test_modeling_tf_openai.py 10.9 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
# coding=utf-8
Sylvain Gugger's avatar
Sylvain Gugger committed
2
# Copyright 2020 The HuggingFace Team. All rights reserved.
thomwolf's avatar
thomwolf committed
3
4
5
6
7
8
9
10
11
12
13
14
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16

17
18
import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import OpenAIGPTConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
thomwolf's avatar
thomwolf committed
21

Yih-Dar's avatar
Yih-Dar committed
22
23
from ...test_configuration_common import ConfigTester
from ...test_modeling_tf_common import TFModelTesterMixin, ids_tensor, random_attention_mask
24
from ...test_pipeline_mixin import PipelineTesterMixin
thomwolf's avatar
thomwolf committed
25
26
27
28


if is_tf_available():
    import tensorflow as tf
29

Sylvain Gugger's avatar
Sylvain Gugger committed
30
    from transformers.models.openai.modeling_tf_openai import (
31
        TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST,
32
        TFOpenAIGPTDoubleHeadsModel,
33
        TFOpenAIGPTForSequenceClassification,
34
35
        TFOpenAIGPTLMHeadModel,
        TFOpenAIGPTModel,
36
    )
thomwolf's avatar
thomwolf committed
37
38


39
40
class TFOpenAIGPTModelTester:
    def __init__(
Lysandre's avatar
Lysandre committed
41
42
        self,
        parent,
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_token_type_ids = True
        self.use_input_mask = True
        self.use_labels = True
        self.use_mc_token_ids = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None
67
        self.pad_token_id = self.vocab_size - 1
68
69
70
71
72
73

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
74
            input_mask = random_attention_mask([self.batch_size, self.seq_length])
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        mc_token_ids = None
        if self.use_mc_token_ids:
            mc_token_ids = ids_tensor([self.batch_size, self.num_choices], self.seq_length)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = OpenAIGPTConfig(
            vocab_size=self.vocab_size,
            n_embd=self.hidden_size,
            n_layer=self.num_hidden_layers,
            n_head=self.num_attention_heads,
            # intermediate_size=self.intermediate_size,
            # hidden_act=self.hidden_act,
            # hidden_dropout_prob=self.hidden_dropout_prob,
            # attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            n_positions=self.max_position_embeddings,
            # type_vocab_size=self.type_vocab_size,
Sylvain Gugger's avatar
Sylvain Gugger committed
103
            # initializer_range=self.initializer_range,
104
            pad_token_id=self.pad_token_id,
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
        )

        head_mask = ids_tensor([self.num_hidden_layers, self.num_attention_heads], 2)

        return (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        )

    def create_and_check_openai_gpt_model(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
124
        result = model(inputs)
125
126

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
127
        result = model(inputs)
128

Sylvain Gugger's avatar
Sylvain Gugger committed
129
        result = model(input_ids)
130

131
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
132
133
134
135

    def create_and_check_openai_gpt_lm_head(self, config, input_ids, input_mask, head_mask, token_type_ids, *args):
        model = TFOpenAIGPTLMHeadModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
136
        result = model(inputs)
137
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153

    def create_and_check_openai_gpt_double_head(
        self, config, input_ids, input_mask, head_mask, token_type_ids, mc_token_ids, *args
    ):
        model = TFOpenAIGPTDoubleHeadsModel(config=config)

        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))

        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "mc_token_ids": mc_token_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
154
        result = model(inputs)
155
        self.parent.assertEqual(
156
            result.logits.shape, (self.batch_size, self.num_choices, self.seq_length, self.vocab_size)
157
        )
158
        self.parent.assertEqual(result.mc_logits.shape, (self.batch_size, self.num_choices))
159

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def create_and_check_openai_gpt_for_sequence_classification(
        self, config, input_ids, input_mask, head_mask, token_type_ids, *args
    ):
        config.num_labels = self.num_labels
        sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
        inputs = {
            "input_ids": input_ids,
            "attention_mask": input_mask,
            "token_type_ids": token_type_ids,
            "labels": sequence_labels,
        }
        model = TFOpenAIGPTForSequenceClassification(config)
        result = model(inputs)
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_labels))

