test_tokenization_common.py 34.7 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2019 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

16

thomwolf's avatar
thomwolf committed
17
import os
18
import pickle
Aymeric Augustin's avatar
Aymeric Augustin committed
19
import shutil
20
import tempfile
21
22
from collections import OrderedDict
from typing import Dict, Tuple, Union
Aymeric Augustin's avatar
Aymeric Augustin committed
23

24
25
from tests.utils import require_tf, require_torch

26

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
def merge_model_tokenizer_mappings(
    model_mapping: "Dict[PretrainedConfig, Union[PreTrainedModel, TFPreTrainedModel]]",  # noqa: F821
    tokenizer_mapping: "Dict[PretrainedConfig, Tuple[PreTrainedTokenizer, PreTrainedTokenizerFast]]",  # noqa: F821
) -> "Dict[Union[PreTrainedTokenizer, PreTrainedTokenizerFast], Tuple[PretrainedConfig, Union[PreTrainedModel, TFPreTrainedModel]]]":  # noqa: F821
    configurations = list(model_mapping.keys())
    model_tokenizer_mapping = OrderedDict([])

    for configuration in configurations:
        model = model_mapping[configuration]
        tokenizer = tokenizer_mapping[configuration][0]
        tokenizer_fast = tokenizer_mapping[configuration][1]

        model_tokenizer_mapping.update({tokenizer: (configuration, model)})
        if tokenizer_fast is not None:
            model_tokenizer_mapping.update({tokenizer_fast: (configuration, model)})

    return model_tokenizer_mapping


46
class TokenizerTesterMixin:
47

48
    tokenizer_class = None
Anthony MOI's avatar
Anthony MOI committed
49
    test_rust_tokenizer = False
50

51
52
    def setUp(self):
        self.tmpdirname = tempfile.mkdtemp()
53

54
55
    def tearDown(self):
        shutil.rmtree(self.tmpdirname)
56

57
58
    def get_tokenizer(self, **kwargs):
        raise NotImplementedError
59

Anthony MOI's avatar
Anthony MOI committed
60
61
    def get_rust_tokenizer(self, **kwargs):
        raise NotImplementedError
62

63
64
    def get_input_output_texts(self):
        raise NotImplementedError
thomwolf's avatar
thomwolf committed
65

66
67
68
69
70
71
    @staticmethod
    def convert_batch_encode_plus_format_to_encode_plus(batch_encode_plus_sequences):
        # Switch from batch_encode_plus format:   {'input_ids': [[...], [...]], ...}
        # to the concatenated encode_plus format: [{'input_ids': [...], ...}, {'input_ids': [...], ...}]
        return [
            {value: batch_encode_plus_sequences[value][i] for value in batch_encode_plus_sequences.keys()}
Lysandre Debut's avatar
Lysandre Debut committed
72
            for i in range(len(batch_encode_plus_sequences["input_ids"]))
73
74
        ]

75
76
77
78
79
80
81
82
83
84
85
86
87
88
    def test_tokenizers_common_properties(self):
        tokenizer = self.get_tokenizer()
        attributes_list = [
            "bos_token",
            "eos_token",
            "unk_token",
            "sep_token",
            "pad_token",
            "cls_token",
            "mask_token",
        ]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
            self.assertTrue(hasattr(tokenizer, attr + "_id"))
89

90
91
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens"))
        self.assertTrue(hasattr(tokenizer, "additional_special_tokens_ids"))
92

93
94
95
        attributes_list = ["max_len", "init_inputs", "init_kwargs", "added_tokens_encoder", "added_tokens_decoder"]
        for attr in attributes_list:
            self.assertTrue(hasattr(tokenizer, attr))
96

97
98
99
100
    def test_save_and_load_tokenizer(self):
        # safety check on max_len default value so we are sure the test works
        tokenizer = self.get_tokenizer()
        self.assertNotEqual(tokenizer.max_len, 42)
101

