modeling_xlnet.py 60.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
# coding=utf-8
# Copyright 2018 Google AI, Google Brain and Carnegie Mellon University Authors and the HuggingFace Inc. team.
# Copyright (c) 2018, NVIDIA CORPORATION.  All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" PyTorch XLNet model.
"""
from __future__ import (absolute_import, division, print_function,
                        unicode_literals)
from __future__ import absolute_import, division, print_function, unicode_literals

import json
import logging
import math
import os
import sys
from io import open

import torch
from torch import nn
thomwolf's avatar
thomwolf committed
31
from torch.nn import functional as F
32
from torch.nn import CrossEntropyLoss, MSELoss
thomwolf's avatar
thomwolf committed
33

34
from .modeling_utils import (CONFIG_NAME, WEIGHTS_NAME, PretrainedConfig, PreTrainedModel,
35
                             SequenceSummary, PoolerAnswerClass, PoolerEndLogits, PoolerStartLogits)
36

thomwolf's avatar
thomwolf committed
37
38
39

logger = logging.getLogger(__name__)

40
XLNET_PRETRAINED_MODEL_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
41
42
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-pytorch_model.bin",
}
43
XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP = {
thomwolf's avatar
thomwolf committed
44
45
46
    'xlnet-large-cased': "https://s3.amazonaws.com/models.huggingface.co/bert/xlnet-large-cased-config.json",
}

thomwolf's avatar
thomwolf committed
47

48
def build_tf_xlnet_to_pytorch_map(model, config, tf_weights=None):
thomwolf's avatar
thomwolf committed
49
50
51
52
53
54
55
56
    """ A map of modules from TF to PyTorch.
        I use a map to keep the PyTorch model as
        identical to the original PyTorch model as possible.
    """

    tf_to_pt_map = {}

    if hasattr(model, 'transformer'):
57
58
59
        if hasattr(model, 'lm_loss'):
            # We will load also the output bias
            tf_to_pt_map['model/lm_loss/bias'] = model.lm_loss.bias
60
        if hasattr(model, 'sequence_summary') and 'model/sequnece_summary/summary/kernel' in tf_weights:
61
62
63
            # We will load also the sequence summary
            tf_to_pt_map['model/sequnece_summary/summary/kernel'] = model.sequence_summary.summary.weight
            tf_to_pt_map['model/sequnece_summary/summary/bias'] = model.sequence_summary.summary.bias
thomwolf's avatar
thomwolf committed
64
65
        if hasattr(model, 'logits_proj') and config.finetuning_task is not None \
                and 'model/regression_{}/logit/kernel'.format(config.finetuning_task) in tf_weights:
66
67
            tf_to_pt_map['model/regression_{}/logit/kernel'.format(config.finetuning_task)] = model.logits_proj.weight
            tf_to_pt_map['model/regression_{}/logit/bias'.format(config.finetuning_task)] = model.logits_proj.bias
68

thomwolf's avatar
thomwolf committed
69
70
71
72
73
        # Now load the rest of the transformer
        model = model.transformer

    # Embeddings and output
    tf_to_pt_map.update({'model/transformer/word_embedding/lookup_table': model.word_embedding.weight,
74
                         'model/transformer/mask_emb/mask_emb': model.mask_emb})
thomwolf's avatar
thomwolf committed
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

    # Transformer blocks
    for i, b in enumerate(model.layer):
        layer_str = "model/transformer/layer_%d/" % i
        tf_to_pt_map.update({
            layer_str + "rel_attn/LayerNorm/gamma": b.rel_attn.layer_norm.weight,
            layer_str + "rel_attn/LayerNorm/beta": b.rel_attn.layer_norm.bias,
            layer_str + "rel_attn/o/kernel": b.rel_attn.o,
            layer_str + "rel_attn/q/kernel": b.rel_attn.q,
            layer_str + "rel_attn/k/kernel": b.rel_attn.k,
            layer_str + "rel_attn/r/kernel": b.rel_attn.r,
            layer_str + "rel_attn/v/kernel": b.rel_attn.v,
            layer_str + "ff/LayerNorm/gamma": b.ff.layer_norm.weight,
            layer_str + "ff/LayerNorm/beta": b.ff.layer_norm.bias,
            layer_str + "ff/layer_1/kernel": b.ff.layer_1.weight,
            layer_str + "ff/layer_1/bias": b.ff.layer_1.bias,
            layer_str + "ff/layer_2/kernel": b.ff.layer_2.weight,
            layer_str + "ff/layer_2/bias": b.ff.layer_2.bias,
        })

    # Relative positioning biases
    if config.untie_r:
        r_r_list = []
        r_w_list = []
        r_s_list = []
        seg_embed_list = []
        for b in model.layer:
            r_r_list.append(b.rel_attn.r_r_bias)
            r_w_list.append(b.rel_attn.r_w_bias)
            r_s_list.append(b.rel_attn.r_s_bias)
            seg_embed_list.append(b.rel_attn.seg_embed)
    else:
        r_r_list = [model.r_r_bias]
        r_w_list = [model.r_w_bias]
        r_s_list = [model.r_s_bias]
        seg_embed_list = [model.seg_embed]
    tf_to_pt_map.update({
        'model/transformer/r_r_bias': r_r_list,
        'model/transformer/r_w_bias': r_w_list,
        'model/transformer/r_s_bias': r_s_list,
        'model/transformer/seg_embed': seg_embed_list})
    return tf_to_pt_map

118
def load_tf_weights_in_xlnet(model, config, tf_path):
thomwolf's avatar
thomwolf committed
119
120
121
122
123
124
    """ Load tf checkpoints in a pytorch model
    """
    try:
        import numpy as np
        import tensorflow as tf
    except ImportError:
thomwolf's avatar
thomwolf committed
125
        logger.error("Loading a TensorFlow models in PyTorch, requires TensorFlow to be installed. Please see "
thomwolf's avatar
thomwolf committed
126
127
128
129
            "https://www.tensorflow.org/install/ for installation instructions.")
        raise
    # Load weights from TF model
    init_vars = tf.train.list_variables(tf_path)
thomwolf's avatar
thomwolf committed
130
    tf_weights = {}
thomwolf's avatar
thomwolf committed
131
    for name, shape in init_vars:
thomwolf's avatar
thomwolf committed
132
        logger.info("Loading TF weight {} with shape {}".format(name, shape))
thomwolf's avatar
thomwolf committed
133
        array = tf.train.load_variable(tf_path, name)
thomwolf's avatar
thomwolf committed
134
        tf_weights[name] = array
thomwolf's avatar
thomwolf committed
135

136
    # Build TF to PyTorch weights loading map
137
    tf_to_pt_map = build_tf_xlnet_to_pytorch_map(model, config, tf_weights)
138

thomwolf's avatar
thomwolf committed
139
    for name, pointer in tf_to_pt_map.items():
thomwolf's avatar
thomwolf committed
140
        logger.info("Importing {}".format(name))
141
        if name not in tf_weights:
thomwolf's avatar
thomwolf committed
142
            logger.info("{} not in tf pre-trained weights, skipping".format(name))
143
            continue
thomwolf's avatar
thomwolf committed
144
        array = tf_weights[name]
thomwolf's avatar
thomwolf committed
145
146
        # adam_v and adam_m are variables used in AdamWeightDecayOptimizer to calculated m and v
        # which are not required for using pretrained model
147
        if 'kernel' in name and ('ff' in name or 'summary' in name or 'logit' in name):
thomwolf's avatar
thomwolf committed
148
            logger.info("Transposing")
thomwolf's avatar
thomwolf committed
149
            array = np.transpose(array)
thomwolf's avatar
thomwolf committed
150
151
152
153
154
155
156
157
158
159
        if isinstance(pointer, list):
            # Here we will split the TF weigths
            assert len(pointer) == array.shape[0]
            for i, p_i in enumerate(pointer):
                arr_i = array[i, ...]
                try:
                    assert p_i.shape == arr_i.shape
                except AssertionError as e:
                    e.args += (p_i.shape, arr_i.shape)
                    raise
thomwolf's avatar
thomwolf committed
160
                logger.info("Initialize PyTorch weight {} for layer {}".format(name, i))
thomwolf's avatar
thomwolf committed
161
162
163
164
165
166
167
                p_i.data = torch.from_numpy(arr_i)
        else:
            try:
                assert pointer.shape == array.shape
            except AssertionError as e:
                e.args += (pointer.shape, array.shape)
                raise
thomwolf's avatar
thomwolf committed
168
            logger.info("Initialize PyTorch weight {}".format(name))
thomwolf's avatar
thomwolf committed
169
170
171
172
173
            pointer.data = torch.from_numpy(array)
        tf_weights.pop(name, None)
        tf_weights.pop(name + '/Adam', None)
        tf_weights.pop(name + '/Adam_1', None)

