test_pipelines_image_segmentation.py 12.1 KB
Newer Older
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import hashlib
import unittest

18
19
import datasets

20
21
from transformers import (
    MODEL_FOR_IMAGE_SEGMENTATION_MAPPING,
22
    MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING,
23
24
    AutoFeatureExtractor,
    AutoModelForImageSegmentation,
25
    DetrForSegmentation,
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
    ImageSegmentationPipeline,
    is_vision_available,
    pipeline,
)
from transformers.testing_utils import (
    is_pipeline_test,
    nested_simplify,
    require_tf,
    require_timm,
    require_torch,
    require_vision,
    slow,
)

from .test_pipelines_common import ANY, PipelineTestCaseMeta


if is_vision_available():
    from PIL import Image
else:

    class Image:
        @staticmethod
        def open(*args, **kwargs):
            pass


53
54
55
56
57
def hashimage(image: Image) -> str:
    m = hashlib.md5(image.tobytes())
    return m.hexdigest()


58
59
60
61
62
@require_vision
@require_timm
@require_torch
@is_pipeline_test
class ImageSegmentationPipelineTests(unittest.TestCase, metaclass=PipelineTestCaseMeta):
63
64
65
66
67
68
69
    model_mapping = {
        k: v
        for k, v in (
            list(MODEL_FOR_IMAGE_SEGMENTATION_MAPPING.items()) if MODEL_FOR_IMAGE_SEGMENTATION_MAPPING else []
        )
        + (MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING.items() if MODEL_FOR_SEMANTIC_SEGMENTATION_MAPPING else [])
    }
70

71
    def get_test_pipeline(self, model, tokenizer, feature_extractor):
72
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)
73
74
75
76
77
78
        return image_segmenter, [
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
        ]

    def run_pipeline_test(self, image_segmenter, examples):
79
        outputs = image_segmenter("./tests/fixtures/tests_samples/COCO/000000039769.png", threshold=0.0)
80
81
82
83
84
85
        self.assertIsInstance(outputs, list)
        n = len(outputs)
        self.assertGreater(n, 1)
        # XXX: PIL.Image implements __eq__ which bypasses ANY, so we inverse the comparison
        # to make it work
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n, outputs)
86

87
        dataset = datasets.load_dataset("hf-internal-testing/fixtures_image_utils", "image", split="test")
88

89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
        # RGBA
        outputs = image_segmenter(dataset[0]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # LA
        outputs = image_segmenter(dataset[1]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)
        # L
        outputs = image_segmenter(dataset[2]["file"])
        m = len(outputs)
        self.assertEqual([{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * m, outputs)

        if isinstance(image_segmenter.model, DetrForSegmentation):
            # We need to test batch_size with images with the same size.
            # Detr doesn't normalize the size of the images, meaning we can have
            # 800x800 or 800x1200, meaning we cannot batch simply.
            # We simply bail on this
            batch_size = 1
        else:
            batch_size = 2

        # 5 times the same image so the output shape is predictable
112
        batch = [
113
114
115
116
117
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
            "./tests/fixtures/tests_samples/COCO/000000039769.png",
118
        ]
119
        outputs = image_segmenter(batch, threshold=0.0, batch_size=batch_size)
120
        self.assertEqual(len(batch), len(outputs))
121
122
        self.assertEqual({"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}, outputs[0][0])
        self.assertEqual(len(outputs[0]), n)
123
124
        self.assertEqual(
            [
125
126
127
128
129
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
                [{"score": ANY(float, type(None)), "label": ANY(str), "mask": ANY(Image.Image)}] * n,
130
            ],
131
132
            outputs,
            f"Expected [{n}, {n}, {n}, {n}, {n}], got {[len(item) for item in outputs]}",
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
        )

    @require_tf
    @unittest.skip("Image segmentation not implemented in TF")
    def test_small_model_tf(self):
        pass

    @require_torch
    def test_small_model_pt(self):
        model_id = "mishig/tiny-detr-mobilenetsv3-panoptic"

        model = AutoModelForImageSegmentation.from_pretrained(model_id)
        feature_extractor = AutoFeatureExtractor.from_pretrained(model_id)
        image_segmenter = ImageSegmentationPipeline(model=model, feature_extractor=feature_extractor)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=0.0)
        for o in outputs:
            # shortening by hashing
151
            o["mask"] = hashimage(o["mask"])
152
153
154
155
156
157
158

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": 0.004,
                    "label": "LABEL_0",
159
                    "mask": "34eecd16bbfb0f476083ef947d81bf66",
160
161
162
163
                },
                {
                    "score": 0.004,
                    "label": "LABEL_0",
164
                    "mask": "34eecd16bbfb0f476083ef947d81bf66",
165
166
167
168
169
170
171
172
173
174
175
176
177
                },
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
178
                o["mask"] = hashimage(o["mask"])
179
180
181
182
183
184
185
186