102
103
        # Now let's start the test
        tokenizer = self.get_tokenizer(max_len=42)
thomwolf's avatar
thomwolf committed
104

105
        before_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
106

107
        with tempfile.TemporaryDirectory() as tmpdirname:
108
109
            tokenizer.save_pretrained(tmpdirname)
            tokenizer = self.tokenizer_class.from_pretrained(tmpdirname)
110

111
112
            after_tokens = tokenizer.encode("He is very happy, UNwant\u00E9d,running", add_special_tokens=False)
            self.assertListEqual(before_tokens, after_tokens)
113

114
115
116
            self.assertEqual(tokenizer.max_len, 42)
            tokenizer = self.tokenizer_class.from_pretrained(tmpdirname, max_len=43)
            self.assertEqual(tokenizer.max_len, 43)
117

118
119
120
    def test_pickle_tokenizer(self):
        tokenizer = self.get_tokenizer()
        self.assertIsNotNone(tokenizer)
121

122
123
        text = "Munich and Berlin are nice cities"
        subwords = tokenizer.tokenize(text)
124

125
        with tempfile.TemporaryDirectory() as tmpdirname:
126

127
128
129
            filename = os.path.join(tmpdirname, "tokenizer.bin")
            with open(filename, "wb") as handle:
                pickle.dump(tokenizer, handle)
130

131
132
            with open(filename, "rb") as handle:
                tokenizer_new = pickle.load(handle)
133

134
        subwords_loaded = tokenizer_new.tokenize(text)
135

136
        self.assertListEqual(subwords, subwords_loaded)
137

138
139
    def test_added_tokens_do_lower_case(self):
        tokenizer = self.get_tokenizer(do_lower_case=True)
140

141
        special_token = tokenizer.all_special_tokens[0]
142

143
144
        text = special_token + " aaaaa bbbbbb low cccccccccdddddddd l " + special_token
        text2 = special_token + " AAAAA BBBBBB low CCCCCCCCCDDDDDDDD l " + special_token
145

146
        toks0 = tokenizer.tokenize(text)  # toks before adding new_toks
147

148
149
150
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd", "AAAAA BBBBBB", "CCCCCCCCCDDDDDDDD"]
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 2)
151

152
153
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
154

155
156
157
        self.assertEqual(len(toks), len(toks2))
        self.assertNotEqual(len(toks), len(toks0))  # toks0 should be longer
        self.assertListEqual(toks, toks2)
158

159
160
161
        # Check that none of the special tokens are lowercased
        sequence_with_special_tokens = "A " + " yEs ".join(tokenizer.all_special_tokens) + " B"
        tokenized_sequence = tokenizer.tokenize(sequence_with_special_tokens)
Lysandre's avatar
Lysandre committed
162

163
164
        for special_token in tokenizer.all_special_tokens:
            self.assertTrue(special_token in tokenized_sequence)
Lysandre's avatar
Lysandre committed
165

166
        tokenizer = self.get_tokenizer(do_lower_case=False)
167

168
169
        added = tokenizer.add_tokens(new_toks)
        self.assertEqual(added, 4)
170

171
172
        toks = tokenizer.tokenize(text)
        toks2 = tokenizer.tokenize(text2)
173

174
175
176
        self.assertEqual(len(toks), len(toks2))  # Length should still be the same
        self.assertNotEqual(len(toks), len(toks0))
        self.assertNotEqual(toks[1], toks2[1])  # But at least the first non-special tokens should differ
177

178
179
    def test_add_tokens_tokenizer(self):
        tokenizer = self.get_tokenizer()
180

181
182
        vocab_size = tokenizer.vocab_size
        all_size = len(tokenizer)
183

184
185
        self.assertNotEqual(vocab_size, 0)
        self.assertEqual(vocab_size, all_size)
186

187
188
189
190
        new_toks = ["aaaaa bbbbbb", "cccccccccdddddddd"]
        added_toks = tokenizer.add_tokens(new_toks)
        vocab_size_2 = tokenizer.vocab_size
        all_size_2 = len(tokenizer)
191