thomwolf's avatar
thomwolf committed
174
    logger.info("Weights not copied to PyTorch model: {}".format(', '.join(tf_weights.keys())))
thomwolf's avatar
thomwolf committed
175
176
177
178
    return model


def gelu(x):
179
180
    """ Implementation of the gelu activation function.
        XLNet is using OpenAI GPT's gelu (not exactly the same as BERT)
thomwolf's avatar
thomwolf committed
181
182
        Also see https://arxiv.org/abs/1606.08415
    """
183
184
    cdf = 0.5 * (1.0 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3))))
    return x * cdf
thomwolf's avatar
thomwolf committed
185
186
187
188
189
190
191
192
193


def swish(x):
    return x * torch.sigmoid(x)


ACT2FN = {"gelu": gelu, "relu": torch.nn.functional.relu, "swish": swish}


194
class XLNetConfig(PretrainedConfig):
thomwolf's avatar
thomwolf committed
195
196
    """Configuration class to store the configuration of a `XLNetModel`.
    """
197
    pretrained_config_archive_map = XLNET_PRETRAINED_CONFIG_ARCHIVE_MAP
198

thomwolf's avatar
thomwolf committed
199
    def __init__(self,
thomwolf's avatar
thomwolf committed
200
                 vocab_size_or_config_json_file=32000,
thomwolf's avatar
thomwolf committed
201
202
203
204
                 d_model=1024,
                 n_layer=24,
                 n_head=16,
                 d_inner=4096,
thomwolf's avatar
thomwolf committed
205
206
                 ff_activation="gelu",
                 untie_r=True,
thomwolf's avatar
thomwolf committed
207
                 attn_type="bi",
thomwolf's avatar
thomwolf committed
208
209
210

                 max_position_embeddings=512,
                 initializer_range=0.02,
thomwolf's avatar
thomwolf committed
211
212
213
214
215
216
217
                 layer_norm_eps=1e-12,

                 dropout=0.1,
                 mem_len=None,
                 reuse_len=None,
                 bi_data=False,
                 clamp_len=-1,
218
                 same_length=False,
thomwolf's avatar
thomwolf committed
219

thomwolf's avatar
thomwolf committed
220
221
                 finetuning_task=None,
                 num_labels=2,
thomwolf's avatar
thomwolf committed
222
223
224
                 summary_type='last',
                 summary_use_proj=True,
                 summary_activation='tanh',
225
                 summary_last_dropout=0.1,
thomwolf's avatar
thomwolf committed
226
227
                 start_n_top=5,
                 end_n_top=5,
thomwolf's avatar
thomwolf committed
228
                 **kwargs):
thomwolf's avatar
thomwolf committed
229
230
231
232
233
234
235
236
237
238
239
240
241
        """Constructs XLNetConfig.

        Args:
            vocab_size_or_config_json_file: Vocabulary size of `inputs_ids` in `XLNetModel`.
            d_model: Size of the encoder layers and the pooler layer.
            n_layer: Number of hidden layers in the Transformer encoder.
            n_head: Number of attention heads for each attention layer in
                the Transformer encoder.
            d_inner: The size of the "intermediate" (i.e., feed-forward)
                layer in the Transformer encoder.
            ff_activation: The non-linear activation function (function or string) in the
                encoder and pooler. If string, "gelu", "relu" and "swish" are supported.
            untie_r: untie relative position biases
thomwolf's avatar
thomwolf committed
242
            attn_type: 'bi' for XLNet, 'uni' for Transformer-XL
thomwolf's avatar
thomwolf committed
243
244
245
246
247
248
249
250
251
252
253

            dropout: The dropout probabilitiy for all fully connected
                layers in the embeddings, encoder, and pooler.
            dropatt: The dropout ratio for the attention
                probabilities.
            max_position_embeddings: The maximum sequence length that this model might
                ever be used with. Typically set this to something large just in case
                (e.g., 512 or 1024 or 2048).
            initializer_range: The sttdev of the truncated_normal_initializer for
                initializing all weight matrices.
            layer_norm_eps: The epsilon used by LayerNorm.
thomwolf's avatar
thomwolf committed
254
255
256
257
258
259
260
261
262
263
264

            dropout: float, dropout rate.
            dropatt: float, dropout rate on attention probabilities.
            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
265
            finetuning_task: name of the glue task on which the model was fine-tuned if any
thomwolf's avatar
thomwolf committed
266
        """
thomwolf's avatar
thomwolf committed
267
268
        super(XLNetConfig, self).__init__(**kwargs)

thomwolf's avatar
thomwolf committed
269
270
271
272
273
274
275
        if isinstance(vocab_size_or_config_json_file, str) or (sys.version_info[0] == 2
                        and isinstance(vocab_size_or_config_json_file, unicode)):
            with open(vocab_size_or_config_json_file, "r", encoding='utf-8') as reader:
                json_config = json.loads(reader.read())
            for key, value in json_config.items():
                self.__dict__[key] = value
        elif isinstance(vocab_size_or_config_json_file, int):
thomwolf's avatar
thomwolf committed
276
            self.n_token = vocab_size_or_config_json_file
thomwolf's avatar
thomwolf committed
277
278
279
            self.d_model = d_model
            self.n_layer = n_layer
            self.n_head = n_head
thomwolf's avatar
thomwolf committed
280
281
            assert d_model % n_head == 0
            self.d_head = d_model // n_head
thomwolf's avatar
thomwolf committed
282
283
284
            self.ff_activation = ff_activation
            self.d_inner = d_inner
            self.untie_r = untie_r
thomwolf's avatar
thomwolf committed
285
            self.attn_type = attn_type
thomwolf's avatar
thomwolf committed
286

thomwolf's avatar
thomwolf committed
287
288
289
            self.max_position_embeddings = max_position_embeddings
            self.initializer_range = initializer_range
            self.layer_norm_eps = layer_norm_eps
thomwolf's avatar
thomwolf committed
290
291
292
293
294
295
296

            self.dropout = dropout
            self.mem_len = mem_len
            self.reuse_len = reuse_len
            self.bi_data = bi_data
            self.clamp_len = clamp_len
            self.same_length = same_length
thomwolf's avatar
thomwolf committed
297

298
            self.finetuning_task = finetuning_task
thomwolf's avatar
thomwolf committed
299
300
            self.num_labels = num_labels
            self.summary_type = summary_type
thomwolf's avatar
thomwolf committed
301
302
            self.summary_use_proj = summary_use_proj
            self.summary_activation = summary_activation
303
            self.summary_last_dropout = summary_last_dropout
thomwolf's avatar
thomwolf committed
304
305
            self.start_n_top = start_n_top
            self.end_n_top = end_n_top
thomwolf's avatar
thomwolf committed
306
307
308
309
        else:
            raise ValueError("First argument must be either a vocabulary size (int)"
                             "or the path to a pretrained model config file (str)")

thomwolf's avatar
thomwolf committed
310
311
312
313
314
315
316
317
318
319
320
321
    @property
    def hidden_size(self):
        return self.d_model

