [tuple(s.split() for s in pair) for pair in sequence_pair_batch]
                sequence_pair_batch_cleaned_up_spaces = [
                    tuple(" " + " ".join(s) for s in pair) for pair in token_sequence_pair_batch
                ]

                output = tokenizer.batch_encode_plus(
2354
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=False
2355
2356
2357
2358
2359
2360
2361
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=False
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
                output = tokenizer.batch_encode_plus(
2362
                    token_sequence_pair_batch, is_split_into_words=True, add_special_tokens=True
2363
2364
2365
2366
2367
2368
                )
                output_sequence = tokenizer.batch_encode_plus(
                    sequence_pair_batch_cleaned_up_spaces, add_special_tokens=True
                )
                for key in output.keys():
                    self.assertEqual(output[key], output_sequence[key])
2369

2370
2371
2372
    def test_prepare_for_model(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
2373
2374
2375
2376
2377
2378
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                string_sequence = "Testing the prepare_for_model method."
                ids = tokenizer.encode(string_sequence, add_special_tokens=False)
                prepared_input_dict = tokenizer.prepare_for_model(ids, add_special_tokens=True)

                input_dict = tokenizer.encode_plus(string_sequence, add_special_tokens=True)
2379

2380
                self.assertEqual(input_dict, prepared_input_dict)
2381

2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
    def test_batch_encode_plus_overflowing_tokens(self):
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            string_sequences = ["Testing the prepare_for_model method.", "Test"]

            if tokenizer.pad_token is None:
                tokenizer.add_special_tokens({"pad_token": "[PAD]"})

            tokenizer.batch_encode_plus(
                string_sequences, return_overflowing_tokens=True, truncation=True, padding=True, max_length=3
            )

2394
    @is_pt_tf_cross_test
2395
    def test_batch_encode_plus_tensors(self):
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                sequences = [
                    "Testing batch encode plus",
                    "Testing batch encode plus with different sequence lengths",
                    "Testing batch encode plus with different sequence lengths correctly pads",
                ]

                # A Tensor cannot be build by sequences which are not the same size
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
                self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

                if tokenizer.pad_token_id is None:
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
2411
2412
2413
2414
2415
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding=True,
                        return_tensors="pt",
2416
2417
                    )
                    self.assertRaises(
Lysandre's avatar
Lysandre committed
2418
2419
2420
2421
2422
                        ValueError,
                        tokenizer.batch_encode_plus,
                        sequences,
                        padding="longest",
                        return_tensors="tf",
2423
2424
2425
2426
2427
                    )
                else:
                    pytorch_tensor = tokenizer.batch_encode_plus(sequences, padding=True, return_tensors="pt")
                    tensorflow_tensor = tokenizer.batch_encode_plus(sequences, padding="longest", return_tensors="tf")
                    encoded_sequences = tokenizer.batch_encode_plus(sequences, padding=True)
2428

2429
2430
2431
2432
                    for key in encoded_sequences.keys():
                        pytorch_value = pytorch_tensor[key].tolist()
                        tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                        encoded_value = encoded_sequences[key]
2433

2434
                        self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
2435
2436
2437
2438
2439
2440

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
2441
                    tokenizer.batch_encode_plus(sequences, padding="longest")
2442
                else:
2443
                    tokenizer.encode_plus(sequences, padding=True)
2444
2445
2446

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
2447
2448

    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
2449
    @slow
2450
    def test_torch_encode_plus_sent_to_model(self):
2451
        import torch
2452

2453
2454
2455
2456
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

2457
2458
2459
2460
2461
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2462

2463
2464
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2465

2466
2467
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2468

2469
                model = model_class(config)
2470

2471
2472
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
                is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
Nicolas Patry's avatar
Nicolas Patry committed
2473
2474
                if is_using_common_embeddings:
                    self.assertGreaterEqual(model.get_input_embeddings().weight.shape[0], len(tokenizer))
2475

2476
2477
2478
2479
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
2480
2481
2482
2483

                # Ensure that the BatchEncoding.to() method works.
                encoded_sequence.to(model.device)

2484
2485
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
                # This should not fail
2486

2487
2488
2489
                with torch.no_grad():  # saves some time
                    model(**encoded_sequence)
                    model(**batch_encoded_sequence)
2490

2491
2492
2493
2494
2495
2496
2497
        # if self.test_rust_tokenizer:
        #     fast_tokenizer = self.get_rust_tokenizer()
        #     encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
        #     batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        #     # This should not fail
        #     model(**encoded_sequence_fast)
        #     model(**batch_encoded_sequence_fast)
2498
2499

    @require_tf
Sylvain Gugger's avatar
Sylvain Gugger committed
2500
    @slow
2501
2502
2503
2504
2505
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

2506
2507
2508
2509
2510
        tokenizers = self.get_tokenizers(do_lower_case=False)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2511

2512
2513
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2514

2515
2516
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2517

2518
                model = model_class(config)
2519

2520
                # Make sure the model contains at least the full vocabulary size in its embedding matrix
Nicolas Patry's avatar
Nicolas Patry committed
2521
                self.assertGreaterEqual(model.config.vocab_size, len(tokenizer))
2522

2523
2524
2525
2526
2527
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
2528

2529
2530
2531
                # This should not fail
                model(encoded_sequence)
                model(batch_encoded_sequence)
2532
2533
2534

    # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
2535
    @slow
2536
2537
2538
2539
2540
    def test_np_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

2541
2542
2543
2544
2545
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
                    return
2546

2547
2548
                config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
                config = config_class()
2549

2550
2551
                if config.is_encoder_decoder or config.pad_token_id is None:
                    return
2552

2553
2554
2555
2556
2557
2558
2559
                # Build sequence
                first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
                sequence = " ".join(first_ten_tokens)
                encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
                batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

                # TODO: add forward through JAX/Flax when PR is merged
Sylvain Gugger's avatar
Sylvain Gugger committed
2560
                # This is currently here to make ruff happy !
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
                if encoded_sequence is None:
                    raise ValueError("Cannot convert list to numpy tensor on  encode_plus()")

                if batch_encoded_sequence is None:
                    raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus()")

                if self.test_rust_tokenizer:
                    fast_tokenizer = self.get_rust_tokenizer()
                    encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
                    batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus(
                        [sequence, sequence], return_tensors="np"
                    )
2573

2574
                    # TODO: add forward through JAX/Flax when PR is merged
Sylvain Gugger's avatar
Sylvain Gugger committed
2575
                    # This is currently here to make ruff happy !
2576
2577
                    if encoded_sequence_fast is None:
                        raise ValueError("Cannot convert list to numpy tensor on  encode_plus() (fast)")
2578

2579
2580
                    if batch_encoded_sequence_fast is None:
                        raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus() (fast)")
2581
2582
2583

    @require_torch
    def test_prepare_seq2seq_batch(self):
2584
2585
2586
        if not self.test_seq2seq:
            return

2587
2588
2589
2590
2591
2592
        tokenizers = self.get_tokenizers()
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                # Longer text that will definitely require truncation.
                src_text = [
                    " UN Chief Says There Is No Military Solution in Syria",
Sylvain Gugger's avatar
Sylvain Gugger committed
2593
2594
2595
                    " Secretary-General Ban Ki-moon says his response to Russia's stepped up military support for"
                    " Syria is that 'there is no military solution' to the nearly five-year conflict and more weapons"
                    " will only worsen the violence and misery for millions of people.",
2596
2597
2598
                ]
                tgt_text = [
                    "艦eful ONU declar膬 c膬 nu exist膬 o solu牛ie militar膬 卯n Siria",
Sylvain Gugger's avatar
Sylvain Gugger committed
2599
2600
2601
                    "Secretarul General Ban Ki-moon declar膬 c膬 r膬spunsul s膬u la intensificarea sprijinului militar al"
                    ' Rusiei pentru Siria este c膬 "nu exist膬 o solu牛ie militar膬" la conflictul de aproape cinci ani 艧i'
                    " c膬 noi arme nu vor face dec芒t s膬 卯nr膬ut膬牛easc膬 violen牛ele 艧i mizeria pentru milioane de oameni.",
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
                ]
                try:
                    batch = tokenizer.prepare_seq2seq_batch(
                        src_texts=src_text,
                        tgt_texts=tgt_text,
                        max_length=3,
                        max_target_length=10,
                        return_tensors="pt",
                        src_lang="en_XX",  # this should be ignored (for all but mbart) but not cause an error
                    )
                except NotImplementedError:
                    return
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 10)
                # max_target_length will default to max_length if not specified
                batch = tokenizer.prepare_seq2seq_batch(
                    src_text, tgt_texts=tgt_text, max_length=3, return_tensors="pt"
                )
                self.assertEqual(batch.input_ids.shape[1], 3)
                self.assertEqual(batch.labels.shape[1], 3)
2622