192
193
194
195
        self.assertNotEqual(vocab_size_2, 0)
        self.assertEqual(vocab_size, vocab_size_2)
        self.assertEqual(added_toks, len(new_toks))
        self.assertEqual(all_size_2, all_size + len(new_toks))
196

197
        tokens = tokenizer.encode("aaaaa bbbbbb low cccccccccdddddddd l", add_special_tokens=False)
thomwolf's avatar
thomwolf committed
198

199
200
201
        self.assertGreaterEqual(len(tokens), 4)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
202

203
204
205
206
        new_toks_2 = {"eos_token": ">>>>|||<||<<|<<", "pad_token": "<<<<<|||>|>>>>|>"}
        added_toks_2 = tokenizer.add_special_tokens(new_toks_2)
        vocab_size_3 = tokenizer.vocab_size
        all_size_3 = len(tokenizer)
207

208
209
210
211
        self.assertNotEqual(vocab_size_3, 0)
        self.assertEqual(vocab_size, vocab_size_3)
        self.assertEqual(added_toks_2, len(new_toks_2))
        self.assertEqual(all_size_3, all_size_2 + len(new_toks_2))
212

213
214
215
        tokens = tokenizer.encode(
            ">>>>|||<||<<|<< aaaaabbbbbb low cccccccccdddddddd <<<<<|||>|>>>>|> l", add_special_tokens=False
        )
216

217
218
219
220
221
222
223
        self.assertGreaterEqual(len(tokens), 6)
        self.assertGreater(tokens[0], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[0], tokens[1])
        self.assertGreater(tokens[-2], tokenizer.vocab_size - 1)
        self.assertGreater(tokens[-2], tokens[-3])
        self.assertEqual(tokens[0], tokenizer.eos_token_id)
        self.assertEqual(tokens[-2], tokenizer.pad_token_id)
224

225
226
227
    def test_add_special_tokens(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
228

229
        special_token = "[SPECIAL TOKEN]"
230

231
232
233
        tokenizer.add_special_tokens({"cls_token": special_token})
        encoded_special_token = tokenizer.encode(special_token, add_special_tokens=False)
        assert len(encoded_special_token) == 1
234

235
236
        text = " ".join([input_text, special_token, output_text])
        encoded = tokenizer.encode(text, add_special_tokens=False)
237

238
        input_encoded = tokenizer.encode(input_text, add_special_tokens=False)
239
        output_encoded = tokenizer.encode(" " + output_text, add_special_tokens=False)
240
241
        special_token_id = tokenizer.encode(special_token, add_special_tokens=False)
        assert encoded == input_encoded + special_token_id + output_encoded
242

243
244
        decoded = tokenizer.decode(encoded, skip_special_tokens=True)
        assert special_token not in decoded
245

246
247
248
    def test_required_methods_tokenizer(self):
        tokenizer = self.get_tokenizer()
        input_text, output_text = self.get_input_output_texts()
249

250
251
252
253
        tokens = tokenizer.tokenize(input_text)
        ids = tokenizer.convert_tokens_to_ids(tokens)
        ids_2 = tokenizer.encode(input_text, add_special_tokens=False)
        self.assertListEqual(ids, ids_2)
254

255
256
        tokens_2 = tokenizer.convert_ids_to_tokens(ids)
        text_2 = tokenizer.decode(ids)
257

258
        self.assertEqual(text_2, output_text)
259

260
        self.assertNotEqual(len(tokens_2), 0)
261
        self.assertIsInstance(text_2, str)
262

263
264
    def test_encode_decode_with_spaces(self):
        tokenizer = self.get_tokenizer()
LysandreJik's avatar
LysandreJik committed
265

