test_modeling_tf_openai.py 10.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
21
from transformers import OpenAIGPTConfig, is_tf_available
22
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
27
28
29
30


if is_tf_available():
    import tensorflow as tf
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
    from transformers.models.openai.modeling_tf_openai import (
33
        TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
34
        TFOpenAIGPTDoubleHeadsModel,
35
        TFOpenAIGPTForSequenceClassification,
36
37
        TFOpenAIGPTLMHeadModel,
        TFOpenAIGPTModel,
38
    )
thomwolf's avatar
thomwolf committed
39
40


41
42
class TFOpenAIGPTModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
45
46
47
48
49
50
51
52
53
54
55
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
56
        self.num_hidden_layers = 2
57
58
59
60
61
62
63
64
65
66
67
68
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
69
        self.pad_token_id = self.vocab_size - 1
70
71
72
73
74
75

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
76
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
105
            # initializer_range=self.initializer_range,
106
            pad_token_id=self.pad_token_id,
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        result = model(inputs)
127
128

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
129
        result = model(inputs)
130

Sylvain Gugger's avatar
Sylvain Gugger committed
131
        result = model(input_ids)
132

133
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
134
135
136
137

    def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(inputs)
139
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def create_and_check_openai_gpt_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFOpenAIGPTDoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
156
        result = model(inputs)
157
        self.parent.assertEqual(
158
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
159
        )
160
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFOpenAIGPTForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


196
@require_tf
197
class TFOpenAIGPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
198
    all_model_classes = (
199
200
201
        (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification)
        if is_tf_available()
        else ()
202
    )
203
204
205
    all_generative_model_classes = (
        (TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
206
207
208
209
210
211
212
213
214
215
    pipeline_model_mapping = (
        {
            "feature-extraction": TFOpenAIGPTModel,
            "text-classification": TFOpenAIGPTForSequenceClassification,
            "text-generation": TFOpenAIGPTLMHeadModel,
            "zero-shot": TFOpenAIGPTForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
216
    test_head_masking = False
217
    test_onnx = False
thomwolf's avatar
thomwolf committed
218

219
220
221
222
223
224
225
226
227
228
229
230
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
            # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
            # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
            # tiny config could not be created.
            return True

        return False

thomwolf's avatar
thomwolf committed
231
    def setUp(self):
232
        self.model_tester = TFOpenAIGPTModelTester(self)
thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)

    def test_openai_gpt_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)

250
251
252
253
    def test_openai_gpt_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)

254
    @slow
thomwolf's avatar
thomwolf committed
255
    def test_model_from_pretrained(self):
256
        for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
257
            model = TFOpenAIGPTModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
258
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
259
260


261
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
262
263
264
class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
265
        model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-community/openai-gpt")
patrickvonplaten's avatar
patrickvonplaten committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
        input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32)  # the president is
        expected_output_ids = [
            481,
            4735,
            544,
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
            487,
            544,
            240,
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
291
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)