"docs/vscode:/vscode.git/clone" did not exist on "eb0e0ce2adf66d2b1106b9e0852f6e063ab9ae7c"
test_tokenization_common.py 37.4 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

thomwolf's avatar
thomwolf committed
17
import os
18
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import shutil
20
import tempfile
21
from collections import OrderedDict
22
from typing import TYPE_CHECKING, Dict, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24
from tests.utils import require_tf, require_torch
25
from transformers import PreTrainedTokenizer
26

27

28
29
30
31
32
33
34
35
36
if TYPE_CHECKING:
    from transformers import (
        PretrainedConfig,
        PreTrainedTokenizerFast,
        PreTrainedModel,
        TFPreTrainedModel,
    )


37
def merge_model_tokenizer_mappings(
LysandreJik's avatar
LysandreJik committed
38
39
40
41
42
43
    model_mapping: Dict["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
    tokenizer_mapping: Dict["PretrainedConfig", Tuple["PreTrainedTokenizer", "PreTrainedTokenizerFast"]],
) -> Dict[
    Union["PreTrainedTokenizer", "PreTrainedTokenizerFast"],
    Tuple["PretrainedConfig", Union["PreTrainedModel", "TFPreTrainedModel"]],
]:
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
        model = model_mapping[configuration]
        tokenizer = tokenizer_mapping[configuration][0]
        tokenizer_fast = tokenizer_mapping[configuration][1]

        model_tokenizer_mapping.update({tokenizer: (configuration, model)})
        if tokenizer_fast is not None:
            model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})

    return model_tokenizer_mapping


59
class TokenizerTesterMixin:
60

61
    tokenizer_class = None
Anthony MOI's avatar
Anthony MOI committed
62
    test_rust_tokenizer = False
63

64
65
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
66

67
68
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
69

70
71
    def get_tokenizer(self, **kwargs) -> PreTrainedTokenizer:
        return self.tokenizer_class.from_pretrained(self.tmpdirname, **kwargs)
72

Anthony MOI's avatar
Anthony MOI committed
73
74
    def get_rust_tokenizer(self, **kwargs):
        raise NotImplementedError
75

76
77
78
79
80
81
82
    def get_input_output_texts(self) -> Tuple[str, str]:
        """Feel free to overwrite"""
        # TODO: @property
        return (
            "This is a test",
            "This is a test",
        )
thomwolf's avatar
thomwolf committed
83

84
85
86
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
87
        # to the list of examples/ encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
88
89
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
90
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
91
92
        ]

93
94
95
96
97
98
99
100
101
102
103
104
105
106
    def test_tokenizers_common_properties(self):
        tokenizer = self.get_tokenizer()
        attributes_list = [
            "bos_token",
            "eos_token",
            "unk_token",
            "sep_token",
            "pad_token",
            "cls_token",
            "mask_token",
        ]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
            self.assertTrue(hasattr(tokenizer, attr + "_id"))
107

108
109
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))
110

111
112
113
        attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
114

115
116
117
118
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizer = self.get_tokenizer()
        self.assertNotEqual(tokenizer.max_len, 42)
119

120
121
        # Now let's start the test
        tokenizer = self.get_tokenizer(max_len=42)
122
123
        sample_text = "He is very happy, UNwant\u00E9d,running"
        before_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
124

125
126
        tokenizer.save_pretrained(self.tmpdirname)
        tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname)
127

128
        after_tokens = tokenizer.encode(sample_text, add_special_tokens=False)
129
        self.assertListEqual(before_tokens, after_tokens)
130

131
132
133
        self.assertEqual(tokenizer.max_len, 42)
        tokenizer = self.tokenizer_class.from_pretrained(self.tmpdirname, max_len=43)
        self.assertEqual(tokenizer.max_len, 43)
134

135
    def test_pickle_tokenizer(self):
136
        """Google pickle __getstate__ __setstate__ if you are struggling with this."""
137
138
        tokenizer = self.get_tokenizer()
        self.assertIsNotNone(tokenizer)
139

140
141
        text = "Munich and Berlin are nice cities"
        subwords = tokenizer.tokenize(text)
142