266
267
268
269
270
271
        new_toks = ["[ABC]", "[DEF]", "GHI IHG"]
        tokenizer.add_tokens(new_toks)
        input = "[ABC] [DEF] [ABC] GHI IHG [DEF]"
        encoded = tokenizer.encode(input, add_special_tokens=False)
        decoded = tokenizer.decode(encoded)
        self.assertEqual(decoded, input)
272

273
274
275
276
277
    def test_pretrained_model_lists(self):
        weights_list = list(self.tokenizer_class.max_model_input_sizes.keys())
        weights_lists_2 = []
        for file_id, map_list in self.tokenizer_class.pretrained_vocab_files_map.items():
            weights_lists_2.append(list(map_list.keys()))
278

279
280
        for weights_list_2 in weights_lists_2:
            self.assertListEqual(weights_list, weights_list_2)
LysandreJik's avatar
LysandreJik committed
281

282
283
    def test_mask_output(self):
        tokenizer = self.get_tokenizer()
284

Lysandre Debut's avatar
Lysandre Debut committed
285
286
287
288
        if (
            tokenizer.build_inputs_with_special_tokens.__qualname__.split(".")[0] != "PreTrainedTokenizer"
            and "token_type_ids" in tokenizer.model_input_names
        ):
289
290
            seq_0 = "Test this method."
            seq_1 = "With these inputs."
291
292
293
294
295
296
297
298
299
300
301
            information = tokenizer.encode_plus(seq_0, seq_1, add_special_tokens=True)
            sequences, mask = information["input_ids"], information["token_type_ids"]
            self.assertEqual(len(sequences), len(mask))

    def test_number_of_added_tokens(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "Test this method."
        seq_1 = "With these inputs."

        sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=False)
302
        attached_sequences = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
303
304
305

        # Method is implemented (e.g. not GPT-2)
        if len(attached_sequences) != 2:
Funtowicz Morgan's avatar
Funtowicz Morgan committed
306
            self.assertEqual(tokenizer.num_special_tokens_to_add(pair=True), len(attached_sequences) - len(sequences))
307
308
309
310
311
312
313
314

    def test_maximum_encoding_length_single_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        stride = 2

        sequence = tokenizer.encode(seq_0, add_special_tokens=False)
Funtowicz Morgan's avatar
Funtowicz Morgan committed
315
        num_added_tokens = tokenizer.num_special_tokens_to_add()
316
317
        total_length = len(sequence) + num_added_tokens
        information = tokenizer.encode_plus(
318
319
320
321
322
323
            seq_0,
            max_length=total_length - 2,
            add_special_tokens=True,
            stride=stride,
            return_overflowing_tokens=True,
            add_prefix_space=False,
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), total_length - 2)
        self.assertEqual(truncated_sequence, tokenizer.build_inputs_with_special_tokens(sequence[:-2]))

    def test_maximum_encoding_length_pair_input(self):
        tokenizer = self.get_tokenizer()

        seq_0 = "This is a sentence to be encoded."
        seq_1 = "This is another sentence to be encoded."
        stride = 2

        sequence_0_no_special_tokens = tokenizer.encode(seq_0, add_special_tokens=False)
        sequence_1_no_special_tokens = tokenizer.encode(seq_1, add_special_tokens=False)

344
        sequence = tokenizer.encode(seq_0, seq_1, add_special_tokens=True, add_prefix_space=False)
345
346
347
348
349
350
351
352
353
354
355
356
        truncated_second_sequence = tokenizer.build_inputs_with_special_tokens(
            tokenizer.encode(seq_0, add_special_tokens=False), tokenizer.encode(seq_1, add_special_tokens=False)[:-2],
        )

        information = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_second",
            return_overflowing_tokens=True,
357
            add_prefix_space=False,
358
359
360
361
362
363
364
365
366
        )
        information_first_truncated = tokenizer.encode_plus(
            seq_0,
            seq_1,
            max_length=len(sequence) - 2,
            add_special_tokens=True,
            stride=stride,
            truncation_strategy="only_first",
            return_overflowing_tokens=True,
367
            add_prefix_space=False,
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
        )