2623
2624
2625
2626
2627
2628
                batch_encoder_only = tokenizer.prepare_seq2seq_batch(
                    src_texts=src_text, max_length=3, max_target_length=10, return_tensors="pt"
                )
                self.assertEqual(batch_encoder_only.input_ids.shape[1], 3)
                self.assertEqual(batch_encoder_only.attention_mask.shape[1], 3)
                self.assertNotIn("decoder_input_ids", batch_encoder_only)
2629
2630
2631

    def test_is_fast(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2632
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2633
2634
2635
2636
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # Check is_fast is set correctly
                self.assertTrue(tokenizer_r.is_fast)

2637
2638
2639
2640
                if self.test_slow_tokenizer:
                    tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                    self.assertFalse(tokenizer_p.is_fast)

2641
2642
    def test_fast_only_inputs(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2643
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure None raise an error
                self.assertRaises(TypeError, tokenizer_r.tokenize, None)
                self.assertRaises(TypeError, tokenizer_r.encode, None)
                self.assertRaises(TypeError, tokenizer_r.encode_plus, None)
                self.assertRaises(TypeError, tokenizer_r.batch_encode_plus, None)

    def test_alignement_methods(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2654
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                batch_size = 3

                encoding = tokenizer_r.encode_plus(text, add_special_tokens=False)

                batch_encoding = tokenizer_r.batch_encode_plus([text] * batch_size, add_special_tokens=False)
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # words, tokens
                self.assertEqual(len(encoding.words(0)), num_tokens)
                self.assertEqual(max(encoding.words(0)), last_word_index)
                self.assertEqual(min(encoding.words(0)), 0)
                self.assertEqual(len(batch_encoding.words(last_batch_index)), num_tokens)
                self.assertEqual(max(batch_encoding.words(last_batch_index)), last_word_index)
                self.assertEqual(min(batch_encoding.words(last_batch_index)), 0)
                self.assertEqual(len(encoding.tokens(0)), num_tokens)

                # Assert token_to_word
                self.assertEqual(encoding.token_to_word(0), 0)
                self.assertEqual(encoding.token_to_word(0, 0), 0)
                self.assertEqual(encoding.token_to_word(last_token_index), last_word_index)
                self.assertEqual(encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.token_to_word(0, last_token_index), last_word_index)
                self.assertEqual(batch_encoding.token_to_word(last_batch_index, last_token_index), last_word_index)

                # Assert word_to_tokens
                self.assertEqual(encoding.word_to_tokens(0).start, 0)
                self.assertEqual(encoding.word_to_tokens(0, 0).start, 0)
                self.assertEqual(encoding.word_to_tokens(last_word_index).end, last_token_index + 1)
                self.assertEqual(encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(batch_encoding.word_to_tokens(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_tokens(0, last_word_index).end, last_token_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_tokens(last_batch_index, last_word_index).end, last_token_index + 1
                )

                # Assert token_to_chars
                self.assertEqual(encoding.token_to_chars(0).start, 0)
                self.assertEqual(encoding.token_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.token_to_chars(last_token_index).end, last_char_index + 1)
                self.assertEqual(encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.token_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.token_to_chars(0, last_token_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.token_to_chars(last_batch_index, last_token_index).end, last_char_index + 1
                )

                # Assert char_to_token
                self.assertEqual(encoding.char_to_token(0), 0)
                self.assertEqual(encoding.char_to_token(0, 0), 0)
                self.assertEqual(encoding.char_to_token(last_char_index), last_token_index)
                self.assertEqual(encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_token(0, last_char_index), last_token_index)
                self.assertEqual(batch_encoding.char_to_token(last_batch_index, last_char_index), last_token_index)

                # Assert char_to_word
                self.assertEqual(encoding.char_to_word(0), 0)
                self.assertEqual(encoding.char_to_word(0, 0), 0)
                self.assertEqual(encoding.char_to_word(last_char_index), last_word_index)
                self.assertEqual(encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(1, 0), 0)
                self.assertEqual(batch_encoding.char_to_word(0, last_char_index), last_word_index)
                self.assertEqual(batch_encoding.char_to_word(last_batch_index, last_char_index), last_word_index)

                # Assert word_to_chars
                self.assertEqual(encoding.word_to_chars(0).start, 0)
                self.assertEqual(encoding.word_to_chars(0, 0).start, 0)
                self.assertEqual(encoding.word_to_chars(last_word_index).end, last_char_index + 1)
                self.assertEqual(encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(batch_encoding.word_to_chars(1, 0).start, 0)
                self.assertEqual(batch_encoding.word_to_chars(0, last_word_index).end, last_char_index + 1)
                self.assertEqual(
                    batch_encoding.word_to_chars(last_batch_index, last_word_index).end, last_char_index + 1
                )

2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
                # Assert token_to_sequence
                self.assertEqual(encoding.token_to_sequence(num_tokens // 2), 0)
                self.assertEqual(encoding.token_to_sequence(0, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(1, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(0, num_tokens // 2), 0)
                self.assertEqual(batch_encoding.token_to_sequence(last_batch_index, num_tokens // 2), 0)

                # Pair of input sequences

                words = ["Wonderful", "no", "inspiration", "example", "with", "subtoken"]
                text = " ".join(words)
                pair_words = ["Amazing", "example", "full", "of", "inspiration"]
                pair_text = " ".join(pair_words)
                batch_size = 3
                index_word_in_first_seq = words.index("inspiration")
                index_word_in_pair_seq = pair_words.index("inspiration")
                index_char_in_first_seq = text.find("inspiration")
                index_char_in_pair_seq = pair_text.find("inspiration")

                pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=False)

                pair_batch_encoding = tokenizer_r.batch_encode_plus(
                    [(text, pair_text)] * batch_size, add_special_tokens=False
                )
                num_tokens = len(encoding["input_ids"])

                last_word_index = len(words) - 1
                last_token_index = num_tokens - 1
                last_batch_index = batch_size - 1
                last_char_index = len(text) - 1

                # Assert word_to_tokens
                self.assertNotEqual(
                    pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start,
                    pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    pair_encoding["input_ids"][
                        pair_encoding.word_to_tokens(index_word_in_first_seq, sequence_index=0).start
                    ],
                    pair_encoding["input_ids"][
                        pair_encoding.word_to_tokens(index_word_in_pair_seq, sequence_index=1).start
                    ],
                )
                self.assertNotEqual(
                    pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start,
                    pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.word_to_tokens(1, index_word_in_first_seq, sequence_index=0).start
                    ],
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.word_to_tokens(1, index_word_in_pair_seq, sequence_index=1).start
                    ],
                )

                # Assert char_to_token
                self.assertNotEqual(
                    pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0),
                    pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_first_seq, sequence_index=0)],
                    pair_encoding["input_ids"][pair_encoding.char_to_token(index_char_in_pair_seq, sequence_index=1)],
                )
                self.assertNotEqual(
                    pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0),
                    pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.char_to_token(1, index_char_in_first_seq, sequence_index=0)
                    ],
                    pair_batch_encoding["input_ids"][1][
                        pair_batch_encoding.char_to_token(1, index_char_in_pair_seq, sequence_index=1)
                    ],
                )

