"examples/research_projects/mm-imdb/run_mmimdb.py" did not exist on "fa84ae26d62c7ac2ad6dca18b2d8b12ab83bc900"
test_pipelines_image_segmentation.py 13.9 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest

18
import datasets
19
from datasets import load_dataset
20

21
22
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
23
    MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING,
24
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
25
26
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
27
    AutoModelForInstanceSegmentation,
28
    DetrForSegmentation,
29
    ImageSegmentationPipeline,
30
    MaskFormerForInstanceSegmentation,
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
    is_vision_available,
    pipeline,
)
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_timm,
    require_torch,
    require_vision,
    slow,
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


57
58
59
60
61
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
    return m.hexdigest()


62
63
64
65
66
@require_vision
@require_timm
@require_torch
@is_pipeline_test
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
67
68
69
70
71
72
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
73
        + (MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING.items() if MODEL_FOR_INSTANCE_SEGMENTATION_MAPPING else [])
74
    }
75

76
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
Sylvain Gugger's avatar
Sylvain Gugger committed
77
78
79
        # Fix me Alara
        if model.__class__.__name__ == "DetrForSegmentation":
            return None, None
80
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
81
82
83
84
85
86
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
87
        outputs = image_segmenter("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0)
88
89
        self.assertIsInstance(outputs, list)
        n = len(outputs)
90
91
92
93
94
95
        if isinstance(image_segmenter.model, (MaskFormerForInstanceSegmentation)):
            # Instance segmentation (maskformer) have a slot for null class
            # and can output nothing even with a low threshold
            self.assertGreaterEqual(n, 0)
        else:
            self.assertGreaterEqual(n, 1)
96
97
98
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
99

100
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
        # RGBA
        outputs = image_segmenter(dataset[0]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
        outputs = image_segmenter(dataset[1]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
        outputs = image_segmenter(dataset[2]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
125
        batch = [
126
127
128
129
130
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
131
        ]
132
        outputs = image_segmenter(batch, threshold=0.0, batch_size=batch_size)
133
        self.assertEqual(len(batch), len(outputs))
134
        self.assertEqual(len(outputs[0]), n)
135
136
        self.assertEqual(
            [
137
138
139
140
141
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
142
            ],
143
144
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
145
146
147
148
149
150
151
152
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

    @require_torch
Sylvain Gugger's avatar
Sylvain Gugger committed
153
    @unittest.skip("Fix me Alara!")
154
    def test_small_model_pt(self):
155
        model_id = "hf-internal-testing/tiny-detr-mobilenetsv3-panoptic"
156
157
158
159
160
161
162
163

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0)
        for o in outputs:
            # shortening by hashing
164
            o["mask"] = hashimage(o["mask"])
165
166
167
168
169
170

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.004,
171
                    "label": "LABEL_215",
172
                    "mask": "34eecd16bbfb0f476083ef947d81bf66",
173
174
175
                },
                {
                    "score": 0.004,
176
                    "label": "LABEL_215",
177
                    "mask": "34eecd16bbfb0f476083ef947d81bf66",
178
179
180
181
182
183
184
185
186
187
188
189
190
                },
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
191
                o["mask"] = hashimage(o["mask"])
192
193
194
195
196
197
198

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
                        "score": 0.004,
199
                        "label": "LABEL_215",
200
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
201
202
203
                    },
                    {
                        "score": 0.004,
204
                        "label": "LABEL_215",
205
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
206
207
208
209
210
                    },
                ],
                [
                    {
                        "score": 0.004,
211
                        "label": "LABEL_215",
212
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
213
214
215
                    },
                    {
                        "score": 0.004,
216
                        "label": "LABEL_215",
217
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
218
219
220
221
222
                    },
                ],
            ],
        )

223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
            o["mask"] = hashimage(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "LABEL_0",
238
                    "mask": "6225140faf502d272af076222776d7e4",
239
240
241
242
                },
                {
                    "score": None,
                    "label": "LABEL_1",
243
                    "mask": "8297c9f8eb43ddd3f32a6dae21e015a1",
244
245
246
247
                },
            ],
        )