        truncated_sequence = information["input_ids"]
        overflowing_tokens = information["overflowing_tokens"]
        overflowing_tokens_first_truncated = information_first_truncated["overflowing_tokens"]

        self.assertEqual(len(overflowing_tokens), 2 + stride)
        self.assertEqual(overflowing_tokens, sequence_1_no_special_tokens[-(2 + stride) :])
        self.assertEqual(overflowing_tokens_first_truncated, sequence_0_no_special_tokens[-(2 + stride) :])
        self.assertEqual(len(truncated_sequence), len(sequence) - 2)
        self.assertEqual(truncated_sequence, truncated_second_sequence)

    def test_encode_input_type(self):
        tokenizer = self.get_tokenizer()

        sequence = "Let's encode this sequence"

        tokens = tokenizer.tokenize(sequence)
        input_ids = tokenizer.convert_tokens_to_ids(tokens)
387
        formatted_input = tokenizer.encode(sequence, add_special_tokens=True, add_prefix_space=False)
388
389
390
391

        self.assertEqual(tokenizer.encode(tokens, add_special_tokens=True), formatted_input)
        self.assertEqual(tokenizer.encode(input_ids, add_special_tokens=True), formatted_input)

392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
    def test_swap_special_token(self):
        tokenizer = self.get_tokenizer()

        mask = "<mask>"
        sequence = "Encode this sequence"
        sequence_masked_0 = "Encode <mask> sequence"
        sequence_masked_1 = "<mask> this sequence"

        # Add tokens so that masked token isn't split
        tokenizer.add_tokens(sequence.split())
        tokenizer.add_special_tokens({"mask_token": mask})
        mask_ind = tokenizer.convert_tokens_to_ids(mask)
        encoded = tokenizer.encode(sequence, add_special_tokens=False)

        # Test first masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_0, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

        # Test second masked sequence
        encoded_masked = tokenizer.encode(sequence_masked_1, add_special_tokens=False)
        mask_loc = encoded_masked.index(mask_ind)
        encoded_masked[mask_loc] = encoded[mask_loc]

        self.assertEqual(encoded_masked, encoded)

420
421
422
423
424
425
426
427
428
    def test_special_tokens_mask(self):
        tokenizer = self.get_tokenizer()

        sequence_0 = "Encode this."
        sequence_1 = "This one too please."

        # Testing single inputs
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence_dict = tokenizer.encode_plus(
429
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
430
431
432
433
434
435
436
437
438
439
440
441
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

        # Testing inputs pairs
442
443
        encoded_sequence = tokenizer.encode(sequence_0, add_special_tokens=False)
        encoded_sequence += tokenizer.encode(sequence_1, add_special_tokens=False)
444
        encoded_sequence_dict = tokenizer.encode_plus(
445
            sequence_0, sequence_1, add_special_tokens=True, return_special_tokens_mask=True, add_prefix_space=False
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask = encoded_sequence_dict["special_tokens_mask"]
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))

        filtered_sequence = [
            (x if not special_tokens_mask[i] else None) for i, x in enumerate(encoded_sequence_w_special)
        ]
        filtered_sequence = [x for x in filtered_sequence if x is not None]
        self.assertEqual(encoded_sequence, filtered_sequence)

        # Testing with already existing special tokens
        if tokenizer.cls_token_id == tokenizer.unk_token_id and tokenizer.cls_token_id == tokenizer.unk_token_id:
            tokenizer.add_special_tokens({"cls_token": "</s>", "sep_token": "<s>"})
        encoded_sequence_dict = tokenizer.encode_plus(
            sequence_0, add_special_tokens=True, return_special_tokens_mask=True
        )
        encoded_sequence_w_special = encoded_sequence_dict["input_ids"]
        special_tokens_mask_orig = encoded_sequence_dict["special_tokens_mask"]
        special_tokens_mask = tokenizer.get_special_tokens_mask(
            encoded_sequence_w_special, already_has_special_tokens=True
        )
        self.assertEqual(len(special_tokens_mask), len(encoded_sequence_w_special))
        self.assertEqual(special_tokens_mask_orig, special_tokens_mask)

    def test_padding_to_max_length(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
        padding_size = 10
476
477
478
479