                # Assert char_to_word
                self.assertNotEqual(
                    pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0),
                    pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    words[pair_encoding.char_to_word(index_char_in_first_seq, sequence_index=0)],
                    pair_words[pair_encoding.char_to_word(index_char_in_pair_seq, sequence_index=1)],
                )
                self.assertNotEqual(
                    pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0),
                    pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1),
                )
                self.assertEqual(
                    words[pair_batch_encoding.char_to_word(1, index_char_in_first_seq, sequence_index=0)],
                    pair_words[pair_batch_encoding.char_to_word(1, index_char_in_pair_seq, sequence_index=1)],
                )

                # Assert word_to_chars
                self.assertNotEqual(
                    pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start,
                    pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    text[pair_encoding.word_to_chars(index_word_in_first_seq, sequence_index=0).start],
                    pair_text[pair_encoding.word_to_chars(index_word_in_pair_seq, sequence_index=1).start],
                )
                self.assertNotEqual(
                    pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start,
                    pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start,
                )
                self.assertEqual(
                    text[pair_batch_encoding.word_to_chars(1, index_word_in_first_seq, sequence_index=0).start],
                    pair_text[pair_batch_encoding.word_to_chars(1, index_word_in_pair_seq, sequence_index=1).start],
                )

                # Assert token_to_sequence
                pair_encoding = tokenizer_r.encode_plus(text, pair_text, add_special_tokens=True)

                pair_sequence_ids = [
                    pair_encoding.token_to_sequence(i) for i in range(len(pair_encoding["input_ids"]))
                ]
                self.assertIn(0, pair_sequence_ids)
                self.assertIn(1, pair_sequence_ids)
                if tokenizer_r.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, pair_sequence_ids)

                pair_batch_encoding = tokenizer_r.batch_encode_plus(
                    [(text, pair_text)] * batch_size, add_special_tokens=True
                )
                pair_batch_sequence_ids = [
                    pair_batch_encoding.token_to_sequence(1, i)
                    for i in range(len(pair_batch_encoding["input_ids"][0]))
                ]
                self.assertIn(0, pair_batch_sequence_ids)
                self.assertIn(1, pair_batch_sequence_ids)
                if tokenizer_r.num_special_tokens_to_add(pair=True):
                    self.assertIn(None, pair_batch_sequence_ids)

2878
    def test_tokenization_python_rust_equals(self):
2879
2880
2881
2882
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2883
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2884
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Ensure basic input match
                input_p = tokenizer_p.encode_plus(self._data)
                input_r = tokenizer_r.encode_plus(self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                input_pairs_p = tokenizer_p.encode_plus(self._data, self._data)
                input_pairs_r = tokenizer_r.encode_plus(self._data, self._data)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_pairs_p[key], input_pairs_r[key])

                # Ensure truncation match
                input_p = tokenizer_p.encode_plus(self._data, max_length=512, truncation=True)
                input_r = tokenizer_r.encode_plus(self._data, max_length=512, truncation=True)

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key])

                # Ensure truncation with stride match
                input_p = tokenizer_p.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )
                input_r = tokenizer_r.encode_plus(
                    self._data, max_length=512, truncation=True, stride=3, return_overflowing_tokens=True
                )

                for key in filter(lambda x: x in ["input_ids", "token_type_ids", "attention_mask"], input_p.keys()):
                    self.assertSequenceEqual(input_p[key], input_r[key][0])

    def test_num_special_tokens_to_add_equal(self):
2920
2921
2922
2923
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2924
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2925
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the same number of added_tokens for both pair and non-pair inputs.
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(False), tokenizer_p.num_special_tokens_to_add(False)
                )
                self.assertEqual(
                    tokenizer_r.num_special_tokens_to_add(True), tokenizer_p.num_special_tokens_to_add(True)
                )

    def test_max_length_equal(self):
2938
2939
2940
2941
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2942
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2943
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2944
2945
2946
2947
2948
2949
2950
2951
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Check we have the correct max_length for both pair and non-pair inputs.
                self.assertEqual(tokenizer_r.max_len_single_sentence, tokenizer_p.max_len_single_sentence)
                self.assertEqual(tokenizer_r.max_len_sentences_pair, tokenizer_p.max_len_sentences_pair)

    def test_special_tokens_map_equal(self):
2952
2953
2954
2955
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

2956
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2957
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2958
                # sometimes the tokenizer saved online is not the same
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                # Assert the set of special tokens match.
                self.assertSequenceEqual(
                    tokenizer_p.special_tokens_map.items(),
                    tokenizer_r.special_tokens_map.items(),
                )

    def test_add_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2970
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                vocab_size = len(tokenizer_r)
                self.assertEqual(tokenizer_r.add_tokens(""), 0)
                self.assertEqual(tokenizer_r.add_tokens("testoken"), 1)
                self.assertEqual(tokenizer_r.add_tokens(["testoken1", "testtoken2"]), 2)
                self.assertEqual(len(tokenizer_r), vocab_size + 3)

                self.assertEqual(tokenizer_r.add_special_tokens({}), 0)
                self.assertEqual(tokenizer_r.add_special_tokens({"bos_token": "[BOS]", "eos_token": "[EOS]"}), 2)
                self.assertRaises(
                    AssertionError, tokenizer_r.add_special_tokens, {"additional_special_tokens": "<testtoken1>"}
                )
                self.assertEqual(tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken2>"]}), 1)
                self.assertEqual(
                    tokenizer_r.add_special_tokens({"additional_special_tokens": ["<testtoken3>", "<testtoken4>"]}), 2
                )
2988
2989
2990
2991
                self.assertIn("<testtoken3>", tokenizer_r.special_tokens_map["additional_special_tokens"])
                self.assertIsInstance(tokenizer_r.special_tokens_map["additional_special_tokens"], list)
                self.assertGreaterEqual(len(tokenizer_r.special_tokens_map["additional_special_tokens"]), 2)

2992
2993
2994
2995
                self.assertEqual(len(tokenizer_r), vocab_size + 8)

    def test_offsets_mapping(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
2996
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                text = "Wonderful no inspiration example with subtoken"
                pair = "Along with an awesome pair"

                # No pair
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(False)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

                # Pairs
                tokens_with_offsets = tokenizer_r.encode_plus(
                    text, pair, return_special_tokens_mask=True, return_offsets_mapping=True, add_special_tokens=True
                )
                added_tokens = tokenizer_r.num_special_tokens_to_add(True)
                offsets = tokens_with_offsets["offset_mapping"]

                # Assert there is the same number of tokens and offsets
                self.assertEqual(len(offsets), len(tokens_with_offsets["input_ids"]))

                # Assert there is online added_tokens special_tokens
                self.assertEqual(sum(tokens_with_offsets["special_tokens_mask"]), added_tokens)

    def test_batch_encode_dynamic_overflowing(self):
        """
        When calling batch_encode with multiple sequence it can returns different number of
        overflowing encoding for each sequence:
        [
          Sequence 1: [Encoding 1, Encoding 2],
          Sequence 2: [Encoding 1],
          Sequence 3: [Encoding 1, Encoding 2, ... Encoding N]
        ]
        This needs to be padded so that it can represented as a tensor
        """
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            tokenizer = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

3042
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name}, {tokenizer.__class__.__name__})"):
3043
3044
3045
3046
                if is_torch_available():
                    returned_tensor = "pt"
                elif is_tf_available():
                    returned_tensor = "tf"
3047
                elif is_flax_available():
3048
                    returned_tensor = "jax"
3049
3050
                else:
                    return
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095

                if not tokenizer.pad_token or tokenizer.pad_token_id < 0:
                    return

                tokens = tokenizer.encode_plus(
                    "HuggingFace is solving NLP one commit at a time",
                    max_length=6,
                    padding=True,
                    truncation=True,
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)