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
187
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
188
189
190
191
                    },
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
192
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
193
194
195
196
197
198
                    },
                ],
                [
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
199
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
200
201
202
203
                    },
                    {
                        "score": 0.004,
                        "label": "LABEL_0",
204
                        "mask": "34eecd16bbfb0f476083ef947d81bf66",
205
206
207
208
209
                    },
                ],
            ],
        )

210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
    @require_torch
    def test_small_model_pt_semantic(self):
        model_id = "hf-internal-testing/tiny-random-beit-pipeline"
        image_segmenter = pipeline(model=model_id)
        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
            # shortening by hashing
            o["mask"] = hashimage(o["mask"])

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                {
                    "score": None,
                    "label": "LABEL_0",
                    "mask": "01245d8ad25d03f09493ca97965788ae",
                },
                {
                    "score": None,
                    "label": "LABEL_1",
                    "mask": "f741516de8d5196a2c830739b9ac1c8c",
                },
            ],
        )

235
236
237
238
239
240
241
242
243
    @require_torch
    @slow
    def test_integration_torch_image_segmentation(self):
        model_id = "facebook/detr-resnet-50-panoptic"

        image_segmenter = pipeline("image-segmentation", model=model_id)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg")
        for o in outputs:
244
            o["mask"] = hashimage(o["mask"])
245
246
247
248

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
249
250
251
252
253
254
                {"score": 0.9094, "label": "blanket", "mask": "36517c16f4356f7af4b298f4eae387f9fe37eaf8"},
                {"score": 0.9941, "label": "cat", "mask": "d63196cbe08c7655c158dbabbc5e6b413cbb3b2d"},
                {"score": 0.9987, "label": "remote", "mask": "4e190e0c3934ad852aaa51aa2c54e314b9a1152e"},
                {"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
                {"score": 0.9722, "label": "couch", "mask": "df5815755b6bcf328f6b6811f8794cad26f79b35"},
                {"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
            ],
        )

        outputs = image_segmenter(
            [
                "http://images.cocodataset.org/val2017/000000039769.jpg",
                "http://images.cocodataset.org/val2017/000000039769.jpg",
            ],
            threshold=0.0,
        )
        for output in outputs:
            for o in output:
                o["mask"] = hashlib.sha1(o["mask"].encode("UTF-8")).hexdigest()

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
                [
273
274
275
276
277
278
                    {"score": 0.9094, "label": "blanket", "mask": "36517c16f4356f7af4b298f4eae387f9fe37eaf8"},
                    {"score": 0.9941, "label": "cat", "mask": "d63196cbe08c7655c158dbabbc5e6b413cbb3b2d"},
                    {"score": 0.9987, "label": "remote", "mask": "4e190e0c3934ad852aaa51aa2c54e314b9a1152e"},
                    {"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
                    {"score": 0.9722, "label": "couch", "mask": "df5815755b6bcf328f6b6811f8794cad26f79b35"},
                    {"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
279
280
                ],
                [
281
282
283
284
285
286
                    {"score": 0.9094, "label": "blanket", "mask": "36517c16f4356f7af4b298f4eae387f9fe37eaf8"},
                    {"score": 0.9941, "label": "cat", "mask": "d63196cbe08c7655c158dbabbc5e6b413cbb3b2d"},
                    {"score": 0.9987, "label": "remote", "mask": "4e190e0c3934ad852aaa51aa2c54e314b9a1152e"},
                    {"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
                    {"score": 0.9722, "label": "couch", "mask": "df5815755b6bcf328f6b6811f8794cad26f79b35"},
                    {"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
                ],
            ],
        )

    @require_torch
    @slow
    def test_threshold(self):
        threshold = 0.999
        model_id = "facebook/detr-resnet-50-panoptic"

        image_segmenter = pipeline("image-segmentation", model=model_id)

        outputs = image_segmenter("http://images.cocodataset.org/val2017/000000039769.jpg", threshold=threshold)

        for o in outputs:
302
            o["mask"] = hashimage(o["mask"])
303
304
305
306

        self.assertEqual(
            nested_simplify(outputs, decimals=4),
            [
307
308
                {"score": 0.9995, "label": "remote", "mask": "39dc07a07238048a06b0c2474de01ba3c09cc44f"},
                {"score": 0.9994, "label": "cat", "mask": "88b37bd2202c750cc9dd191518050a9b0ca5228c"},
309
310
            ],
        )