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
        padding_idx = tokenizer.pad_token_id

        # RIGHT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "right"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert encoded_sequence + [padding_idx] * padding_size == padded_sequence

        # LEFT PADDING - Check that it correctly pads when a maximum length is specified along with the padding flag set to True
        tokenizer.padding_side = "left"
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)
        padded_sequence = tokenizer.encode(sequence, max_length=sequence_length + padding_size, pad_to_max_length=True)
        padded_sequence_length = len(padded_sequence)
        assert sequence_length + padding_size == padded_sequence_length
        assert [padding_idx] * padding_size + encoded_sequence == padded_sequence

        # RIGHT & LEFT PADDING - Check that nothing is done when a maximum length is not specified
        encoded_sequence = tokenizer.encode(sequence)
        sequence_length = len(encoded_sequence)

        tokenizer.padding_side = "right"
        padded_sequence_right = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_right_length = len(padded_sequence_right)

        tokenizer.padding_side = "left"
        padded_sequence_left = tokenizer.encode(sequence, pad_to_max_length=True)
        padded_sequence_left_length = len(padded_sequence_left)

        assert sequence_length == padded_sequence_right_length
        assert encoded_sequence == padded_sequence_right
        assert sequence_length == padded_sequence_left_length
        assert encoded_sequence == padded_sequence_left

    def test_encode_plus_with_padding(self):
        tokenizer = self.get_tokenizer()

        sequence = "Sequence"
521
522
523
524

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequence)

525
526
527
528
529
530
531
532
533
534
535
        padding_size = 10
        padding_idx = tokenizer.pad_token_id
        token_type_padding_idx = tokenizer.pad_token_type_id

        encoded_sequence = tokenizer.encode_plus(sequence, return_special_tokens_mask=True)
        input_ids = encoded_sequence["input_ids"]
        special_tokens_mask = encoded_sequence["special_tokens_mask"]
        sequence_length = len(input_ids)

        # Test right padding
        tokenizer.padding_side = "right"
536

Lysandre Debut's avatar
Lysandre Debut committed
537
        right_padded_sequence = tokenizer.encode_plus(
538
539
540
541
542
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
Lysandre Debut's avatar
Lysandre Debut committed
543
        right_padded_input_ids = right_padded_sequence["input_ids"]
544

Lysandre Debut's avatar
Lysandre Debut committed
545
546
547
548
549
550
        right_padded_special_tokens_mask = right_padded_sequence["special_tokens_mask"]
        right_padded_sequence_length = len(right_padded_input_ids)

        assert sequence_length + padding_size == right_padded_sequence_length
        assert input_ids + [padding_idx] * padding_size == right_padded_input_ids
        assert special_tokens_mask + [1] * padding_size == right_padded_special_tokens_mask
551
552
553

        # Test left padding
        tokenizer.padding_side = "left"
Lysandre Debut's avatar
Lysandre Debut committed
554
        left_padded_sequence = tokenizer.encode_plus(
555
556
557
558
559
            sequence,
            max_length=sequence_length + padding_size,
            pad_to_max_length=True,
            return_special_tokens_mask=True,
        )
Lysandre Debut's avatar
Lysandre Debut committed
560
561
562
        left_padded_input_ids = left_padded_sequence["input_ids"]
        left_padded_special_tokens_mask = left_padded_sequence["special_tokens_mask"]
        left_padded_sequence_length = len(left_padded_input_ids)
563