                # Mono sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

                # Multi sample
                tokens = tokenizer.batch_encode_plus(
                    ["HuggingFace is solving NLP one commit at a time", "Very tiny input"],
                    max_length=6,
                    padding=True,
                    truncation="only_first",
                    return_tensors=returned_tensor,
                    return_overflowing_tokens=True,
                )

                for key in filter(lambda x: "overflow_to_sample_mapping" not in x, tokens.keys()):
                    self.assertEqual(len(tokens[key].shape), 2)
                    self.assertEqual(tokens[key].shape[-1], 6)

    def test_compare_pretokenized_inputs(self):
3096
3097
3098
3099
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3100
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3101
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                if hasattr(tokenizer_p, "add_prefix_space") and not tokenizer_p.add_prefix_space:
                    continue  # Too hard to test for now

                # Input string
                pretokenized_input_simple = "This is a sample input".split()
                pretokenized_input_pair = "This is a sample pair".split()

                # Test encode for pretokenized inputs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, is_split_into_words=True, add_special_tokens=False
                )
                self.assertEqual(output_p, output_r)

                kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                batch_kwargs = {
                    "is_split_into_words": True,
                    # "return_token_type_ids": True,  # Use the defaults for each tokenizers
                    # "return_attention_mask": True,  # Use the defaults for each tokenizers
                    "return_overflowing_tokens": False,
                    "return_special_tokens_mask": True,
                    "return_offsets_mapping": False,  # Not implemented in python tokenizers
                    # "add_special_tokens": False,
                }
                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch = ([pretokenized_input_simple] * 2) + [pretokenized_input_simple + pretokenized_input_pair]
                output_r = tokenizer_r.batch_encode_plus(input_batch, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test encode for pretokenized inputs pairs
                output_r = tokenizer_r.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                output_p = tokenizer_p.encode(
                    pretokenized_input_simple, pretokenized_input_pair, is_split_into_words=True
                )
                self.assertEqual(output_p, output_r)

                # Test encode_plus for pretokenized inputs
                output_r = tokenizer_r.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                output_p = tokenizer_p.encode_plus(pretokenized_input_simple, pretokenized_input_pair, **kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

                # Test batch_encode_plus for pretokenized inputs
                input_batch_pair = ([pretokenized_input_simple, pretokenized_input_pair] * 2) + [
                    pretokenized_input_simple + pretokenized_input_pair,
                    pretokenized_input_pair,
                ]
                output_r = tokenizer_r.batch_encode_plus(input_batch_pair, **batch_kwargs)
                output_p = tokenizer_p.batch_encode_plus(input_batch_pair, **batch_kwargs)
                for key in output_p.keys():
                    self.assertEqual(output_p[key], output_r[key])

    def test_create_token_type_ids(self):
3178
3179
3180
3181
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3182
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3183
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                input_simple = [1, 2, 3]
                input_pair = [1, 2, 3]

                # Generate output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple)
                self.assertEqual(output_p, output_r)

                # Generate pair output
                output_r = tokenizer_r.create_token_type_ids_from_sequences(input_simple, input_pair)
                output_p = tokenizer_p.create_token_type_ids_from_sequences(input_simple, input_pair)
                self.assertEqual(output_p, output_r)

    def test_build_inputs_with_special_tokens(self):
3200
3201
3202
3203
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3204
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3205
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                # # Input string
                # input_simple = tokenizer_p.tokenize("This is a sample input", add_special_tokens=False)
                # input_pair = tokenizer_p.tokenize("This is a sample pair", add_special_tokens=False)

                # # Generate output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                # self.assertEqual(output_p, output_r)

                # # Generate pair output
                # output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                # output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                # self.assertEqual(output_p, output_r)

3222
3223
3224
3225
3226
3227
                input_pairs = [
                    ("", ""),
                    ("", "This is a sample pair"),
                    ("This is a sample input", ""),
                    ("This is a sample input", "This is a sample pair"),
                ]
3228

3229
3230
3231
3232
                for sample_input, sample_pair in input_pairs:
                    # Input tokens id
                    input_simple = tokenizer_p.encode(sample_input, add_special_tokens=False)
                    input_pair = tokenizer_p.encode(sample_pair, add_special_tokens=False)
3233

3234
3235
3236
3237
3238
3239
3240
3241
3242
                    # Generate output
                    output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple)
                    output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple)
                    self.assertEqual(output_p, output_r)

                    # Generate pair output
                    output_r = tokenizer_r.build_inputs_with_special_tokens(input_simple, input_pair)
                    output_p = tokenizer_p.build_inputs_with_special_tokens(input_simple, input_pair)
                    self.assertEqual(output_p, output_r)
3243
3244

    def test_padding(self, max_length=50):
3245
3246
3247
3248
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3249
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3250
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3251
3252
3253
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

3254
3255
                self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
                pad_token_id = tokenizer_p.pad_token_id
3256
3257
3258
3259

                # Encode - Simple input
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, pad_to_max_length=True)
3260
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3261
3262
                input_r = tokenizer_r.encode("This is a simple input", max_length=max_length, padding="max_length")
                input_p = tokenizer_p.encode("This is a simple input", max_length=max_length, padding="max_length")
3263
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3264
3265
3266

                input_r = tokenizer_r.encode("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode("This is a simple input", padding=True)
3267
                self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
3268
3269
3270
3271
3272
3273
3274
3275

                # Encode - Pair input
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
3276
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3277
3278
3279
3280
3281
3282
                input_r = tokenizer_r.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
3283
                self.assert_padded_input_match(input_r, input_p, max_length, pad_token_id)
3284
3285
                input_r = tokenizer_r.encode("This is a simple input", "This is a pair", padding=True)
                input_p = tokenizer_p.encode("This is a simple input", "This is a pair", padding="longest")
3286
                self.assert_padded_input_match(input_r, input_p, len(input_r), pad_token_id)
3287
3288
3289
3290
3291
3292
3293
3294

                # Encode_plus - Simple input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, pad_to_max_length=True
                )
3295
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3296
3297
3298
3299
3300
3301
3302
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", max_length=max_length, padding="max_length"
                )
3303
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3304
3305
3306
3307
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                input_r = tokenizer_r.encode_plus("This is a simple input", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", padding=True)
3308
3309
3310
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320

                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Encode_plus - Pair input
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, pad_to_max_length=True
                )
3321
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3322
3323
3324
3325
3326
3327
3328
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
                input_p = tokenizer_p.encode_plus(
                    "This is a simple input", "This is a pair", max_length=max_length, padding="max_length"
                )
3329
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3330
3331
3332
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])
                input_r = tokenizer_r.encode_plus("This is a simple input", "This is a pair", padding="longest")
                input_p = tokenizer_p.encode_plus("This is a simple input", "This is a pair", padding=True)
3333
3334
3335
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
                self.assertSequenceEqual(input_r["attention_mask"], input_p["attention_mask"])

                # Batch_encode_plus - Simple input
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    pad_to_max_length=True,
                )
3349
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="max_length",
                )
3361
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding="longest",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"],
                    max_length=max_length,
                    padding=True,
                )
3373
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3374
3375
3376
3377
3378
3379
3380

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding="longest"
                )
                input_p = tokenizer_p.batch_encode_plus(
                    ["This is a simple input 1", "This is a simple input 2"], padding=True
                )
3381
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401

                # Batch_encode_plus - Pair input
                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    max_length=max_length,
                    truncation=True,
                    padding="max_length",
                )
3402
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417

                input_r = tokenizer_r.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding=True,
                )
                input_p = tokenizer_p.batch_encode_plus(
                    [
                        ("This is a simple input 1", "This is a simple input 2"),
                        ("This is a simple pair 1", "This is a simple pair 2"),
                    ],
                    padding="longest",
                )
3418
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3419
3420
3421
3422
3423

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r)

3424
3425
                input_p = tokenizer_p.encode_plus("This is a input 1")
                input_p = tokenizer_p.pad(input_p)
3426

3427
3428
3429
                self.assert_padded_input_match(
                    input_r["input_ids"], input_p["input_ids"], len(input_r["input_ids"]), pad_token_id
                )
3430
3431
3432
3433
3434