    @property
    def num_attention_heads(self):
        return self.n_head

    @property
    def num_hidden_layers(self):
        return self.n_layer

thomwolf's avatar
thomwolf committed
322
323
324
325
326
327

try:
    from apex.normalization.fused_layer_norm import FusedLayerNorm as XLNetLayerNorm
except ImportError:
    logger.info("Better speed can be achieved with apex installed from https://www.github.com/nvidia/apex .")
    class XLNetLayerNorm(nn.Module):
thomwolf's avatar
thomwolf committed
328
        def __init__(self, d_model, eps=1e-12):
thomwolf's avatar
thomwolf committed
329
330
331
            """Construct a layernorm module in the TF style (epsilon inside the square root).
            """
            super(XLNetLayerNorm, self).__init__()
thomwolf's avatar
thomwolf committed
332
333
            self.weight = nn.Parameter(torch.ones(d_model))
            self.bias = nn.Parameter(torch.zeros(d_model))
thomwolf's avatar
thomwolf committed
334
335
336
337
338
339
340
341
            self.variance_epsilon = eps

        def forward(self, x):
            u = x.mean(-1, keepdim=True)
            s = (x - u).pow(2).mean(-1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.variance_epsilon)
            return self.weight * x + self.bias

thomwolf's avatar
thomwolf committed
342
class XLNetRelativeAttention(nn.Module):
thomwolf's avatar
thomwolf committed
343
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
344
        super(XLNetRelativeAttention, self).__init__()
thomwolf's avatar
thomwolf committed
345
346
        self.output_attentions = config.output_attentions

thomwolf's avatar
thomwolf committed
347
        if config.d_model % config.n_head != 0:
thomwolf's avatar
thomwolf committed
348
349
            raise ValueError(
                "The hidden size (%d) is not a multiple of the number of attention "
thomwolf's avatar
thomwolf committed
350
                "heads (%d)" % (config.d_model, config.n_head))
thomwolf's avatar
thomwolf committed
351

thomwolf's avatar
thomwolf committed
352
        self.n_head = config.n_head
thomwolf's avatar
thomwolf committed
353
354
355
356
357
358
359
360
361
362
363
364
365
        self.d_head = config.d_head
        self.d_model = config.d_model
        self.scale = 1 / (config.d_head ** 0.5)

        self.q = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.k = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.v = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.o = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))
        self.r = nn.Parameter(torch.Tensor(config.d_model, self.n_head, self.d_head))

        self.r_r_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_s_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
        self.r_w_bias = nn.Parameter(torch.Tensor(self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
366
        self.seg_embed = nn.Parameter(torch.Tensor(2, self.n_head, self.d_head))
thomwolf's avatar
thomwolf committed
367

thomwolf's avatar
thomwolf committed
368
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
369
370
371
372
373
        self.dropout = nn.Dropout(config.dropout)

    def prune_heads(self, heads):
        raise NotImplementedError

thomwolf's avatar
thomwolf committed
374
375
376
377
378
379
380
381
    @staticmethod
    def rel_shift(x, klen=-1):
        """perform relative shift to form the relative attention score."""
        x_size = x.shape

        x = x.reshape(x_size[1], x_size[0], x_size[2], x_size[3])
        x = x[1:, ...]
        x = x.reshape(x_size[0], x_size[1] - 1, x_size[2], x_size[3])
382
        # x = x[:, 0:klen, :, :]
thomwolf's avatar
thomwolf committed
383
        x = torch.index_select(x, 1, torch.arange(klen, device=x.device, dtype=torch.long))
thomwolf's avatar
thomwolf committed
384
385
386

        return x

387
    def rel_attn_core(self, q_head, k_head_h, v_head_h, k_head_r, seg_mat=None, attn_mask=None, head_mask=None):
thomwolf's avatar
thomwolf committed
388
389
390
391
392
393
394
        """Core relative positional attention operations."""

        # content based attention score
        ac = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_w_bias, k_head_h)

        # position based attention score
        bd = torch.einsum('ibnd,jbnd->ijbn', q_head + self.r_r_bias, k_head_r)
thomwolf's avatar
thomwolf committed
395
        bd = self.rel_shift(bd, klen=ac.shape[1])
thomwolf's avatar
thomwolf committed
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413

        # segment based attention score
        if seg_mat is None:
            ef = 0
        else:
            ef = torch.einsum('ibnd,snd->ibns', q_head + self.r_s_bias, self.seg_embed)
            ef = torch.einsum('ijbs,ibns->ijbn', seg_mat, ef)

        # merge attention scores and perform masking
        attn_score = (ac + bd + ef) * self.scale
        if attn_mask is not None:
            # attn_score = attn_score * (1 - attn_mask) - 1e30 * attn_mask
            attn_score = attn_score - 1e30 * attn_mask

        # attention probability
        attn_prob = F.softmax(attn_score, dim=1)
        attn_prob = self.dropout(attn_prob)

414
415
416
417
        # Mask heads if we want to
        if head_mask is not None:
            attn_prob = attn_prob * head_mask

thomwolf's avatar
thomwolf committed
418
419
420
        # attention output
        attn_vec = torch.einsum('ijbn,jbnd->ibnd', attn_prob, v_head_h)

421
422
423
        if self.output_attentions:
            return attn_vec, attn_prob

thomwolf's avatar
thomwolf committed
424
425
426
427
428
429
430
431
432
433
        return attn_vec

    def post_attention(self, h, attn_vec, residual=True):
        """Post-attention processing."""
        # post-attention projection (back to `d_model`)
        attn_out = torch.einsum('ibnd,hnd->ibh', attn_vec, self.o)

        attn_out = self.dropout(attn_out)
        if residual:
            attn_out = attn_out + h
thomwolf's avatar
thomwolf committed
434
        output = self.layer_norm(attn_out)
thomwolf's avatar
thomwolf committed
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

        return output

    def forward(self, h, g,
                      attn_mask_h, attn_mask_g,
                      r, seg_mat,
                      mems=None, target_mapping=None, head_mask=None):
        if g is not None:
            ###### Two-stream attention with relative positional encoding.
            # content based attention score
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content-based key head
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)

            # content-based value head
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # position-based key head
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            ##### h-stream
            # content-stream query head
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)

            # core attention ops
            attn_vec_h = self.rel_attn_core(
465
466
467
468
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec_h, attn_prob_h = attn_vec_h
thomwolf's avatar
thomwolf committed
469
470
471
472
473
474
475
476
477
478
479
480

            # post processing
            output_h = self.post_attention(h, attn_vec_h)

            ##### g-stream
            # query-stream query head
            q_head_g = torch.einsum('ibh,hnd->ibnd', g, self.q)

            # core attention ops
            if target_mapping is not None:
                q_head_g = torch.einsum('mbnd,mlb->lbnd', q_head_g, target_mapping)
                attn_vec_g = self.rel_attn_core(
481
482
483
484
485
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g

thomwolf's avatar
thomwolf committed
486
487
488
                attn_vec_g = torch.einsum('lbnd,mlb->mbnd', attn_vec_g, target_mapping)
            else:
                attn_vec_g = self.rel_attn_core(
489
490
491
492
                    q_head_g, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_g, head_mask=head_mask)

                if self.output_attentions:
                    attn_vec_g, attn_prob_g = attn_vec_g
thomwolf's avatar
thomwolf committed
493
494
495

            # post processing
            output_g = self.post_attention(g, attn_vec_g)
496
497
498
499

            if self.output_attentions:
                attn_prob = attn_prob_h, attn_prob_g

thomwolf's avatar
thomwolf committed
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
        else:
            ###### Multi-head attention with relative positional encoding
            if mems is not None and mems.dim() > 1:
                cat = torch.cat([mems, h], dim=0)
            else:
                cat = h

            # content heads
            q_head_h = torch.einsum('ibh,hnd->ibnd', h, self.q)
            k_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.k)
            v_head_h = torch.einsum('ibh,hnd->ibnd', cat, self.v)

            # positional heads
            k_head_r = torch.einsum('ibh,hnd->ibnd', r, self.r)

            # core attention ops
            attn_vec = self.rel_attn_core(
517
518
519
520
                q_head_h, k_head_h, v_head_h, k_head_r, seg_mat=seg_mat, attn_mask=attn_mask_h, head_mask=head_mask)

            if self.output_attentions:
                attn_vec, attn_prob = attn_vec
thomwolf's avatar
thomwolf committed
521
522