Lysandre Debut's avatar
Lysandre Debut committed
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
        assert sequence_length + padding_size == left_padded_sequence_length
        assert [padding_idx] * padding_size + input_ids == left_padded_input_ids
        assert [1] * padding_size + special_tokens_mask == left_padded_special_tokens_mask

        if "token_type_ids" in tokenizer.model_input_names:
            token_type_ids = encoded_sequence["token_type_ids"]
            left_padded_token_type_ids = left_padded_sequence["token_type_ids"]
            right_padded_token_type_ids = right_padded_sequence["token_type_ids"]

            assert token_type_ids + [token_type_padding_idx] * padding_size == right_padded_token_type_ids
            assert [token_type_padding_idx] * padding_size + token_type_ids == left_padded_token_type_ids

        if "attention_mask" in tokenizer.model_input_names:
            attention_mask = encoded_sequence["attention_mask"]
            right_padded_attention_mask = right_padded_sequence["attention_mask"]
            left_padded_attention_mask = left_padded_sequence["attention_mask"]

            assert attention_mask + [0] * padding_size == right_padded_attention_mask
            assert [0] * padding_size + attention_mask == left_padded_attention_mask
583
584
585
586
587
588

    def test_separate_tokenizers(self):
        # This tests that tokenizers don't impact others. Unfortunately the case where it fails is when
        # we're loading an S3 configuration from a pre-trained identifier, and we have no way of testing those today.

        tokenizer = self.get_tokenizer(random_argument=True)
Lysandre's avatar
Style  
Lysandre committed
589
        assert tokenizer.init_kwargs["random_argument"] is True
590
        new_tokenizer = self.get_tokenizer(random_argument=False)
Lysandre's avatar
Style  
Lysandre committed
591
592
        assert tokenizer.init_kwargs["random_argument"] is True
        assert new_tokenizer.init_kwargs["random_argument"] is False
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612

    def test_get_vocab(self):
        tokenizer = self.get_tokenizer()
        vocab = tokenizer.get_vocab()

        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)

        tokenizer.add_tokens(["asdfasdfasdfasdf"])
        vocab = tokenizer.get_vocab()
        self.assertIsInstance(vocab, dict)
        self.assertEqual(len(vocab), len(tokenizer))

        for word, ind in vocab.items():
            self.assertEqual(tokenizer.convert_tokens_to_ids(word), ind)
            self.assertEqual(tokenizer.convert_ids_to_tokens(ind), word)
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630

    def test_batch_encode_plus_batch_sequence_length(self):
        # Tests that all encoded values have the correct size
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        encoded_sequences = [tokenizer.encode_plus(sequence, pad_to_max_length=False) for sequence in sequences]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        maximum_length = len(max([encoded_sequence["input_ids"] for encoded_sequence in encoded_sequences], key=len))

631
632
633
        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

634
635
636
637
        encoded_sequences_padded = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=maximum_length)
            for sequence in sequences
        ]
638

639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
        encoded_sequences_batch_padded = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
        self.assertListEqual(
            encoded_sequences_padded,
            self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch_padded),
        )

    def test_batch_encode_plus_padding(self):
        # Test that padded sequences are equivalent between batch_encode_plus and encode_plus

        # Right padding tests
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
657
658
659
660

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

661
662
663
664
665
666
667
668
669
670
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

        # Left padding tests
        tokenizer = self.get_tokenizer()
671

672
673
674
675
676
677
678
679
        tokenizer.padding_side = "left"
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        max_length = 100
680
681
682
683

        # check correct behaviour if no pad_token_id exists and add it eventually
        self._check_no_pad_token_padding(tokenizer, sequences)

684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
        encoded_sequences = [
            tokenizer.encode_plus(sequence, pad_to_max_length=True, max_length=max_length) for sequence in sequences
        ]
        encoded_sequences_batch = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, max_length=max_length)
        self.assertListEqual(
            encoded_sequences, self.convert_batch_encode_plus_format_to_encode_plus(encoded_sequences_batch)
        )