                # Using pad on single examples after tokenization
                input_r = tokenizer_r.encode_plus("This is a input 1")
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

3435
3436
                input_p = tokenizer_p.encode_plus("This is a input 1")
                input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length")
3437

3438
                self.assert_padded_input_match(input_r["input_ids"], input_p["input_ids"], max_length, pad_token_id)
3439
3440
3441
3442
3443
3444
3445

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r)

3446
                input_p = tokenizer_p.batch_encode_plus(
3447
3448
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
3449
                input_p = tokenizer_p.pad(input_p)
3450

3451
                self.assert_batch_padded_input_match(input_r, input_p, len(input_r["input_ids"][0]), pad_token_id)
3452
3453
3454
3455
3456
3457
3458

                # Using pad after tokenization
                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_r = tokenizer_r.pad(input_r, max_length=max_length, padding="max_length")

3459
                input_p = tokenizer_p.batch_encode_plus(
3460
3461
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
3462
3463
                input_p = tokenizer_p.pad(input_p, max_length=max_length, padding="max_length")
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)
3464

3465
3466
3467
                # Test padding nested empty lists (in some use-cases, there is no any token id in the `input_ids` list).
                input_r = tokenizer_r.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length")
                input_p = tokenizer_p.pad({"input_ids": [[], []]}, max_length=max_length, padding="max_length")
3468
3469
3470
                self.assert_batch_padded_input_match(input_r, input_p, max_length, pad_token_id)

    def test_padding_different_model_input_name(self):
3471
3472
3473
3474
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3475
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3476
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                self.assertEqual(tokenizer_p.pad_token_id, tokenizer_r.pad_token_id)
                pad_token_id = tokenizer_p.pad_token_id

                input_r = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )
                input_p = tokenizer_r.batch_encode_plus(
                    ["This is a input 1", "This is a much longer input whilch should be padded"]
                )

                # rename encoded batch to "inputs"
                input_r["inputs"] = input_r[tokenizer_r.model_input_names[0]]
                del input_r[tokenizer_r.model_input_names[0]]

                input_p["inputs"] = input_p[tokenizer_p.model_input_names[0]]
                del input_p[tokenizer_p.model_input_names[0]]

                # Renaming `input_ids` to `inputs`
                tokenizer_r.model_input_names = ["inputs"] + tokenizer_r.model_input_names[1:]
                tokenizer_p.model_input_names = ["inputs"] + tokenizer_p.model_input_names[1:]

                input_r = tokenizer_r.pad(input_r, padding="longest")
                input_p = tokenizer_r.pad(input_p, padding="longest")

                max_length = len(input_p["inputs"][0])
                self.assert_batch_padded_input_match(
                    input_r, input_p, max_length, pad_token_id, model_main_input_name="inputs"
                )
3507
3508

    def test_save_pretrained(self):
3509
3510
3511
3512
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3513
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3514
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3515
3516
3517
3518
3519
3520
3521
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)
Sylvain Gugger's avatar
Sylvain Gugger committed
3522

3523
3524
3525
3526
3527
                # make sure that all ".json" files are saved in the correct format
                for file_path in tokenizer_r_files + tokenizer_p_files:
                    if os.path.exists(file_path) and file_path.endswith(".json"):
                        check_json_file_has_correct_format(file_path)

Sylvain Gugger's avatar
Sylvain Gugger committed
3528
3529
3530
                # Checks it save with the same files + the tokenizer.json file for the fast one
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))
                tokenizer_r_files = tuple(f for f in tokenizer_r_files if "tokenizer.json" not in f)
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key), getattr(tokenizer_pp, key))
                    # self.assertEqual(getattr(tokenizer_rp, key + "_id"), getattr(tokenizer_pp, key + "_id"))

                shutil.rmtree(tmpdirname2)

Sylvain Gugger's avatar
Sylvain Gugger committed
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
                # Save tokenizer rust, legacy_format=True
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=True)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it save with the same files
                self.assertSequenceEqual(tokenizer_r_files, tokenizer_p_files)

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

                # Save tokenizer rust, legacy_format=False
                tmpdirname2 = tempfile.mkdtemp()

                tokenizer_r_files = tokenizer_r.save_pretrained(tmpdirname2, legacy_format=False)
                tokenizer_p_files = tokenizer_p.save_pretrained(tmpdirname2)

                # Checks it saved the tokenizer.json file
                self.assertTrue(any("tokenizer.json" in f for f in tokenizer_r_files))

                # Checks everything loads correctly in the same way
                tokenizer_rp = tokenizer_r.from_pretrained(tmpdirname2)
                tokenizer_pp = tokenizer_p.from_pretrained(tmpdirname2)

                # Check special tokens are set accordingly on Rust and Python
                for key in tokenizer_pp.special_tokens_map:
                    self.assertTrue(hasattr(tokenizer_rp, key))

                shutil.rmtree(tmpdirname2)

3583
    def test_embeded_special_tokens(self):
3584
3585
3586
3587
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3588
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3589
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3590
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
3591
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
                sentence = "A, <mask> AllenNLP sentence."
                tokens_r = tokenizer_r.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )
                tokens_p = tokenizer_p.encode_plus(
                    sentence,
                    add_special_tokens=True,
                )

                for key in tokens_p.keys():
                    self.assertEqual(tokens_r[key], tokens_p[key])

                if "token_type_ids" in tokens_r:
                    self.assertEqual(sum(tokens_r["token_type_ids"]), sum(tokens_p["token_type_ids"]))

                tokens_r = tokenizer_r.convert_ids_to_tokens(tokens_r["input_ids"])
                tokens_p = tokenizer_p.convert_ids_to_tokens(tokens_p["input_ids"])
                self.assertSequenceEqual(tokens_r, tokens_p)

    def test_compare_add_special_tokens(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3614
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                simple_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=False)
                # pair_num_special_tokens_to_add = tokenizer_r.num_special_tokens_to_add(pair=True)

                for text in ["", " "]:
                    # tokenize()
                    no_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.tokenize(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode()
                    no_special_tokens = tokenizer_r.encode(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode(text, add_special_tokens=True)
                    self.assertEqual(
                        len(no_special_tokens), len(with_special_tokens) - simple_num_special_tokens_to_add
                    )

                    # encode_plus()
                    no_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=False)
                    with_special_tokens = tokenizer_r.encode_plus(text, add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        self.assertEqual(
                            len(no_special_tokens[key]),
                            len(with_special_tokens[key]) - simple_num_special_tokens_to_add,
                        )

                    # # batch_encode_plus
                    no_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=False)
                    with_special_tokens = tokenizer_r.batch_encode_plus([text, text], add_special_tokens=True)
                    for key in no_special_tokens.keys():
                        for i_no, i_with in zip(no_special_tokens[key], with_special_tokens[key]):
                            self.assertEqual(len(i_no), len(i_with) - simple_num_special_tokens_to_add)

    def test_compare_prepare_for_model(self):
3652
3653
3654
3655
        if not self.test_slow_tokenizer:
            # as we don't have a slow version, we can't compare the outputs between slow and fast versions
            return

3656
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
3657
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                tokenizer_p = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)
                string_sequence = "Asserting that both tokenizers are equal"
                python_output = tokenizer_p.prepare_for_model(
                    tokenizer_p.encode(string_sequence, add_special_tokens=False)
                )
                rust_output = tokenizer_r.prepare_for_model(
                    tokenizer_r.encode(string_sequence, add_special_tokens=False)
                )
                for key in python_output:
                    self.assertEqual(python_output[key], rust_output[key])
Sylvain Gugger's avatar
Sylvain Gugger committed
3669