            # post processing
thomwolf's avatar
thomwolf committed
523
524
            output_h = self.post_attention(h, attn_vec)
            output_g = None
thomwolf's avatar
thomwolf committed
525

526
        outputs = (output_h, output_g)
527
        if self.output_attentions:
528
            outputs = outputs + (attn_prob,)
thomwolf's avatar
thomwolf committed
529
        return outputs
thomwolf's avatar
thomwolf committed
530
531
532
533

class XLNetFeedForward(nn.Module):
    def __init__(self, config):
        super(XLNetFeedForward, self).__init__()
thomwolf's avatar
thomwolf committed
534
        self.layer_norm = XLNetLayerNorm(config.d_model, eps=config.layer_norm_eps)
thomwolf's avatar
thomwolf committed
535
536
537
        self.layer_1 = nn.Linear(config.d_model, config.d_inner)
        self.layer_2 = nn.Linear(config.d_inner, config.d_model)
        self.dropout = nn.Dropout(config.dropout)
538
539
        if isinstance(config.ff_activation, str) or \
                (sys.version_info[0] == 2 and isinstance(config.ff_activation, unicode)):
thomwolf's avatar
thomwolf committed
540
541
542
543
            self.activation_function = ACT2FN[config.ff_activation]
        else:
            self.activation_function = config.ff_activation

thomwolf's avatar
thomwolf committed
544
545
546
547
548
549
550
    def forward(self, inp):
        output = inp
        output = self.layer_1(output)
        output = self.activation_function(output)
        output = self.dropout(output)
        output = self.layer_2(output)
        output = self.dropout(output)
thomwolf's avatar
thomwolf committed
551
        output = self.layer_norm(output + inp)
thomwolf's avatar
thomwolf committed
552
        return output
thomwolf's avatar
thomwolf committed
553
554

class XLNetLayer(nn.Module):
thomwolf's avatar
thomwolf committed
555
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
556
        super(XLNetLayer, self).__init__()
thomwolf's avatar
thomwolf committed
557
        self.rel_attn = XLNetRelativeAttention(config)
thomwolf's avatar
thomwolf committed
558
559
560
561
562
        self.ff = XLNetFeedForward(config)
        self.dropout = nn.Dropout(config.dropout)

    def forward(self, output_h, output_g,
                attn_mask_h, attn_mask_g,
563
564
565
566
567
568
                r, seg_mat, mems=None, target_mapping=None, head_mask=None):
        outputs = self.rel_attn(output_h, output_g, attn_mask_h, attn_mask_g,
                                r, seg_mat, mems=mems, target_mapping=target_mapping,
                                head_mask=head_mask)
        output_h, output_g = outputs[:2]

thomwolf's avatar
thomwolf committed
569
        if output_g is not None:
thomwolf's avatar
thomwolf committed
570
571
572
            output_g = self.ff(output_g)
        output_h = self.ff(output_h)

573
        outputs = (output_h, output_g) + outputs[2:]  # Add again attentions if there are there
574
        return outputs
thomwolf's avatar
thomwolf committed
575

576
577

class XLNetPreTrainedModel(PreTrainedModel):
thomwolf's avatar
thomwolf committed
578
579
580
    """ An abstract class to handle weights initialization and
        a simple interface for dowloading and loading pretrained models.
    """
581
    config_class = XLNetConfig
582
    pretrained_model_archive_map = XLNET_PRETRAINED_MODEL_ARCHIVE_MAP
583
584
585
586
587
    load_tf_weights = load_tf_weights_in_xlnet
    base_model_prefix = "transformer"

    def __init__(self, *inputs, **kwargs):
        super(XLNetPreTrainedModel, self).__init__(*inputs, **kwargs)
thomwolf's avatar
thomwolf committed
588

thomwolf's avatar
thomwolf committed
589
    def init_weights(self, module):
thomwolf's avatar
thomwolf committed
590
591
592
593
594
595
        """ Initialize the weights.
        """
        if isinstance(module, (nn.Linear, nn.Embedding)):
            # Slightly different from the TF version which uses truncated_normal for initialization
            # cf https://github.com/pytorch/pytorch/pull/5617
            module.weight.data.normal_(mean=0.0, std=self.config.initializer_range)
596
597
            if isinstance(module, nn.Linear) and module.bias is not None:
                module.bias.data.zero_()
thomwolf's avatar
thomwolf committed
598
599
600
        elif isinstance(module, XLNetLayerNorm):
            module.bias.data.zero_()
            module.weight.data.fill_(1.0)
601
602
603
604
605
        elif isinstance(module, XLNetRelativeAttention):
            for param in [module.q, module.k, module.v, module.o, module.r,
                          module.r_r_bias, module.r_s_bias, module.r_w_bias,
                          module.seg_embed]:
                param.data.normal_(mean=0.0, std=self.config.initializer_range)
606
607
        elif isinstance(module, XLNetModel):
                module.mask_emb.data.normal_(mean=0.0, std=self.config.initializer_range)
thomwolf's avatar
thomwolf committed
608
609
610


class XLNetModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
611
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
612
        super(XLNetModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
613
614
        self.output_attentions = config.output_attentions
        self.output_hidden_states = config.output_hidden_states
615

thomwolf's avatar
thomwolf committed
616
617
        self.mem_len = config.mem_len
        self.reuse_len = config.reuse_len
thomwolf's avatar
thomwolf committed
618
619
620
621
622
        self.d_model = config.d_model
        self.same_length = config.same_length
        self.attn_type = config.attn_type
        self.bi_data = config.bi_data
        self.clamp_len = config.clamp_len
thomwolf's avatar
thomwolf committed
623
        self.n_layer = config.n_layer
thomwolf's avatar
thomwolf committed
624

thomwolf's avatar
thomwolf committed
625
626
        self.word_embedding = nn.Embedding(config.n_token, config.d_model)
        self.mask_emb = nn.Parameter(torch.Tensor(1, 1, config.d_model))
627
        self.layer = nn.ModuleList([XLNetLayer(config) for _ in range(config.n_layer)])
thomwolf's avatar
thomwolf committed
628
        self.dropout = nn.Dropout(config.dropout)
thomwolf's avatar
thomwolf committed
629

630
631
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
632
633
634
    def _prune_heads(self, heads_to_prune):
        logger.info("Head pruning is not implemented for XLNet")
        pass
thomwolf's avatar
thomwolf committed
635

thomwolf's avatar
thomwolf committed
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
    def create_mask(self, qlen, mlen):
        """ create causal attention mask.
            float mask where 1.0 indicate masked, 0.0 indicated not-masked.
             same_length=False:      same_length=True:
             <mlen > <  qlen >       <mlen > <  qlen >
          ^ [0 0 0 0 0 1 1 1 1]     [0 0 0 0 0 1 1 1 1]
            [0 0 0 0 0 0 1 1 1]     [1 0 0 0 0 0 1 1 1]
       qlen [0 0 0 0 0 0 0 1 1]     [1 1 0 0 0 0 0 1 1]
            [0 0 0 0 0 0 0 0 1]     [1 1 1 0 0 0 0 0 1]
          v [0 0 0 0 0 0 0 0 0]     [1 1 1 1 0 0 0 0 0]
        """
        attn_mask = torch.ones([qlen, qlen])
        mask_up = torch.triu(attn_mask, diagonal=1)
        attn_mask_pad = torch.zeros([qlen, mlen])
        ret = torch.cat([attn_mask_pad, mask_up], dim=1)
        if self.same_length:
            mask_lo = torch.tril(attn_mask, diagonal=-1)
            ret = torch.cat([ret[:, :qlen] + mask_lo, ret[:, qlen:]], dim=1)

        ret = ret.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
        return ret

    def cache_mem(self, curr_out, prev_mem):
        """cache hidden states into memory."""
        if self.mem_len is None or self.mem_len == 0:
            return None
        else:
            if self.reuse_len is not None and self.reuse_len > 0:
                curr_out = curr_out[:self.reuse_len]

            if prev_mem is None:
                new_mem = curr_out[-self.mem_len:]
            else:
                new_mem = torch.cat([prev_mem, curr_out], dim=0)[-self.mem_len:]