143
144
145
        filename = os.path.join(self.tmpdirname, "tokenizer.bin")
        with open(filename, "wb") as handle:
            pickle.dump(tokenizer, handle)
146

147
148
        with open(filename, "rb") as handle:
            tokenizer_new = pickle.load(handle)
149

150
        subwords_loaded = tokenizer_new.tokenize(text)
151

152
        self.assertListEqual(subwords, subwords_loaded)
153

154
155
    def test_added_tokens_do_lower_case(self):
        tokenizer = self.get_tokenizer(do_lower_case=True)
156

157
        special_token = tokenizer.all_special_tokens[0]
158

159
160
        text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
        text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
161

162
        toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
163

164
165
166
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 2)
167

168
169
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
170

171
172
173
        self.assertEqual(len(toks), len(toks2))
        self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
        self.assertListEqual(toks, toks2)
174

175
176
177
        # Check that none of the special tokens are lowercased
        sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
        tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
Lysandre's avatar
Lysandre committed
178

179
180
        for special_token in tokenizer.all_special_tokens:
            self.assertTrue(special_token in tokenized_sequence)
Lysandre's avatar
Lysandre committed
181

182
        tokenizer = self.get_tokenizer(do_lower_case=False)
183

184
185
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 4)
186

187
188
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
189

190
191
192
        self.assertEqual(len(toks), len(toks2))  # Length should still be the same
        self.assertNotEqual(len(toks), len(toks0))
        self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
193

194
195
    def test_add_tokens_tokenizer(self):
        tokenizer = self.get_tokenizer()
196

197
198
        vocab_size = tokenizer.vocab_size
        all_size = len(tokenizer)
199

200
201
        self.assertNotEqual(vocab_size, 0)
        self.assertEqual(vocab_size, all_size)
202

203
204
205
206
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
        added_toks = tokenizer.add_tokens(new_toks)
        vocab_size_2 = tokenizer.vocab_size
        all_size_2 = len(tokenizer)
207

208
209
210
211
        self.assertNotEqual(vocab_size_2, 0)
        self.assertEqual(vocab_size, vocab_size_2)
        self.assertEqual(added_toks, len(new_toks))
        self.assertEqual(all_size_2, all_size + len(new_toks))
212

213
        tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
thomwolf's avatar
thomwolf committed
214

215
216
217
        self.assertGreaterEqual(len(tokens), 4)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
218

219
220
221
222
        new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
        added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
        vocab_size_3 = tokenizer.vocab_size
        all_size_3 = len(tokenizer)
223

224
225
226
227
        self.assertNotEqual(vocab_size_3, 0)
        self.assertEqual(vocab_size, vocab_size_3)
        self.assertEqual(added_toks_2, len(new_toks_2))
        self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
228

229
230
231
        tokens = tokenizer.encode(
            ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
        )
232

233
234
235
236
237
238
239
        self.assertGreaterEqual(len(tokens), 6)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[0], tokens[1])
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokens[-3])
        self.assertEqual(tokens[0], tokenizer.eos_token_id)
        self.assertEqual(tokens[-2], tokenizer.pad_token_id)
240

241
242
243
    def test_add_special_tokens(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
244

245
        special_token = "[SPECIAL TOKEN]"
246

247
248
249
        tokenizer.add_special_tokens({"cls_token": special_token})
        encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
        assert len(encoded_special_token) == 1
250

251
252
        text = " ".join([input_text, special_token, output_text])
        encoded = tokenizer.encode(text, add_special_tokens=False)
253

254
        input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
255
        output_encoded = tokenizer.encode(" " + output_text, add_special_tokens=False)
256
257
        special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
        assert encoded == input_encoded + special_token_id + output_encoded
258

259
260
        decoded = tokenizer.decode(encoded, skip_special_tokens=True)
        assert special_token not in decoded
261

262
    def test_internal_consistency(self):
263
264
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
265

266
267
268
269
        tokens = tokenizer.tokenize(input_text)
        ids = tokenizer.convert_tokens_to_ids(tokens)
        ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
        self.assertListEqual(ids, ids_2)
270