Lysandre Debut's avatar
Lysandre Debut committed
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
    def test_special_tokens_initialization(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                added_tokens = [AddedToken("<special>", lstrip=True)]
                tokenizer_r = self.rust_tokenizer_class.from_pretrained(
                    pretrained_name, additional_special_tokens=added_tokens, **kwargs
                )
                r_output = tokenizer_r.encode("Hey this is a <special> token")

                special_token_id = tokenizer_r.encode("<special>", add_special_tokens=False)[0]

                self.assertTrue(special_token_id in r_output)
3682
3683

                if self.test_slow_tokenizer:
3684
                    # in rust fast, you lose the information of the AddedToken when initializing with `additional_special_tokens`
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
                    tokenizer_cr = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs, from_slow=True
                    )
                    tokenizer_p = self.tokenizer_class.from_pretrained(
                        pretrained_name, additional_special_tokens=added_tokens, **kwargs
                    )

                    p_output = tokenizer_p.encode("Hey this is a <special> token")

                    cr_output = tokenizer_cr.encode("Hey this is a <special> token")

                    self.assertEqual(p_output, r_output)
                    self.assertEqual(cr_output, r_output)
                    self.assertTrue(special_token_id in p_output)
                    self.assertTrue(special_token_id in cr_output)
Lysandre Debut's avatar
Lysandre Debut committed
3700

3701
    def test_special_tokens_initialization_with_non_empty_additional_special_tokens(self):
3702
3703
3704
        # This test no longer support rust tokenizers, because the only file that should be looked
        # at by the fast tokenizer with the new saving format is `tokenizer_config.json`.
        # The previous behaviour is very strange too. Fast tokenizer should not save 3 files, but just one. Can never do slow from fast.
3705
3706
3707
3708
3709
3710
3711
        tokenizer_list = []
        if self.test_slow_tokenizer:
            tokenizer_list.append((self.tokenizer_class, self.get_tokenizer()))

        for tokenizer_class, tokenizer_utils in tokenizer_list:
            with tempfile.TemporaryDirectory() as tmp_dir:
                tokenizer_utils.save_pretrained(tmp_dir)
3712
3713
3714
                # only legacy save will check this
                tokenizer_path = "tokenizer_config.json"
                with open(os.path.join(tmp_dir, tokenizer_path), encoding="utf-8") as json_file:
3715
3716
3717
3718
                    tokenizer_config = json.load(json_file)

                tokenizer_config["additional_special_tokens"] = ["an_additional_special_token"]

3719
                with open(os.path.join(tmp_dir, tokenizer_path), "w", encoding="utf-8") as outfile:
3720
3721
3722
3723
3724
                    json.dump(tokenizer_config, outfile)

                # the following checks allow us to verify that our test works as expected, i.e. that the tokenizer takes
                # into account the new value of additional_special_tokens given in the "tokenizer_config.json" and
                # "special_tokens_map.json" files
3725
3726
3727

                # TODO ArthurZ ... Ok so for legacy we have to support this I guess..... (special_tokens_map + additional)
                tokenizer_without_change_in_init = tokenizer_class.from_pretrained(tmp_dir)
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
                self.assertIn(
                    "an_additional_special_token", tokenizer_without_change_in_init.additional_special_tokens
                )
                self.assertIn("an_additional_special_token", tokenizer_without_change_in_init.get_vocab())
                self.assertEqual(
                    ["an_additional_special_token"],
                    tokenizer_without_change_in_init.convert_ids_to_tokens(
                        tokenizer_without_change_in_init.convert_tokens_to_ids(["an_additional_special_token"])
                    ),
                )

                # Now we test that we can change the value of additional_special_tokens in the from_pretrained
                new_added_tokens = [AddedToken("a_new_additional_special_token", lstrip=True)]
                tokenizer = tokenizer_class.from_pretrained(
                    tmp_dir,
                    additional_special_tokens=new_added_tokens,
                )

                self.assertIn("a_new_additional_special_token", tokenizer.additional_special_tokens)
                self.assertEqual(
                    ["a_new_additional_special_token"],
                    tokenizer.convert_ids_to_tokens(
                        tokenizer.convert_tokens_to_ids(["a_new_additional_special_token"])
                    ),
                )

3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
    def test_training_new_tokenizer(self):
        # This feature only exists for fast tokenizers
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_rust_tokenizer()
        new_tokenizer = tokenizer.train_new_from_iterator(SMALL_TRAINING_CORPUS, 100)

        # Test we can use the new tokenizer with something not seen during training
        inputs = new_tokenizer(["This is the first sentence", "This sentence is different 馃."])
        self.assertEqual(len(inputs["input_ids"]), 2)
        decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
        expected_result = "This is the first sentence"

3768
3769
        if tokenizer.backend_tokenizer.normalizer is not None:
            expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
        self.assertEqual(expected_result, decoded_input)

        # We check that the parameters of the tokenizer remained the same
        # Check we have the same number of added_tokens for both pair and non-pair inputs.
        self.assertEqual(tokenizer.num_special_tokens_to_add(False), new_tokenizer.num_special_tokens_to_add(False))
        self.assertEqual(tokenizer.num_special_tokens_to_add(True), new_tokenizer.num_special_tokens_to_add(True))

        # Check we have the correct max_length for both pair and non-pair inputs.
        self.assertEqual(tokenizer.max_len_single_sentence, new_tokenizer.max_len_single_sentence)
        self.assertEqual(tokenizer.max_len_sentences_pair, new_tokenizer.max_len_sentences_pair)

        # Assert the set of special tokens match as we didn't ask to change them
        self.assertSequenceEqual(
            tokenizer.all_special_tokens_extended,
            new_tokenizer.all_special_tokens_extended,
        )

        self.assertDictEqual(tokenizer.special_tokens_map, new_tokenizer.special_tokens_map)

    def test_training_new_tokenizer_with_special_tokens_change(self):
        # This feature only exists for fast tokenizers
        if not self.test_rust_tokenizer:
            return

        tokenizer = self.get_rust_tokenizer()
        # Test with a special tokens map
        class_signature = inspect.signature(tokenizer.__class__)
        if "cls_token" in class_signature.parameters:
            new_tokenizer = tokenizer.train_new_from_iterator(
                SMALL_TRAINING_CORPUS, 100, special_tokens_map={tokenizer.cls_token: "<cls>"}
            )
            cls_id = new_tokenizer.get_vocab()["<cls>"]
            self.assertEqual(new_tokenizer.cls_token, "<cls>")
            self.assertEqual(new_tokenizer.cls_token_id, cls_id)

        # Create a new mapping from the special tokens defined in the original tokenizer
        special_tokens_list = SpecialTokensMixin.SPECIAL_TOKENS_ATTRIBUTES.copy()
        special_tokens_list.remove("additional_special_tokens")
        special_tokens_map = {}
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(tokenizer, f"_{token}") is not None:
                special_token = getattr(tokenizer, token)
                special_tokens_map[special_token] = f"{special_token}a"

        # Train new tokenizer
        new_tokenizer = tokenizer.train_new_from_iterator(
            SMALL_TRAINING_CORPUS, 100, special_tokens_map=special_tokens_map
        )

        # Check the changes
        for token in special_tokens_list:
            # Get the private one to avoid unnecessary warnings.
            if getattr(tokenizer, f"_{token}") is None:
                continue
            special_token = getattr(tokenizer, token)
            if special_token in special_tokens_map:
                new_special_token = getattr(new_tokenizer, token)
                self.assertEqual(special_tokens_map[special_token], new_special_token)

                new_id = new_tokenizer.get_vocab()[new_special_token]
                self.assertEqual(getattr(new_tokenizer, f"{token}_id"), new_id)