        return new_mem.detach()

thomwolf's avatar
thomwolf committed
673
674
675
676
677
678
679
680
681
682
683
684
    @staticmethod
    def positional_embedding(pos_seq, inv_freq, bsz=None):
        sinusoid_inp = torch.einsum('i,d->id', pos_seq, inv_freq)
        pos_emb = torch.cat([torch.sin(sinusoid_inp), torch.cos(sinusoid_inp)], dim=-1)
        pos_emb = pos_emb[:, None, :]

        if bsz is not None:
            pos_emb = pos_emb.expand(-1, bsz, -1)

        return pos_emb

    def relative_positional_encoding(self, qlen, klen, bsz=None):
thomwolf's avatar
thomwolf committed
685
        """create relative positional encoding."""
thomwolf's avatar
thomwolf committed
686
        freq_seq = torch.arange(0, self.d_model, 2.0, dtype=torch.float)
687
        inv_freq = 1 / torch.pow(10000, (freq_seq / self.d_model))
thomwolf's avatar
thomwolf committed
688
689
690
691
692
693
694
695
696
697
698

        if self.attn_type == 'bi':
            # beg, end = klen - 1, -qlen
            beg, end = klen, -qlen
        elif self.attn_type == 'uni':
            # beg, end = klen - 1, -1
            beg, end = klen, -1
        else:
            raise ValueError('Unknown `attn_type` {}.'.format(self.attn_type))

        if self.bi_data:
thomwolf's avatar
thomwolf committed
699
700
            fwd_pos_seq = torch.arange(beg, end, -1.0, dtype=torch.float)
            bwd_pos_seq = torch.arange(-beg, -end, 1.0, dtype=torch.float)
thomwolf's avatar
thomwolf committed
701
702
703
704
705
706

            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
                bwd_pos_seq = bwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)

            if bsz is not None:
thomwolf's avatar
thomwolf committed
707
708
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz//2)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq, bsz//2)
thomwolf's avatar
thomwolf committed
709
            else:
thomwolf's avatar
thomwolf committed
710
711
                fwd_pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq)
                bwd_pos_emb = self.positional_embedding(bwd_pos_seq, inv_freq)
thomwolf's avatar
thomwolf committed
712
713
714

            pos_emb = torch.cat([fwd_pos_emb, bwd_pos_emb], dim=1)
        else:
thomwolf's avatar
thomwolf committed
715
            fwd_pos_seq = torch.arange(beg, end, -1.0)
thomwolf's avatar
thomwolf committed
716
717
            if self.clamp_len > 0:
                fwd_pos_seq = fwd_pos_seq.clamp(-self.clamp_len, self.clamp_len)
thomwolf's avatar
thomwolf committed
718
            pos_emb = self.positional_embedding(fwd_pos_seq, inv_freq, bsz)
thomwolf's avatar
thomwolf committed
719

thomwolf's avatar
thomwolf committed
720
        pos_emb = pos_emb.to(next(self.parameters()))
thomwolf's avatar
thomwolf committed
721
722
        return pos_emb

thomwolf's avatar
thomwolf committed
723
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
724
                mems=None, perm_mask=None, target_mapping=None, inp_q=None, head_mask=None):
thomwolf's avatar
thomwolf committed
725
726
        """
        Args:
thomwolf's avatar
thomwolf committed
727
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
728
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
729
            input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
730
                0 for real tokens and 1 for padding.
731
732
733
734
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
735
            mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
thomwolf's avatar
thomwolf committed
736
737
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
738
739
740
            perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
741
                If None, each position attends to all the others.
742
743
            target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
744
745
746
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
747
            inp_q: [optional] float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            mem_len: int, the number of tokens to cache.
            reuse_len: int, the number of tokens in the currect batch to be cached
                and reused in the future.
            bi_data: bool, whether to use bidirectional input pipeline.
                Usually set to True during pretraining and False during finetuning.
            clamp_len: int, clamp all relative distances larger than clamp_len.
                -1 means no clamping.
            same_length: bool, whether to use the same attention length for each token.
            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
763
764
765
        # the original code for XLNet uses shapes [len, bsz] with the batch dimension at the end
        # but we want a unified interface in the library with the batch size on the first dimension
        # so we move here the first dimension (batch) to the end
thomwolf's avatar
thomwolf committed
766
        input_ids = input_ids.transpose(0, 1).contiguous()
thomwolf's avatar
thomwolf committed
767
        token_type_ids = token_type_ids.transpose(0, 1).contiguous() if token_type_ids is not None else None
768
        input_mask = input_mask.transpose(0, 1).contiguous() if input_mask is not None else None
thomwolf's avatar
thomwolf committed
769
        attention_mask = attention_mask.transpose(0, 1).contiguous() if attention_mask is not None else None
770
771
772
773
        perm_mask = perm_mask.permute(1, 2, 0).contiguous() if perm_mask is not None else None
        target_mapping = target_mapping.permute(1, 2, 0).contiguous() if target_mapping is not None else None
        inp_q = inp_q.transpose(0, 1).contiguous() if inp_q is not None else None

thomwolf's avatar
thomwolf committed
774
        qlen, bsz = input_ids.shape[0], input_ids.shape[1]
thomwolf's avatar
thomwolf committed
775
776
        mlen = mems[0].shape[0] if mems is not None else 0
        klen = mlen + qlen
thomwolf's avatar
thomwolf committed
777
778
779

        dtype_float = next(self.parameters()).dtype
        device = next(self.parameters()).device
thomwolf's avatar
thomwolf committed
780
781
782
783

        ##### Attention mask
        # causal attention mask
        if self.attn_type == 'uni':
thomwolf's avatar
thomwolf committed
784
            attn_mask = self.create_mask(qlen, mlen)
thomwolf's avatar
thomwolf committed
785
786
787
788
789
790
791
            attn_mask = attn_mask[:, :, None, None]
        elif self.attn_type == 'bi':
            attn_mask = None
        else:
            raise ValueError('Unsupported attention type: {}'.format(self.attn_type))

        # data mask: input mask & perm mask
792
793
794
795
796
797
798
799
800
        assert input_mask is None or attention_mask is None, "You can only use one of input_mask (uses 1 for padding) "
        "or attention_mask (uses 0 for padding, added for compatbility with BERT). Please choose one."
        if input_mask is None and attention_mask is not None:
            input_mask = 1.0 - attention_mask
        if input_mask is not None and perm_mask is not None:
            data_mask = input_mask[None] + perm_mask
        elif input_mask is not None and perm_mask is None:
            data_mask = input_mask[None]
        elif input_mask is None and perm_mask is not None:
thomwolf's avatar
thomwolf committed
801
802
803
804
805
806
            data_mask = perm_mask
        else:
            data_mask = None

        if data_mask is not None:
            # all mems can be attended to
thomwolf's avatar
thomwolf committed
807
            mems_mask = torch.zeros([data_mask.shape[0], mlen, bsz]).to(data_mask)
thomwolf's avatar
thomwolf committed
808
809
810
811
812
813
814
            data_mask = torch.cat([mems_mask, data_mask], dim=1)
            if attn_mask is None:
                attn_mask = data_mask[:, :, :, None]
            else:
                attn_mask += data_mask[:, :, :, None]

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
815
            attn_mask = (attn_mask > 0).to(dtype_float)
thomwolf's avatar
thomwolf committed
816
817

        if attn_mask is not None:
thomwolf's avatar
thomwolf committed
818
819
820
            non_tgt_mask = -torch.eye(qlen).to(attn_mask)
            non_tgt_mask = torch.cat([torch.zeros([qlen, mlen]).to(attn_mask), non_tgt_mask], dim=-1)
            non_tgt_mask = ((attn_mask + non_tgt_mask[:, :, None, None]) > 0).to(attn_mask)
thomwolf's avatar
thomwolf committed
821
822
823
        else:
            non_tgt_mask = None

thomwolf's avatar
thomwolf committed
824
        ##### Word embeddings and prepare h & g hidden states
thomwolf's avatar
thomwolf committed
825
        word_emb_k = self.word_embedding(input_ids)
thomwolf's avatar
thomwolf committed
826
827
828
        output_h = self.dropout(word_emb_k)
        if inp_q is not None:
            if target_mapping is not None:
829
                word_emb_q = self.mask_emb.expand(target_mapping.shape[0], bsz, -1)
thomwolf's avatar
thomwolf committed
830
831
            else:
                inp_q_ext = inp_q[:, :, None]
832
                word_emb_q = inp_q_ext * self.mask_emb + (1 - inp_q_ext) * word_emb_k
thomwolf's avatar
thomwolf committed
833
834
835
836
837
            output_g = self.dropout(word_emb_q)
        else:
            output_g = None