175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()

        (
            config,
            input_ids,
            input_mask,
            head_mask,
            token_type_ids,
            mc_token_ids,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs

        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


194
@require_tf
195
class TFOpenAIGPTModelTest(TFModelTesterMixin, PipelineTesterMixin, unittest.TestCase):
196
    all_model_classes = (
197
198
199
        (TFOpenAIGPTModel, TFOpenAIGPTLMHeadModel, TFOpenAIGPTDoubleHeadsModel, TFOpenAIGPTForSequenceClassification)
        if is_tf_available()
        else ()
200
    )
201
202
203
    all_generative_model_classes = (
        (TFOpenAIGPTLMHeadModel,) if is_tf_available() else ()
    )  # TODO (PVP): Add Double HeadsModel when generate() function is changed accordingly
204
205
206
207
208
209
210
211
212
213
    pipeline_model_mapping = (
        {
            "feature-extraction": TFOpenAIGPTModel,
            "text-classification": TFOpenAIGPTForSequenceClassification,
            "text-generation": TFOpenAIGPTLMHeadModel,
            "zero-shot": TFOpenAIGPTForSequenceClassification,
        }
        if is_tf_available()
        else {}
    )
214
    test_head_masking = False
215
    test_onnx = False
thomwolf's avatar
thomwolf committed
216
217

    def setUp(self):
218
        self.model_tester = TFOpenAIGPTModelTester(self)
thomwolf's avatar
thomwolf committed
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
        self.config_tester = ConfigTester(self, config_class=OpenAIGPTConfig, n_embd=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_openai_gpt_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_model(*config_and_inputs)

    def test_openai_gpt_lm_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_lm_head(*config_and_inputs)

    def test_openai_gpt_double_head(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_double_head(*config_and_inputs)

236
237
238
239
240
241
    def test_model_common_attributes(self):
        config, inputs_dict = self.model_tester.prepare_config_and_inputs_for_common()

        for model_class in self.all_model_classes:
            model = model_class(config)
            assert isinstance(model.get_input_embeddings(), tf.keras.layers.Layer)
242
243
244
245
246
247
248
249
250
251
252

            if model_class in self.all_generative_model_classes:
                x = model.get_output_embeddings()
                assert isinstance(x, tf.keras.layers.Layer)
                name = model.get_bias()
                assert name is None
            else:
                x = model.get_output_embeddings()
                assert x is None
                name = model.get_bias()
                assert name is None
253

254
255
256
257
    def test_openai_gpt_sequence_classification_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_openai_gpt_for_sequence_classification(*config_and_inputs)

258
    @slow
thomwolf's avatar
thomwolf committed
259
    def test_model_from_pretrained(self):
260
        for model_name in TF_OPENAI_GPT_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
261
            model = TFOpenAIGPTModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
262
            self.assertIsNotNone(model)
patrickvonplaten's avatar
patrickvonplaten committed
263
264


265
@require_tf
patrickvonplaten's avatar
patrickvonplaten committed
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
class TFOPENAIGPTModelLanguageGenerationTest(unittest.TestCase):
    @slow
    def test_lm_generate_openai_gpt(self):
        model = TFOpenAIGPTLMHeadModel.from_pretrained("openai-gpt")
        input_ids = tf.convert_to_tensor([[481, 4735, 544]], dtype=tf.int32)  # the president is
        expected_output_ids = [
            481,
            4735,
            544,
            246,
            963,
            870,
            762,
            239,
            244,
            40477,
            244,
            249,
            719,
            881,
            487,
            544,
            240,
            244,
            603,
            481,
        ]  # the president is a very good man. " \n " i\'m sure he is, " said the

        output_ids = model.generate(input_ids, do_sample=False)
295
        self.assertListEqual(output_ids[0].numpy().tolist(), expected_output_ids)