    @require_torch
    @require_tf
    def test_batch_encode_plus_tensors(self):
        tokenizer = self.get_tokenizer()
        sequences = [
            "Testing batch encode plus",
            "Testing batch encode plus with different sequence lengths",
            "Testing batch encode plus with different sequence lengths correctly pads",
        ]

        # A Tensor cannot be build by sequences which are not the same size
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="pt")
        self.assertRaises(ValueError, tokenizer.batch_encode_plus, sequences, return_tensors="tf")

        if tokenizer.pad_token_id is None:
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="pt"
            )
            self.assertRaises(
                ValueError, tokenizer.batch_encode_plus, sequences, pad_to_max_length=True, return_tensors="tf"
            )
        else:
            pytorch_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="pt")
            tensorflow_tensor = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True, return_tensors="tf")
            encoded_sequences = tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)

            for key in encoded_sequences.keys():
                pytorch_value = pytorch_tensor[key].tolist()
                tensorflow_value = tensorflow_tensor[key].numpy().tolist()
                encoded_value = encoded_sequences[key]

                self.assertEqual(pytorch_value, tensorflow_value, encoded_value)
724
725
726
727
728
729
730
731
732
733
734
735

    def _check_no_pad_token_padding(self, tokenizer, sequences):
        # if tokenizer does not have pad_token_id, an error should be thrown
        if tokenizer.pad_token_id is None:
            with self.assertRaises(ValueError):
                if isinstance(sequences, list):
                    tokenizer.batch_encode_plus(sequences, pad_to_max_length=True)
                else:
                    tokenizer.encode_plus(sequences, pad_to_max_length=True)

            # add pad_token_id to pass subsequent tests
            tokenizer.add_special_tokens({"pad_token": "<PAD>"})
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815

    @require_torch
    def test_torch_encode_plus_sent_to_model(self):
        from transformers import MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()

        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        model = model_class(config)

        # Make sure the model contains at least the full vocabulary size in its embedding matrix
        is_using_common_embeddings = hasattr(model.get_input_embeddings(), "weight")
        assert (model.get_input_embeddings().weight.shape[0] >= len(tokenizer)) if is_using_common_embeddings else True

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="pt")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
        # This should not fail
        model(**encoded_sequence)
        model(**batch_encoded_sequence)

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="pt")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="pt")
            # This should not fail
            model(**encoded_sequence_fast)
            model(**batch_encoded_sequence_fast)

    @require_tf
    def test_tf_encode_plus_sent_to_model(self):
        from transformers import TF_MODEL_MAPPING, TOKENIZER_MAPPING

        MODEL_TOKENIZER_MAPPING = merge_model_tokenizer_mappings(TF_MODEL_MAPPING, TOKENIZER_MAPPING)

        tokenizer = self.get_tokenizer()

        if tokenizer.__class__ not in MODEL_TOKENIZER_MAPPING:
            return

        config_class, model_class = MODEL_TOKENIZER_MAPPING[tokenizer.__class__]
        config = config_class()

        if config.is_encoder_decoder or config.pad_token_id is None:
            return

        model = model_class(config)

        # Make sure the model contains at least the full vocabulary size in its embedding matrix
        assert model.config.vocab_size >= len(tokenizer)

        # Build sequence
        first_ten_tokens = list(tokenizer.get_vocab().keys())[:10]
        sequence = " ".join(first_ten_tokens)
        encoded_sequence = tokenizer.encode_plus(sequence, return_tensors="tf")
        batch_encoded_sequence = tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")

        # This should not fail
        model(encoded_sequence)
        model(batch_encoded_sequence)

        if self.test_rust_tokenizer:
            fast_tokenizer = self.get_rust_tokenizer()
            encoded_sequence_fast = fast_tokenizer.encode_plus(sequence, return_tensors="tf")
            batch_encoded_sequence_fast = fast_tokenizer.batch_encode_plus([sequence, sequence], return_tensors="tf")
            # This should not fail
            model(encoded_sequence_fast)
            model(batch_encoded_sequence_fast)