        ##### Segment embedding
thomwolf's avatar
thomwolf committed
838
839
        if token_type_ids is not None:
            # Convert `token_type_ids` to one-hot `seg_mat`
thomwolf's avatar
thomwolf committed
840
            mem_pad = torch.zeros([mlen, bsz], dtype=torch.long, device=device)
thomwolf's avatar
thomwolf committed
841
            cat_ids = torch.cat([mem_pad, token_type_ids], dim=0)
thomwolf's avatar
thomwolf committed
842
843

            # `1` indicates not in the same segment [qlen x klen x bsz]
thomwolf's avatar
thomwolf committed
844
            seg_mat = (token_type_ids[:, None] != cat_ids[None, :]).long()
thomwolf's avatar
thomwolf committed
845
            seg_mat = F.one_hot(seg_mat, num_classes=2).to(dtype_float)
thomwolf's avatar
thomwolf committed
846
847
848
849
        else:
            seg_mat = None

        ##### Positional encoding
thomwolf's avatar
thomwolf committed
850
        pos_emb = self.relative_positional_encoding(qlen, klen, bsz=bsz)
thomwolf's avatar
thomwolf committed
851
852
        pos_emb = self.dropout(pos_emb)

thomwolf's avatar
thomwolf committed
853
        # Prepare head mask if needed
thomwolf's avatar
thomwolf committed
854
855
        # 1.0 in head_mask indicate we keep the head
        # attention_probs has shape bsz x n_heads x N x N
thomwolf's avatar
thomwolf committed
856
857
        # input head_mask has shape [num_heads] or [num_hidden_layers x num_heads] (a head_mask for each layer)
        # and head_mask is converted to shape [num_hidden_layers x qlen x klen x bsz x n_head]
thomwolf's avatar
thomwolf committed
858
859
        if head_mask is not None:
            if head_mask.dim() == 1:
thomwolf's avatar
thomwolf committed
860
861
                head_mask = head_mask.unsqueeze(0).unsqueeze(0).unsqueeze(0).unsqueeze(0)
                head_mask = head_mask.expand(self.n_layer, -1, -1, -1, -1)
thomwolf's avatar
thomwolf committed
862
            elif head_mask.dim() == 2:
thomwolf's avatar
thomwolf committed
863
                head_mask = head_mask.unsqueeze(1).unsqueeze(1).unsqueeze(1)
thomwolf's avatar
thomwolf committed
864
865
            head_mask = head_mask.to(dtype=next(self.parameters()).dtype) # switch to fload if need + fp16 compatibility
        else:
thomwolf's avatar
thomwolf committed
866
            head_mask = [None] * self.n_layer
thomwolf's avatar
thomwolf committed
867

868
        new_mems = ()
thomwolf's avatar
thomwolf committed
869
870
871
        if mems is None:
            mems = [None] * len(self.layer)

872
        attentions = []
873
        hidden_states = []
thomwolf's avatar
thomwolf committed
874
875
        for i, layer_module in enumerate(self.layer):
            # cache new mems
876
            new_mems = new_mems + (self.cache_mem(output_h, mems[i]),)
877
878
879
880
881
            if self.output_hidden_states:
                hidden_states.append((output_h, output_g) if output_g is not None else output_h)

            outputs = layer_module(output_h, output_g, attn_mask_h=non_tgt_mask, attn_mask_g=attn_mask,
                                   r=pos_emb, seg_mat=seg_mat, mems=mems[i], target_mapping=target_mapping,
thomwolf's avatar
thomwolf committed
882
                                   head_mask=head_mask[i])
883
884
            output_h, output_g = outputs[:2]
            if self.output_attentions:
thomwolf's avatar
thomwolf committed
885
                attentions.append(outputs[2])
886
887
888

        # Add last hidden state
        if self.output_hidden_states:
thomwolf's avatar
thomwolf committed
889
            hidden_states.append((output_h, output_g) if output_g is not None else output_h)
thomwolf's avatar
thomwolf committed
890
891
892

        output = self.dropout(output_g if output_g is not None else output_h)

893
        # Prepare outputs, we transpose back here to shape [bsz, len, hidden_dim] (cf. beginning of forward() method)
894
        outputs = (output.permute(1, 0, 2).contiguous(), new_mems)
895
896
        if self.output_hidden_states:
            if output_g is not None:
897
                hidden_states = tuple(h.permute(1, 0, 2).contiguous() for hs in hidden_states for h in hs)
898
            else:
899
                hidden_states = tuple(hs.permute(1, 0, 2).contiguous() for hs in hidden_states)
900
            outputs = outputs + (hidden_states,)
901
        if self.output_attentions:
902
            attentions = tuple(t.permute(2, 3, 0, 1).contiguous() for t in attentions)
903
            outputs = outputs + (attentions,)
904

905
        return outputs  # outputs, new_mems, (hidden_states), (attentions)
thomwolf's avatar
thomwolf committed
906
907
908


class XLNetLMHeadModel(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
909
910
911
912
913
914
915
916
917
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
thomwolf's avatar
thomwolf committed
918
        input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
919
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
920
        input_mask: [optional] float32 Tensor in shape [bsz, len], the input mask.
921
            0 for real tokens and 1 for padding.
922
923
924
925
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
        mems: [optional] a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: [optional] float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: [optional] float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: [optional] float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
thomwolf's avatar
thomwolf committed
942
943
944
945
946
947


    Outputs: Tuple of (encoded_layers, pooled_output)
        `encoded_layers`: controled by `output_all_encoded_layers` argument:
            - `output_all_encoded_layers=True`: outputs a list of the full sequences of encoded-hidden-states at the end
                of each attention block (i.e. 12 full sequences for XLNet-base, 24 for XLNet-large), each
thomwolf's avatar
thomwolf committed
948
                encoded-hidden-state is a torch.FloatTensor of size [batch_size, sequence_length, d_model],
thomwolf's avatar
thomwolf committed
949
            - `output_all_encoded_layers=False`: outputs only the full sequence of hidden-states corresponding
thomwolf's avatar
thomwolf committed
950
951
                to the last attention block of shape [batch_size, sequence_length, d_model],
        `pooled_output`: a torch.FloatTensor of size [batch_size, d_model] which is the output of a
thomwolf's avatar
thomwolf committed
952
953
954
955
956
957
958
            classifier pretrained on top of the hidden state associated to the first character of the
            input (`CLS`) to train on the Next-Sentence task (see XLNet's paper).