271
        tokens_2 = tokenizer.convert_ids_to_tokens(ids)
272
        self.assertNotEqual(len(tokens_2), 0)
273
        text_2 = tokenizer.decode(ids)
274
        self.assertIsInstance(text_2, str)
275

276
        self.assertEqual(text_2, output_text)
277

278
279
    def test_encode_decode_with_spaces(self):
        tokenizer = self.get_tokenizer()
LysandreJik's avatar
LysandreJik committed
280

281
282
283
284
285
286
        new_toks = ["[ABC]", "[DEF]", "GHI IHG"]
        tokenizer.add_tokens(new_toks)
        input = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
        encoded = tokenizer.encode(input, add_special_tokens=False)
        decoded = tokenizer.decode(encoded)
        self.assertEqual(decoded, input)
287

288
289
290
291
292
    def test_pretrained_model_lists(self):
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
293

294
295
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
296

297
298
    def test_mask_output(self):
        tokenizer = self.get_tokenizer()
299

Lysandre Debut's avatar
Lysandre Debut committed
300
301
302
303
        if (
            tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
            and "token_type_ids" in tokenizer.model_input_names
        ):
304
305
            seq_0 = "Test this method."
            seq_1 = "With these inputs."
306
307
308
309
310
311
312
313
314
315
316
            information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
            sequences, mask = information["input_ids"], information["token_type_ids"]
            self.assertEqual(len(sequences), len(mask))

    def test_number_of_added_tokens(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "Test this method."
        seq_1 = "With these inputs."

        sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
317
        attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
318
319
320

        # Method is implemented (e.g. not GPT-2)
        if len(attached_sequences) != 2:
Funtowicz Morgan's avatar
Funtowicz Morgan committed
321
            self.assertEqual(tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences))
322
323
324
325
326
327
328
329

    def test_maximum_encoding_length_single_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        stride = 2

        sequence = tokenizer.encode(seq_0, add_special_tokens=False)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
330
        num_added_tokens = tokenizer.num_special_tokens_to_add()
331
332
        total_length = len(sequence) + num_added_tokens
        information = tokenizer.encode_plus(
333
334
335
336
337
338
            seq_0,
            max_length=total_length - 2,
            add_special_tokens=True,
            stride=stride,
            return_overflowing_tokens=True,
            add_prefix_space=False,
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), total_length - 2)
        self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2]))

    def test_maximum_encoding_length_pair_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        seq_1 = "This is another sentence to be encoded."
        stride = 2

        sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
        sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

359
        sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
360
361
362
363
364
365
366
367
368
369
370
371
        truncated_second_sequence = tokenizer.build_inputs_with_special_tokens(
            tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2],
        )

        information = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_second",
            return_overflowing_tokens=True,
372
            add_prefix_space=False,
373
374
375
376
377
378
379
380
381
        )
        information_first_truncated = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_first",
            return_overflowing_tokens=True,
382
            add_prefix_space=False,
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]
        overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :])
        self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), len(sequence) - 2)
        self.assertEqual(truncated_sequence, truncated_second_sequence)

    def test_encode_input_type(self):
        tokenizer = self.get_tokenizer()

        sequence = "Let's encode this sequence"

        tokens = tokenizer.tokenize(sequence)
        input_ids = tokenizer.convert_tokens_to_ids(tokens)
402
        formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
403
404
405
406

        self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input)
        self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)

407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
    def test_swap_special_token(self):
        tokenizer = self.get_tokenizer()

        mask = "<mask>"
        sequence = "Encode this sequence"
        sequence_masked_0 = "Encode <mask> sequence"
        sequence_masked_1 = "<mask> this sequence"

        # Add tokens so that masked token isn't split
        tokenizer.add_tokens(sequence.split())
        tokenizer.add_special_tokens({"mask_token": mask})
        mask_ind = tokenizer.convert_tokens_to_ids(mask)
        encoded = tokenizer.encode(sequence, add_special_tokens=False)

