test_modeling_tf_roberta.py 10.5 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17
18

import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import RobertaConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26
27
28


if is_tf_available():
    import tensorflow as tf
    import numpy
29
30
31
32
33
    from transformers.modeling_tf_roberta import (
        TFRobertaModel,
        TFRobertaForMaskedLM,
        TFRobertaForSequenceClassification,
        TFRobertaForTokenClassification,
34
        TFRobertaForQuestionAnswering,
35
        TFRobertaForMultipleChoice,
36
        TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
37
    )
thomwolf's avatar
thomwolf committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class TFRobertaModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
            return_dict=True,
99
100
101
102
103
104
105
106
107
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_roberta_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
108
        result = model(inputs)
109
110

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
111
        result = model(inputs)
112

Sylvain Gugger's avatar
Sylvain Gugger committed
113
        result = model(input_ids)
114

115
        self.parent.assertEqual(result.last_hidden_state.shape, (self.batch_size, self.seq_length, self.hidden_size))
116
117
118
119
120

    def create_and_check_roberta_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaForMaskedLM(config=config)
Sylvain Gugger's avatar
Sylvain Gugger committed
121
        result = model([input_ids, input_mask, token_type_ids])
122
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.vocab_size))
123
124
125
126
127
128
129

    def create_and_check_roberta_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFRobertaForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
130
        result = model(inputs)
131
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.seq_length, self.num_labels))
132
133
134
135
136
137

    def create_and_check_roberta_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
138
        result = model(inputs)
139
140
        self.parent.assertEqual(result.start_logits.shape, (self.batch_size, self.seq_length))
        self.parent.assertEqual(result.end_logits.shape, (self.batch_size, self.seq_length))
141

142
143
144
145
146
147
148
149
150
151
152
153
154
    def create_and_check_roberta_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFRobertaForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
155
        result = model(inputs)
156
        self.parent.assertEqual(result.logits.shape, (self.batch_size, self.num_choices))
157

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


173
@require_tf
174
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
175

176
    all_model_classes = (
177
178
179
180
181
182
183
184
185
        (
            TFRobertaModel,
            TFRobertaForMaskedLM,
            TFRobertaForSequenceClassification,
            TFRobertaForTokenClassification,
            TFRobertaForQuestionAnswering,
        )
        if is_tf_available()
        else ()
186
    )
thomwolf's avatar
thomwolf committed
187
188

    def setUp(self):
189
        self.model_tester = TFRobertaModelTester(self)
thomwolf's avatar
thomwolf committed
190
191
192
193
194
195
196
197
198
199
200
201
202
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_roberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)

Lysandre's avatar
Lysandre committed
203
204
205
206
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)

207
208
209
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_question_answering(*config_and_inputs)
210
211
212
213

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_multiple_choice(*config_and_inputs)
214

215
    @slow
thomwolf's avatar
thomwolf committed
216
    def test_model_from_pretrained(self):
217
        for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
218
            model = TFRobertaModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
219
220
221
            self.assertIsNotNone(model)


222
@require_tf
thomwolf's avatar
thomwolf committed
223
class TFRobertaModelIntegrationTest(unittest.TestCase):
224
    @slow
thomwolf's avatar
thomwolf committed
225
    def test_inference_masked_lm(self):
226
        model = TFRobertaForMaskedLM.from_pretrained("roberta-base")
227

228
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
229
230
        output = model(input_ids)[0]
        expected_shape = [1, 11, 50265]
231
        self.assertEqual(list(output.numpy().shape), expected_shape)
thomwolf's avatar
thomwolf committed
232
233
        # compare the actual values for a slice.
        expected_slice = tf.constant(
234
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
thomwolf's avatar
thomwolf committed
235
        )
236
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
237

238
    @slow
thomwolf's avatar
thomwolf committed
239
    def test_inference_no_head(self):
240
        model = TFRobertaModel.from_pretrained("roberta-base")
241

242
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
243
244
245
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = tf.constant(
246
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
thomwolf's avatar
thomwolf committed
247
        )
248
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
249

250
    @slow
thomwolf's avatar
thomwolf committed
251
    def test_inference_classification_head(self):
252
        model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
253

254
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
255
256
        output = model(input_ids)[0]
        expected_shape = [1, 3]
257
258
        self.assertEqual(list(output.numpy().shape), expected_shape)
        expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
259
        self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))