248
249
250
251
252
253
254
255
256
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"

        image_segmenter = pipeline("image-segmentation", model=model_id)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
257
            o["mask"] = hashimage(o["mask"])
258
259
260
261

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
262
                {"score": 0.9094, "label": "blanket", "mask": "6500201749480f87154fd967783b2b97"},
263
264
265
266
267
                {"score": 0.9941, "label": "cat", "mask": "f3a7f80220788acc0245ebc084df6afc"},
                {"score": 0.9987, "label": "remote", "mask": "7703408f54da1d0ebda47841da875e48"},
                {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                {"score": 0.9722, "label": "couch", "mask": "226d6dcb98bebc3fbc208abdc0c83196"},
                {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
268
269
270
271
272
273
274
275
276
277
278
279
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
280
                o["mask"] = hashimage(o["mask"])
281
282
283
284
285

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
286
                    {"score": 0.9094, "label": "blanket", "mask": "6500201749480f87154fd967783b2b97"},
287
288
289
290
291
                    {"score": 0.9941, "label": "cat", "mask": "f3a7f80220788acc0245ebc084df6afc"},
                    {"score": 0.9987, "label": "remote", "mask": "7703408f54da1d0ebda47841da875e48"},
                    {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                    {"score": 0.9722, "label": "couch", "mask": "226d6dcb98bebc3fbc208abdc0c83196"},
                    {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
292
293
                ],
                [
294
                    {"score": 0.9094, "label": "blanket", "mask": "6500201749480f87154fd967783b2b97"},
295
296
297
298
299
                    {"score": 0.9941, "label": "cat", "mask": "f3a7f80220788acc0245ebc084df6afc"},
                    {"score": 0.9987, "label": "remote", "mask": "7703408f54da1d0ebda47841da875e48"},
                    {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                    {"score": 0.9722, "label": "couch", "mask": "226d6dcb98bebc3fbc208abdc0c83196"},
                    {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        threshold = 0.999
        model_id = "facebook/detr-resnet-50-panoptic"

        image_segmenter = pipeline("image-segmentation", model=model_id)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=threshold)

        for o in outputs:
315
            o["mask"] = hashimage(o["mask"])
316
317
318
319

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
320
321
                {"score": 0.9995, "label": "remote", "mask": "bd726918f10fed3efaef0091e11f923b"},
                {"score": 0.9994, "label": "cat", "mask": "fa5d8d5c329546ba5339f3095641ef56"},
322
323
            ],
        )
324
325
326
327

    @require_torch
    @slow
    def test_maskformer(self):
328
        threshold = 0.8
329
330
        model_id = "facebook/maskformer-swin-base-ade"

331
332
        model = AutoModelForInstanceSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
333
334
335
336

        image_segmenter = pipeline("image-segmentation", model=model, feature_extractor=feature_extractor)

        image = load_dataset("hf-internal-testing/fixtures_ade20k", split="test")
337
338
        file = image[0]["file"]
        outputs = image_segmenter(file, threshold=threshold)
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354

        for o in outputs:
            o["mask"] = hashimage(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {"mask": "20d1b9480d1dc1501dbdcfdff483e370", "label": "wall", "score": None},
                {"mask": "0f902fbc66a0ff711ea455b0e4943adf", "label": "house", "score": None},
                {"mask": "4537bdc07d47d84b3f8634b7ada37bd4", "label": "grass", "score": None},
                {"mask": "b7ac77dfae44a904b479a0926a2acaf7", "label": "tree", "score": None},
                {"mask": "e9bedd56bd40650fb263ce03eb621079", "label": "plant", "score": None},
                {"mask": "37a609f8c9c1b8db91fbff269f428b20", "label": "road, route", "score": None},
                {"mask": "0d8cdfd63bae8bf6e4344d460a2fa711", "label": "sky", "score": None},
            ],
        )