        # Test first masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

        # Test second masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

435
436
437
438
439
440
    def test_special_tokens_mask(self):
        tokenizer = self.get_tokenizer()
        sequence_0 = "Encode this."
        # Testing single inputs
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence_dict = tokenizer.encode_plus(
441
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
442
443
444
445
446
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

447
        filtered_sequence = [x for i, x in enumerate(encoded_sequence_w_special) if not special_tokens_mask[i]]
448
449
        self.assertEqual(encoded_sequence, filtered_sequence)

450
451
452
453
    def test_special_tokens_mask_input_pairs(self):
        tokenizer = self.get_tokenizer()
        sequence_0 = "Encode this."
        sequence_1 = "This one too please."
454
455
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
456
        encoded_sequence_dict = tokenizer.encode_plus(
457
            sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
458
459
460
461
462
463
464
465
466
467
468
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

469
470
471
    def test_special_tokens_mask_already_has_special_tokens(self):
        tokenizer = self.get_tokenizer()
        sequence_0 = "Encode this."
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
        if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id:
            tokenizer.add_special_tokens({"cls_token": "</s>", "sep_token": "<s>"})
        encoded_sequence_dict = tokenizer.encode_plus(
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"]
        special_tokens_mask = tokenizer.get_special_tokens_mask(
            encoded_sequence_w_special, already_has_special_tokens=True
        )
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
        self.assertEqual(special_tokens_mask_orig, special_tokens_mask)

    def test_padding_to_max_length(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
        padding_size = 10
490
491
492
493

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        padding_idx = tokenizer.pad_token_id

        # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "right"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

        # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "left"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

        # RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)

        tokenizer.padding_side = "right"
        padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_right_length = len(padded_sequence_right)
521
522
        assert sequence_length == padded_sequence_right_length
        assert encoded_sequence == padded_sequence_right
523
524
525
526
527
528
529
530
531
532
533

        tokenizer.padding_side = "left"
        padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_left_length = len(padded_sequence_left)
        assert sequence_length == padded_sequence_left_length
        assert encoded_sequence == padded_sequence_left

    def test_encode_plus_with_padding(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
534
535
536
537

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

538
539
540
541
542
543
544
545
546
547
548
        padding_size = 10
        padding_idx = tokenizer.pad_token_id
        token_type_padding_idx = tokenizer.pad_token_type_id

        encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
        input_ids = encoded_sequence["input_ids"]
        special_tokens_mask = encoded_sequence["special_tokens_mask"]
        sequence_length = len(input_ids)

        # Test right padding
        tokenizer.padding_side = "right"
549

Lysandre Debut's avatar
Lysandre Debut committed
550
        right_padded_sequence = tokenizer.encode_plus(
551
552
553
554
555
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
Lysandre Debut's avatar
Lysandre Debut committed
556
        right_padded_input_ids = right_padded_sequence["input_ids"]
557

Lysandre Debut's avatar
Lysandre Debut committed
558
559
560
561
562
563
        right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
        right_padded_sequence_length = len(right_padded_input_ids)

        assert sequence_length + padding_size == right_padded_sequence_length
        assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
        assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask
564
565
566

        # Test left padding
        tokenizer.padding_side = "left"
Lysandre Debut's avatar
Lysandre Debut committed
567
        left_padded_sequence = tokenizer.encode_plus(
568
569
570
571
572
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
Lysandre Debut's avatar
Lysandre Debut committed
573
574
575
        left_padded_input_ids = left_padded_sequence["input_ids"]
        left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
        left_padded_sequence_length = len(left_padded_input_ids)
576

Lysandre Debut's avatar
Lysandre Debut committed
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
        assert sequence_length + padding_size == left_padded_sequence_length
        assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
        assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

        if "token_type_ids" in tokenizer.model_input_names:
            token_type_ids = encoded_sequence["token_type_ids"]
            left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
            right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

            assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids
            assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids

        if "attention_mask" in tokenizer.model_input_names:
            attention_mask = encoded_sequence["attention_mask"]
            right_padded_attention_mask = right_padded_sequence["attention_mask"]
            left_padded_attention_mask = left_padded_sequence["attention_mask"]

            assert attention_mask + [0] * padding_size == right_padded_attention_mask
            assert [0] * padding_size + attention_mask == left_padded_attention_mask
596
597
598
599
600
601