        # Check if the AddedToken / string format has been kept
        for special_token in tokenizer.all_special_tokens_extended:
            if isinstance(special_token, AddedToken) and special_token.content not in special_tokens_map:
                # The special token must appear identically in the list of the new tokenizer.
                self.assertTrue(
                    special_token in new_tokenizer.all_special_tokens_extended,
                    f"'{special_token}' should be in {new_tokenizer.all_special_tokens_extended}",
                )
            elif isinstance(special_token, AddedToken):
                # The special token must appear in the list of the new tokenizer as an object of type AddedToken with
                # the same parameters as the old AddedToken except the content that the user has requested to change.
                special_token_str = special_token.content
                new_special_token_str = special_tokens_map[special_token_str]

                find = False
                for candidate in new_tokenizer.all_special_tokens_extended:
                    if (
                        isinstance(candidate, AddedToken)
                        and candidate.content == new_special_token_str
                        and candidate.lstrip == special_token.lstrip
                        and candidate.rstrip == special_token.rstrip
                        and candidate.normalized == special_token.normalized
                        and candidate.single_word == special_token.single_word
                    ):
                        find = True
                        break
3859
                special_token.content = new_special_token_str
3860
3861
                self.assertTrue(
                    find,
3862
3863
3864
                    f"'{special_token.__repr__()}' should appear as an `AddedToken` in the all_special_tokens_extended = "
                    f"{[k for k in new_tokenizer.all_special_tokens_extended if str(k)==new_special_token_str]} but it is missing"
                    ", this means that the new tokenizers did not keep the `rstrip`, `lstrip`, `normalized` etc attributes.",
3865
3866
3867
3868
3869
                )
            elif special_token not in special_tokens_map:
                # The special token must appear identically in the list of the new tokenizer.
                self.assertTrue(
                    special_token in new_tokenizer.all_special_tokens_extended,
3870
                    f"'{special_token.__repr__()}' should be in {new_tokenizer.all_special_tokens_extended}",
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
                )

            else:
                # The special token must appear in the list of the new tokenizer as an object of type string.
                self.assertTrue(special_tokens_map[special_token] in new_tokenizer.all_special_tokens_extended)

        # Test we can use the new tokenizer with something not seen during training
        inputs = new_tokenizer(["This is the first sentence", "This sentence is different 馃."])
        self.assertEqual(len(inputs["input_ids"]), 2)
        decoded_input = new_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=True)
        expected_result = "This is the first sentence"

3883
3884
        if tokenizer.backend_tokenizer.normalizer is not None:
            expected_result = tokenizer.backend_tokenizer.normalizer.normalize_str(expected_result)
3885
3886
        self.assertEqual(expected_result, decoded_input)

3887
3888
3889
3890
3891
3892
3893
3894
3895
    def test_tokenizer_mismatch_warning(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with self.assertLogs("transformers", level="WARNING") as cm:
                    try:
                        if self.tokenizer_class == BertTokenizer:
                            AlbertTokenizer.from_pretrained(pretrained_name)
                        else:
                            BertTokenizer.from_pretrained(pretrained_name)
3896
3897
3898
3899
                    except EnvironmentError as e:
                        # Some tokenizer will raised an error before reaching the logged warning because there are no
                        # corresponding files to load
                        error_message = str(e)
3900
3901
3902
3903
3904
                    except (TypeError, AttributeError):
                        # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
                        # here we just check that the warning has been logged before the error is raised
                        pass
                    finally:
3905
3906
3907
3908
3909
                        logged_msg_target = (
                            "The tokenizer class you load from this checkpoint is not the same type as the class "
                            "this function is called from."
                        )
                        raised_error_msg_target = "Can't load tokenizer for"
3910
                        self.assertTrue(
3911
3912
3913
                            cm.records[0].message.startswith(logged_msg_target)
                            if len(cm.records) > 0
                            else False or raised_error_msg_target in error_message
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
                        )
                    try:
                        if self.rust_tokenizer_class == BertTokenizerFast:
                            AlbertTokenizerFast.from_pretrained(pretrained_name)
                        else:
                            BertTokenizerFast.from_pretrained(pretrained_name)
                    except (TypeError, AttributeError):
                        # Some tokenizers cannot be loaded into the target tokenizer at all and errors are returned,
                        # here we just check that the warning has been logged before the error is raised
                        pass
                    finally:
                        self.assertTrue(
                            cm.records[0].message.startswith(
Sylvain Gugger's avatar
Sylvain Gugger committed
3927
3928
                                "The tokenizer class you load from this checkpoint is not the same type as the class"
                                " this function is called from."
3929
3930
3931
                            )
                        )

3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
    @require_torch
    def test_saving_tokenizer_trainer(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with tempfile.TemporaryDirectory() as tmp_dir:
                    # Save the fast tokenizer files in a temporary directory
                    tokenizer_old = self.rust_tokenizer_class.from_pretrained(pretrained_name, **kwargs, use_fast=True)
                    tokenizer_old.save_pretrained(tmp_dir, legacy_format=False)  # save only fast version

                    # Initialize toy model for the trainer
                    model = nn.Module()

                    # Load tokenizer from a folder without legacy files
                    tokenizer = self.rust_tokenizer_class.from_pretrained(tmp_dir)
                    training_args = TrainingArguments(output_dir=tmp_dir, do_train=True, no_cuda=True)
                    trainer = Trainer(model=model, args=training_args, tokenizer=tokenizer)

                    # Should not raise an error
                    trainer.save_model(os.path.join(tmp_dir, "checkpoint"))
                    self.assertIn("tokenizer.json", os.listdir(os.path.join(tmp_dir, "checkpoint")))

3953
3954
3955
3956
3957
3958
3959
3960
3961
    def test_convert_tokens_to_string_format(self):
        tokenizers = self.get_tokenizers(fast=True, do_lower_case=True)
        for tokenizer in tokenizers:
            with self.subTest(f"{tokenizer.__class__.__name__}"):
                tokens = ["this", "is", "a", "test"]
                string = tokenizer.convert_tokens_to_string(tokens)

                self.assertIsInstance(string, str)

3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
    def test_save_slow_from_fast_and_reload_fast(self):
        if not self.test_slow_tokenizer or not self.test_rust_tokenizer:
            # we need both slow and fast versions
            return

        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                with tempfile.TemporaryDirectory() as tmp_dir_1:
                    # Here we check that even if we have initialized a fast tokenizer with a tokenizer_file we can
                    # still save only the slow version and use these saved files to rebuild a tokenizer
                    tokenizer_fast_old_1 = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, **kwargs, use_fast=True
                    )
                    tokenizer_file = os.path.join(tmp_dir_1, "tokenizer.json")
                    tokenizer_fast_old_1.backend_tokenizer.save(tokenizer_file)

                    tokenizer_fast_old_2 = self.rust_tokenizer_class.from_pretrained(
                        pretrained_name, **kwargs, use_fast=True, tokenizer_file=tokenizer_file
                    )

                    tokenizer_fast_old_2.save_pretrained(tmp_dir_1, legacy_format=True)  # save only slow version

                    tokenizer_slow = self.tokenizer_class.from_pretrained(tmp_dir_1)
                with tempfile.TemporaryDirectory() as tmp_dir_2:
                    tokenizer_slow.save_pretrained(tmp_dir_2)

                    # Should not raise an error
                    self.rust_tokenizer_class.from_pretrained(tmp_dir_2)

3991
    # TODO This is ran for all models but only tests bert...
3992
    def test_clean_up_tokenization_spaces(self):
3993
        tokenizer = BertTokenizer.from_pretrained("google-bert/bert-base-uncased")
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
        assert tokenizer.clean_up_tokenization_spaces is True

        tokens = tokenizer.encode("This shouldn't be! He'll go.")
        decoded = tokenizer.decode(tokens)
        assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]"

        tokenizer.clean_up_tokenization_spaces = False
        decoded = tokenizer.decode(tokens)
        assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]"
        assert decoded == tokenizer.decode(tokens, clean_up_tokenization_spaces=False)

        # Fast from slow
        with tempfile.TemporaryDirectory() as tmp_dir_2:
            tokenizer.save_pretrained(tmp_dir_2)
            tokenizer_fast = BertTokenizerFast.from_pretrained(tmp_dir_2)
            del tokenizer

        assert tokenizer_fast.clean_up_tokenization_spaces is False
        decoded = tokenizer_fast.decode(tokens)
        # fast and slow don't have the same output when we don't cleanup
        # tokenization space. Here `be!` vs `be !` and `go.` vs `go .`
        assert decoded == "[CLS] this shouldn ' t be! he ' ll go. [SEP]"

        tokenizer_fast.clean_up_tokenization_spaces = True
        assert tokenizer_fast.clean_up_tokenization_spaces is True

        decoded = tokenizer_fast.decode(tokens)
        assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]"