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
959
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
960
961
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

thomwolf's avatar
thomwolf committed
962
    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
thomwolf's avatar
thomwolf committed
963
        n_layer=12, num_attention_heads=12, intermediate_size=3072)
thomwolf's avatar
thomwolf committed
964
965

    model = modeling.XLNetModel(config=config)
966
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
967
968
    ```
    """
thomwolf's avatar
thomwolf committed
969
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
970
        super(XLNetLMHeadModel, self).__init__(config)
thomwolf's avatar
thomwolf committed
971
972
        self.attn_type = config.attn_type
        self.same_length = config.same_length
973
        self.torchscript = config.torchscript
thomwolf's avatar
thomwolf committed
974

thomwolf's avatar
thomwolf committed
975
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
976
        self.lm_loss = nn.Linear(config.d_model, config.n_token, bias=True)
thomwolf's avatar
thomwolf committed
977

thomwolf's avatar
thomwolf committed
978
979
        # Tie weights

thomwolf's avatar
thomwolf committed
980
        self.apply(self.init_weights)
thomwolf's avatar
thomwolf committed
981
        self.tie_weights()
thomwolf's avatar
thomwolf committed
982

thomwolf's avatar
thomwolf committed
983
984
    def tie_weights(self):
        """ Make sure we are sharing the embeddings
thomwolf's avatar
thomwolf committed
985
        """
986
987
988
989
        if self.torchscript:
            self.lm_loss.weight = nn.Parameter(self.transformer.word_embedding.weight.clone())
        else:
            self.lm_loss.weight = self.transformer.word_embedding.weight
thomwolf's avatar
thomwolf committed
990

thomwolf's avatar
thomwolf committed
991
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
992
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
993
                labels=None, head_mask=None):
thomwolf's avatar
thomwolf committed
994
995
        """
        Args:
thomwolf's avatar
thomwolf committed
996
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
997
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
998
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
thomwolf's avatar
thomwolf committed
999
                0 for real tokens and 1 for padding.
1000
1001
1002
1003
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
thomwolf's avatar
thomwolf committed
1004
1005
1006
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
1007
1008
1009
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
thomwolf's avatar
thomwolf committed
1010
                If None, each position attends to all the others.
1011
1012
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
thomwolf's avatar
thomwolf committed
1013
1014
1015
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
1016
            inp_q: float32 Tensor in shape [bsz, len].
thomwolf's avatar
thomwolf committed
1017
1018
1019
1020
1021
1022
1023
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.

            summary_type: str, "last", "first", "mean", or "attn". The method
                to pool the input to get a vector representation.
        """
thomwolf's avatar
thomwolf committed
1024
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1025
1026
1027
                                               mems, perm_mask, target_mapping, inp_q, head_mask)

        logits = self.lm_loss(transformer_outputs[0])
1028

1029
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1030

1031
        if labels is not None:
1032
1033
1034
            # Flatten the tokens
            loss_fct = CrossEntropyLoss(ignore_index=-1)
            loss = loss_fct(logits.view(-1, logits.size(-1)),
1035
                            labels.view(-1))
1036
            outputs = (loss,) + outputs
1037

1038
        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052


class XLNetForSequenceClassification(XLNetPreTrainedModel):
    """XLNet model ("XLNet: Generalized Autoregressive Pretraining for Language Understanding").

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False
        `summary_type`: str, "last", "first", "mean", or "attn". The method
            to pool the input to get a vector representation. Default: last

    Inputs:
thomwolf's avatar
thomwolf committed
1053
        input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1054
        token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1055
        input_mask: float32 Tensor in shape [bsz, len], the input mask.
1056
            0 for real tokens and 1 for padding.
1057
1058
1059
1060
        attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
        mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
            from previous batches. The length of the list equals n_layer.
            If None, no memory is used.
        perm_mask: float32 Tensor in shape [bsz, len, len].
            If perm_mask[k, i, j] = 0, i attend to j in batch k;
            if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
            If None, each position attends to all the others.
        target_mapping: float32 Tensor in shape [bsz, num_predict, len].
            If target_mapping[k, i, j] = 1, the i-th predict in batch k is
            on the j-th token.
            Only used during pretraining for partial prediction.
            Set to None during finetuning.
        inp_q: float32 Tensor in shape [bsz, len].
            1 for tokens with losses and 0 for tokens without losses.
            Only used during pretraining for two-stream attention.
            Set to None during finetuning.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.


    Outputs: Tuple of (logits or loss, mems)
        `logits or loss`:
1083
            if labels is None:
1084
1085
1086
1087
1088
                Token logits with shape [batch_size, sequence_length] 
            else:
                CrossEntropy loss with the targets
        `new_mems`: list (num layers) of updated mem states at the entry of each layer
            each mem state is a torch.FloatTensor of size [self.config.mem_len, batch_size, self.config.d_model]
1089
            Note that the first two dimensions are transposed in `mems` with regards to `input_ids` and `labels`
1090
1091
1092
1093
1094

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1095
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
1096
1097
1098
1099
1100
1101
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = modeling.XLNetConfig(vocab_size_or_config_json_file=32000, d_model=768,
        n_layer=12, num_attention_heads=12, intermediate_size=3072)

    model = modeling.XLNetModel(config=config)
1102
    all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask)
1103
1104
    ```
    """
thomwolf's avatar
thomwolf committed
1105
    def __init__(self, config):
1106
        super(XLNetForSequenceClassification, self).__init__(config)
thomwolf's avatar
thomwolf committed
1107
        self.num_labels = config.num_labels
1108

thomwolf's avatar
thomwolf committed
1109
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1110
        self.sequence_summary = SequenceSummary(config)
thomwolf's avatar
thomwolf committed
1111
        self.logits_proj = nn.Linear(config.d_model, config.num_labels)
1112

thomwolf's avatar
thomwolf committed
1113
        self.apply(self.init_weights)
1114

thomwolf's avatar
thomwolf committed
1115
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
1116
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
1117
                labels=None, head_mask=None):
1118
1119
        """
        Args:
thomwolf's avatar
thomwolf committed
1120
            input_ids: int32 Tensor in shape [bsz, len], the input token IDs.
thomwolf's avatar
thomwolf committed
1121
            token_type_ids: int32 Tensor in shape [bsz, len], the input segment IDs.
1122
            input_mask: float32 Tensor in shape [bsz, len], the input mask.
1123
                0 for real tokens and 1 for padding.
1124
1125
1126
1127
            attention_mask: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
                but with 1 for real tokens and 0 for padding.
                Added for easy compatibility with the BERT model (which uses this negative masking).
                You can only uses one among `input_mask` and `attention_mask`
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
            mems: a list of float32 Tensors in shape [mem_len, bsz, d_model], memory
                from previous batches. The length of the list equals n_layer.
                If None, no memory is used.
            perm_mask: float32 Tensor in shape [bsz, len, len].
                If perm_mask[k, i, j] = 0, i attend to j in batch k;
                if perm_mask[k, i, j] = 1, i does not attend to j in batch k.
                If None, each position attends to all the others.
            target_mapping: float32 Tensor in shape [bsz, num_predict, len].
                If target_mapping[k, i, j] = 1, the i-th predict in batch k is
                on the j-th token.
                Only used during pretraining for partial prediction.
                Set to None during finetuning.
            inp_q: float32 Tensor in shape [bsz, len].
                1 for tokens with losses and 0 for tokens without losses.
                Only used during pretraining for two-stream attention.
                Set to None during finetuning.
        """
thomwolf's avatar
thomwolf committed
1145
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
1146
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
1147
        output = transformer_outputs[0]
thomwolf's avatar
thomwolf committed
1148

1149
        output = self.sequence_summary(output)
1150
        logits = self.logits_proj(output)
thomwolf's avatar
thomwolf committed
1151

1152
        outputs = (logits,) + transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1153

1154
1155
1156
        if labels is not None:
            if self.num_labels == 1:
                #  We are doing regression
1157
                loss_fct = MSELoss()
1158
                loss = loss_fct(logits.view(-1), labels.view(-1))
1159
            else:
1160
1161
                loss_fct = CrossEntropyLoss()
                loss = loss_fct(logits.view(-1, self.num_labels), labels.view(-1))
1162
            outputs = (loss,) + outputs
1163
1164

        return outputs  # return (loss), logits, (mems), (hidden states), (attentions)
thomwolf's avatar
thomwolf committed
1165

thomwolf's avatar
thomwolf committed
1166
1167

class XLNetForQuestionAnswering(XLNetPreTrainedModel):
thomwolf's avatar
thomwolf committed
1168
    """ XLNet model for Question Answering (span extraction).
thomwolf's avatar
thomwolf committed
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
    This module is composed of the XLNet model with a linear layer on top of
    the sequence output that computes start_logits and end_logits

    Params:
        `config`: a XLNetConfig class instance with the configuration to build a new model
        `output_attentions`: If True, also output attentions weights computed by the model at each layer. Default: False
        `keep_multihead_output`: If True, saves output of the multi-head attention module with its gradient.
            This can be used to compute head importance metrics. Default: False

