"...lm-evaluation-harness.git" did not exist on "a20094528dc4eb73454801a21afb074f1124f6d6"
test_modeling_tf_openai.py 10.8 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

Matt's avatar
Matt committed
17
18
from __future__ import annotations

19
20
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
21
from transformers import OpenAIGPTConfig, is_tf_available
22
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
23

Yih-Dar's avatar
Yih-Dar committed
24
25
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
26
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
27
28
29
30


if is_tf_available():
    import tensorflow as tf
31

Sylvain Gugger's avatar
Sylvain Gugger committed
32
    from transformers.models.openai.modeling_tf_openai import (
33
        TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
34
        TFOpenAIGPTDoubleHeadsModel,
35
        TFOpenAIGPTForSequenceClassification,
36
37
        TFOpenAIGPTLMHeadModel,
        TFOpenAIGPTModel,
38
    )
thomwolf's avatar
thomwolf committed
39
40


41
42
class TFOpenAIGPTModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
43
44
        self,
        parent,
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
69
        self.pad_token_id = self.vocab_size - 1
70
71
72
73
74
75

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
76
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
105
            # initializer_range=self.initializer_range,
106
            pad_token_id=self.pad_token_id,
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
126
        result = model(inputs)
127
128

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
129
        result = model(inputs)
130

Sylvain Gugger's avatar
Sylvain Gugger committed
131
        result = model(input_ids)
132

133
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
134
135
136
137

    def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(inputs)
139
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155

    def create_and_check_openai_gpt_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFOpenAIGPTDoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
156
        result = model(inputs)
157
        self.parent.assertEqual(
158
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
159
        )
160
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
161

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFOpenAIGPTForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


196
@require_tf
197
class TFOpenAIGPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
198
    all_model_classes = (
199
200
201
        (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification)
        if is_tf_available()
        else ()
202
    )
203
204
205
    all_generative_model_classes = (
        (TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
206
207
208
209
210
211
212
213
214
215
    pipeline_model_mapping = (
        {
            "feature-extraction": TFOpenAIGPTModel,
            "text-classification": TFOpenAIGPTForSequenceClassification,
            "text-generation": TFOpenAIGPTLMHeadModel,
            "zero-shot": TFOpenAIGPTForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
216
    test_head_masking = False
217
    test_onnx = False
thomwolf's avatar
thomwolf committed
218

219
220
221
222
223
224
225
226
227
228
229
230
    # TODO: Fix the failed tests
    def is_pipeline_test_to_skip(
        self, pipeline_test_casse_name, config_class, model_architecture, tokenizer_name, processor_name
    ):
        if pipeline_test_casse_name == "ZeroShotClassificationPipelineTests":
            # Get `tokenizer does not have a padding token` error for both fast/slow tokenizers.
            # `OpenAIGPTConfig` was never used in pipeline tests, either because of a missing checkpoint or because a
            # tiny config could not be created.
            return True

        return False

thomwolf's avatar
thomwolf committed
231
    def setUp(self):
232
        self.model_tester = TFOpenAIGPTModelTester(self)
thomwolf's avatar
thomwolf committed
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)

    def test_openai_gpt_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)

250
251
252
253
    def test_openai_gpt_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)

254
    @slow
thomwolf's avatar
thomwolf committed
255
    def test_model_from_pretrained(self):
256
        for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
257
            model = TFOpenAIGPTModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
258
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
259
260


261
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
        input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32)  # the president is
        expected_output_ids = [
            481,
            4735,
            544,
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
            487,
            544,
            240,
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
291
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)