        # Slow from fast
        with tempfile.TemporaryDirectory() as tmp_dir_2:
            tokenizer_fast.clean_up_tokenization_spaces = False
            tokenizer_fast.save_pretrained(tmp_dir_2)
            tokenizer = BertTokenizer.from_pretrained(tmp_dir_2)

Arthur's avatar
Arthur committed
4029
        assert tokenizer.clean_up_tokenization_spaces is False
4030
4031
4032
4033
4034
4035
        decoded = tokenizer.decode(tokens)
        assert decoded == "[CLS] this shouldn ' t be ! he ' ll go . [SEP]"

        tokenizer.clean_up_tokenization_spaces = True
        decoded = tokenizer.decode(tokens)
        assert decoded == "[CLS] this shouldn't be! he'll go. [SEP]"
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047

    def test_split_special_tokens(self):
        if not self.test_slow_tokenizer:
            return

        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            special_token = "[SPECIAL_TOKEN]"
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, **kwargs)

                if not tokenizer.is_fast:
                    # bloom, gptneox etc only have a fast
4048
4049
4050
4051
4052
4053
4054
                    tokenizer.add_special_tokens(
                        {
                            "additional_special_tokens": [
                                AddedToken(special_token, rstrip=True, lstrip=True, normalized=True, special=True)
                            ]
                        }
                    )
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
                    encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
                    self.assertEqual(len(encoded_special_token), 1)

                    encoded_split_special_token = tokenizer.encode(
                        special_token, add_special_tokens=False, split_special_tokens=True
                    )
                    if len(encoded_split_special_token) == 1:
                        # if we have subword tokenization or special vocab
                        self.assertTrue(
                            encoded_split_special_token[0] != tokenizer.convert_tokens_to_ids(special_token)
                        )
                    else:
                        self.assertTrue(len(encoded_split_special_token) > 1)
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
4089
4090
4091
4092
4093
4094
4095
4096
4097
4098
4099
4100
4101
4102
4103
4104
4105
4106
4107
4108
4109
4110
4111
4112
4113
4114
4115
4116
4117
4118
4119
4120
4121
4122
4123
4124
4125
4126
4127
4128
4129
4130
4131
4132
4133
4134
4135
4136
4137
4138
4139
4140
4141

    def test_added_tokens_serialization(self):
        # Utility to test the added vocab
        def _test_added_vocab_and_eos(expected, tokenizer_class, expected_eos, temp_dir):
            tokenizer = tokenizer_class.from_pretrained(temp_dir)
            self.assertTrue(str(expected_eos) not in tokenizer.additional_special_tokens)
            self.assertIn(new_eos, tokenizer.added_tokens_decoder.values())
            self.assertEqual(tokenizer.added_tokens_decoder[tokenizer.eos_token_id], new_eos)
            self.assertDictEqual(expected, tokenizer.added_tokens_decoder)
            return tokenizer

        new_eos = AddedToken("[NEW_EOS]", rstrip=False, lstrip=True, normalized=False, special=True)
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                # Load a slow tokenizer from the hub, init with the new token for fast to also include it
                tokenizer = self.tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos)
                EXPECTED_ADDED_TOKENS_DECODER = tokenizer.added_tokens_decoder
                with self.subTest("Hub -> Slow: Test loading a slow tokenizer from the hub)"):
                    self.assertEqual(tokenizer._eos_token, new_eos)
                    self.assertIn(new_eos, list(tokenizer.added_tokens_decoder.values()))

                with tempfile.TemporaryDirectory() as tmp_dir_2:
                    tokenizer.save_pretrained(tmp_dir_2)
                    with self.subTest(
                        "Hub -> Slow -> Slow: Test saving this slow tokenizer and reloading it in the fast class"
                    ):
                        _test_added_vocab_and_eos(
                            EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_2
                        )

                    if self.rust_tokenizer_class is not None:
                        with self.subTest(
                            "Hub -> Slow -> Fast: Test saving this slow tokenizer and reloading it in the fast class"
                        ):
                            tokenizer_fast = _test_added_vocab_and_eos(
                                EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_2
                            )
                            with tempfile.TemporaryDirectory() as tmp_dir_3:
                                tokenizer_fast.save_pretrained(tmp_dir_3)
                                with self.subTest(
                                    "Hub -> Slow -> Fast -> Fast: Test saving this fast tokenizer and reloading it in the fast class"
                                ):
                                    _test_added_vocab_and_eos(
                                        EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3
                                    )

                                with self.subTest(
                                    "Hub -> Slow -> Fast -> Slow: Test saving this slow tokenizer and reloading it in the slow class"
                                ):
                                    _test_added_vocab_and_eos(
                                        EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_3
                                    )

                with self.subTest("Hub -> Fast: Test loading a fast tokenizer from the hub)"):
                    if self.rust_tokenizer_class is not None:
                        tokenizer_fast = self.rust_tokenizer_class.from_pretrained(pretrained_name, eos_token=new_eos)
                        self.assertEqual(tokenizer_fast._eos_token, new_eos)
                        self.assertIn(new_eos, list(tokenizer_fast.added_tokens_decoder.values()))
                        # We can't test the following because for BC we kept the default rstrip lstrip in slow not fast. Will comment once normalization is alright
                        with self.subTest("Hub -> Fast == Hub -> Slow: make sure slow and fast tokenizer match"):
                            self.assertDictEqual(EXPECTED_ADDED_TOKENS_DECODER, tokenizer_fast.added_tokens_decoder)

                        EXPECTED_ADDED_TOKENS_DECODER = tokenizer_fast.added_tokens_decoder
                        with tempfile.TemporaryDirectory() as tmp_dir_4:
                            tokenizer_fast.save_pretrained(tmp_dir_4)
                            with self.subTest("Hub -> Fast -> Fast: saving Fast1 locally and loading"):
                                _test_added_vocab_and_eos(
                                    EXPECTED_ADDED_TOKENS_DECODER, self.rust_tokenizer_class, new_eos, tmp_dir_4
                                )

                            with self.subTest("Hub -> Fast -> Slow: saving Fast1 locally and loading"):
                                _test_added_vocab_and_eos(
                                    EXPECTED_ADDED_TOKENS_DECODER, self.tokenizer_class, new_eos, tmp_dir_4
                                )
4142
4143
4144
4145
4146
4147
4148
4149
4150
4151
4152
4153
4154
4155
4156
4157
4158
4159
4160
4161
4162
4163
4164
4165
4166

    def test_special_token_addition(self):
        for tokenizer, pretrained_name, kwargs in self.tokenizers_list:
            with self.subTest(f"{tokenizer.__class__.__name__} ({pretrained_name})"):
                # Create tokenizer and add an additional special token
                tokenizer_1 = tokenizer.from_pretrained(pretrained_name)
                tokenizer_1.add_special_tokens({"additional_special_tokens": ["<tok>"]})
                self.assertEqual(tokenizer_1.additional_special_tokens, ["<tok>"])
                with tempfile.TemporaryDirectory() as tmp_dir:
                    tokenizer_1.save_pretrained(tmp_dir)
                    # Load the above tokenizer and add the same special token a second time
                    tokenizer_2 = tokenizer.from_pretrained(pretrained_name)
                    tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>"]})
                    self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>"])

                    tokenizer_2.add_special_tokens({"additional_special_tokens": ["<tok>", "<other>"]})
                    self.assertEqual(tokenizer_2.additional_special_tokens, ["<tok>", "<other>"])
                    tokenizer_2.add_special_tokens({"additional_special_tokens": ["<other>", "<another>"]})
                    self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>"])

                    tokenizer_2.add_special_tokens(
                        {"additional_special_tokens": ["<tok>"]},
                        replace_additional_special_tokens=False,
                    )
                    self.assertEqual(tokenizer_2.additional_special_tokens, ["<other>", "<another>", "<tok>"])