    Inputs:
        `input_ids`: a torch.LongTensor of shape [batch_size, sequence_length]
            with the word token indices in the vocabulary(see the tokens preprocessing logic in the scripts
1181
            `run_bert_extract_features.py`, `run_bert_classifier.py` and `run_bert_squad.py`)
thomwolf's avatar
thomwolf committed
1182
1183
1184
        `token_type_ids`: an optional torch.LongTensor of shape [batch_size, sequence_length] with the token
            types indices selected in [0, 1]. Type 0 corresponds to a `sentence A` and type 1 corresponds to
            a `sentence B` token (see XLNet paper for more details).
1185
1186
1187
1188
1189
        `attention_mask`: [optional] float32 Tensor, SAME FUNCTION as `input_mask`
            but with 1 for real tokens and 0 for padding.
            Added for easy compatibility with the BERT model (which uses this negative masking).
            You can only uses one among `input_mask` and `attention_mask`
        `input_mask`: an optional torch.LongTensor of shape [batch_size, sequence_length] with indices
thomwolf's avatar
thomwolf committed
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
            selected in [0, 1]. It's a mask to be used if the input sequence length is smaller than the max
            input sequence length in the current batch. It's the mask that we typically use for attention when
            a batch has varying length sentences.
        `start_positions`: position of the first token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `end_positions`: position of the last token for the labeled span: torch.LongTensor of shape [batch_size].
            Positions are clamped to the length of the sequence and position outside of the sequence are not taken
            into account for computing the loss.
        `head_mask`: an optional torch.Tensor of shape [num_heads] or [num_layers, num_heads] with indices between 0 and 1.
            It's a mask to be used to nullify some heads of the transformer. 1.0 => head is fully masked, 0.0 => head is not masked.

    Outputs:
        if `start_positions` and `end_positions` are not `None`:
            Outputs the total_loss which is the sum of the CrossEntropy loss for the start and end token positions.
        if `start_positions` or `end_positions` is `None`:
            Outputs a tuple of start_logits, end_logits which are the logits respectively for the start and end
            position tokens of shape [batch_size, sequence_length].

    Example usage:
    ```python
    # Already been converted into WordPiece token ids
    input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]])
1213
    input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]])
thomwolf's avatar
thomwolf committed
1214
1215
1216
1217
1218
1219
    token_type_ids = torch.LongTensor([[0, 0, 1], [0, 1, 0]])

    config = XLNetConfig(vocab_size_or_config_json_file=32000, hidden_size=768,
        num_hidden_layers=12, num_attention_heads=12, intermediate_size=3072)

    model = XLNetForQuestionAnswering(config)
1220
    start_logits, end_logits = model(input_ids, token_type_ids, input_mask)
thomwolf's avatar
thomwolf committed
1221
1222
    ```
    """
thomwolf's avatar
thomwolf committed
1223
    def __init__(self, config):
thomwolf's avatar
thomwolf committed
1224
        super(XLNetForQuestionAnswering, self).__init__(config)
thomwolf's avatar
thomwolf committed
1225
1226
        self.start_n_top = config.start_n_top
        self.end_n_top = config.end_n_top
1227

thomwolf's avatar
thomwolf committed
1228
        self.transformer = XLNetModel(config)
thomwolf's avatar
thomwolf committed
1229
1230
1231
        self.start_logits = PoolerStartLogits(config)
        self.end_logits = PoolerEndLogits(config)
        self.answer_class = PoolerAnswerClass(config)
thomwolf's avatar
thomwolf committed
1232

thomwolf's avatar
thomwolf committed
1233
1234
        self.apply(self.init_weights)

thomwolf's avatar
thomwolf committed
1235
    def forward(self, input_ids, token_type_ids=None, input_mask=None, attention_mask=None,
thomwolf's avatar
thomwolf committed
1236
                mems=None, perm_mask=None, target_mapping=None, inp_q=None,
thomwolf's avatar
thomwolf committed
1237
1238
                start_positions=None, end_positions=None, cls_index=None, is_impossible=None, p_mask=None,
                head_mask=None):
thomwolf's avatar
thomwolf committed
1239
        transformer_outputs = self.transformer(input_ids, token_type_ids, input_mask, attention_mask,
thomwolf's avatar
thomwolf committed
1240
1241
1242
                                               mems, perm_mask, target_mapping, inp_q, head_mask)
        hidden_states = transformer_outputs[0]
        start_logits = self.start_logits(hidden_states, p_mask)
thomwolf's avatar
thomwolf committed
1243

thomwolf's avatar
thomwolf committed
1244
        outputs = transformer_outputs[1:]  # Keep mems, hidden states, attentions if there are in it
1245

thomwolf's avatar
thomwolf committed
1246
1247
1248
1249
1250
        if start_positions is not None and end_positions is not None:
            # If we are on multi-GPU, let's remove the dimension added by batch splitting
            for x in (start_positions, end_positions, cls_index, is_impossible):
                if x is not None and x.dim() > 1:
                    x.squeeze_(-1)
thomwolf's avatar
thomwolf committed
1251

thomwolf's avatar
thomwolf committed
1252
1253
            # during training, compute the end logits based on the ground truth of the start position
            end_logits = self.end_logits(hidden_states, start_positions=start_positions, p_mask=p_mask)
1254

thomwolf's avatar
thomwolf committed
1255
            loss_fct = CrossEntropyLoss()
thomwolf's avatar
thomwolf committed
1256
1257
1258
            start_loss = loss_fct(start_logits, start_positions)
            end_loss = loss_fct(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2
1259

thomwolf's avatar
thomwolf committed
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
            if cls_index is not None and is_impossible is not None:
                # Predict answerability from the representation of CLS and START
                cls_logits = self.answer_class(hidden_states, start_positions=start_positions, cls_index=cls_index)
                loss_fct_cls = nn.BCEWithLogitsLoss()
                cls_loss = loss_fct_cls(cls_logits, is_impossible)

                # note(zhiliny): by default multiply the loss by 0.5 so that the scale is
                # comparable to start_loss and end_loss
                total_loss += cls_loss * 0.5
                outputs = (total_loss, start_logits, end_logits, cls_logits) + outputs
            else:
                outputs = (total_loss, start_logits, end_logits) + outputs

        else:
            # during inference, compute the end logits based on beam search
            bsz, slen, hsz = hidden_states.size()
            start_log_probs = F.softmax(start_logits, dim=-1) # shape (bsz, slen)

            start_top_log_probs, start_top_index = torch.topk(start_log_probs, self.start_n_top, dim=-1) # shape (bsz, start_n_top)
            start_top_index = start_top_index.unsqueeze(-1).expand(-1, -1, hsz) # shape (bsz, start_n_top, hsz)
            start_states = torch.gather(hidden_states, -2, start_top_index) # shape (bsz, start_n_top, hsz)
            start_states = start_states.unsqueeze(1).expand(-1, slen, -1, -1) # shape (bsz, slen, start_n_top, hsz)

            hidden_states_expanded = hidden_states.unsqueeze(2).expand_as(start_states) # shape (bsz, slen, start_n_top, hsz)
            p_mask = p_mask.unsqueeze(-1) if p_mask is not None else None
            end_logits = self.end_logits(hidden_states_expanded, start_states=start_states, p_mask=p_mask)
            end_log_probs = F.softmax(end_logits, dim=1) # shape (bsz, slen, start_n_top)

            end_top_log_probs, end_top_index = torch.topk(end_log_probs, self.end_n_top, dim=1) # shape (bsz, end_n_top, start_n_top)
            end_top_log_probs = end_top_log_probs.view(-1, self.start_n_top * self.end_n_top)
            end_top_index = end_top_index.view(-1, self.start_n_top * self.end_n_top)

            start_states = torch.einsum("blh,bl->bh", hidden_states, start_log_probs)
            cls_logits = self.answer_class(hidden_states, start_states=start_states, cls_index=cls_index)

            outputs = (start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits) + outputs

        # return start_top_log_probs, start_top_index, end_top_log_probs, end_top_index, cls_logits, mems, (hidden states), (attentions)
        # or (if labels are provided) total_loss, start_logits, end_logits, (cls_logits), mems, (hidden states), (attentions)
        return outputs