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

        tokenizer = self.get_tokenizer(random_argument=True)
Lysandre's avatar
Style  
Lysandre committed
602
        assert tokenizer.init_kwargs["random_argument"] is True
603
        new_tokenizer = self.get_tokenizer(random_argument=False)
Lysandre's avatar
Style  
Lysandre committed
604
605
        assert tokenizer.init_kwargs["random_argument"] is True
        assert new_tokenizer.init_kwargs["random_argument"] is False
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622

    def test_get_vocab(self):
        tokenizer = self.get_tokenizer()
        vocab = tokenizer.get_vocab()

        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

        tokenizer.add_tokens(["asdfasdfasdfasdf"])
        vocab = tokenizer.get_vocab()
        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

623
624
625
    def test_conversion_reversible(self):
        tokenizer = self.get_tokenizer()
        vocab = tokenizer.get_vocab()
626
627
628
        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        encoded_sequences = [tokenizer.encode_plus(sequence, pad_to_max_length=False) for sequence in sequences]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        maximum_length = len(max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len))

647
648
649
        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

650
651
652
653
        encoded_sequences_padded = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=maximum_length)
            for sequence in sequences
        ]
654

655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
        self.assertListEqual(
            encoded_sequences_padded,
            self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
        )

    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
673
674
675
676

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

677
678
679
680
681
682
683
684
685
686
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        # Left padding tests
        tokenizer = self.get_tokenizer()
687

688
689
690
691
692
693
694
695
        tokenizer.padding_side = "left"
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
696
697
698
699

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

    @require_torch
    @require_tf
    def test_batch_encode_plus_tensors(self):
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        # A Tensor cannot be build by sequences which are not the same size
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

        if tokenizer.pad_token_id is None:
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="pt"
            )
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="tf"
            )
        else:
            pytorch_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="pt")
            tensorflow_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="tf")
            encoded_sequences = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)

            for key in encoded_sequences.keys():
                pytorch_value = pytorch_tensor[key].tolist()
                tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                encoded_value = encoded_sequences[key]

                self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
740
741
742
743
744
745
746
747
748
749
750
751

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
                    tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
                else:
                    tokenizer.encode_plus(sequences, pad_to_max_length=True)

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
752
753
754

    @require_torch
    def test_torch_encode_plus_sent_to_model(self):
755
        import torch
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()

        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        model = model_class(config)

        # Make sure the model contains at least the full vocabulary size in its embedding matrix
        is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
        assert (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        # This should not fail
783
784
785
786

        with torch.no_grad():  # saves some time
            model(**encoded_sequence)
            model(**batch_encoded_sequence)
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
            # This should not fail
            model(**encoded_sequence_fast)
            model(**batch_encoded_sequence_fast)

    @require_tf
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()

        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        model = model_class(config)

        # Make sure the model contains at least the full vocabulary size in its embedding matrix
        assert model.config.vocab_size >= len(tokenizer)

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")

        # This should not fail
        model(encoded_sequence)
        model(batch_encoded_sequence)

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="tf")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
            # This should not fail
            model(encoded_sequence_fast)
            model(batch_encoded_sequence_fast)
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878

    # TODO: Check if require_torch is the best to test for numpy here ... Maybe move to require_flax when available
    @require_torch
    def test_np_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()
        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="np")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

        # TODO: add forward through JAX/Flax when PR is merged
        # This is currently here to make flake8 happy !
        if encoded_sequence is None:
            raise ValueError("Cannot convert list to numpy tensor on  encode_plus()")

        if batch_encoded_sequence is None:
            raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus()")

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="np")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="np")

            # TODO: add forward through JAX/Flax when PR is merged
            # This is currently here to make flake8 happy !
            if encoded_sequence_fast is None:
                raise ValueError("Cannot convert list to numpy tensor on  encode_plus() (fast)")

            if batch_encoded_sequence_fast is None:
                raise ValueError("Cannot convert list to numpy tensor on  batch_encode_plus() (fast)")