test_modeling_tf_roberta.py 11.3 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17
18

import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
20
from transformers import RobertaConfig, is_tf_available

21
from .test_configuration_common import ConfigTester
22
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
23
from .utils import require_tf, slow
thomwolf's avatar
thomwolf committed
24
25
26
27
28


if is_tf_available():
    import tensorflow as tf
    import numpy
29
30
31
32
33
    from transformers.modeling_tf_roberta import (
        TFRobertaModel,
        TFRobertaForMaskedLM,
        TFRobertaForSequenceClassification,
        TFRobertaForTokenClassification,
34
        TFRobertaForQuestionAnswering,
35
36
        TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP,
    )
thomwolf's avatar
thomwolf committed
37
38


39
@require_tf
40
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
41

42
    all_model_classes = (
43
44
45
46
47
48
49
50
51
        (
            TFRobertaModel,
            TFRobertaForMaskedLM,
            TFRobertaForSequenceClassification,
            TFRobertaForTokenClassification,
            TFRobertaForQuestionAnswering,
        )
        if is_tf_available()
        else ()
52
    )
thomwolf's avatar
thomwolf committed
53
54

    class TFRobertaModelTester(object):
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
        def __init__(
            self,
            parent,
            batch_size=13,
            seq_length=7,
            is_training=True,
            use_input_mask=True,
            use_token_type_ids=True,
            use_labels=True,
            vocab_size=99,
            hidden_size=32,
            num_hidden_layers=5,
            num_attention_heads=4,
            intermediate_size=37,
            hidden_act="gelu",
            hidden_dropout_prob=0.1,
            attention_probs_dropout_prob=0.1,
            max_position_embeddings=512,
            type_vocab_size=16,
            type_sequence_label_size=2,
            initializer_range=0.02,
            num_labels=3,
            num_choices=4,
            scope=None,
        ):
thomwolf's avatar
thomwolf committed
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
            self.parent = parent
            self.batch_size = batch_size
            self.seq_length = seq_length
            self.is_training = is_training
            self.use_input_mask = use_input_mask
            self.use_token_type_ids = use_token_type_ids
            self.use_labels = use_labels
            self.vocab_size = vocab_size
            self.hidden_size = hidden_size
            self.num_hidden_layers = num_hidden_layers
            self.num_attention_heads = num_attention_heads
            self.intermediate_size = intermediate_size
            self.hidden_act = hidden_act
            self.hidden_dropout_prob = hidden_dropout_prob
            self.attention_probs_dropout_prob = attention_probs_dropout_prob
            self.max_position_embeddings = max_position_embeddings
            self.type_vocab_size = type_vocab_size
            self.type_sequence_label_size = type_sequence_label_size
            self.initializer_range = initializer_range
            self.num_labels = num_labels
            self.num_choices = num_choices
            self.scope = scope

        def prepare_config_and_inputs(self):
            input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

            input_mask = None
            if self.use_input_mask:
                input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

            token_type_ids = None
            if self.use_token_type_ids:
                token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

            sequence_labels = None
            token_labels = None
            choice_labels = None
            if self.use_labels:
                sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
                token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
                choice_labels = ids_tensor([self.batch_size], self.num_choices)

            config = RobertaConfig(
thomwolf's avatar
thomwolf committed
123
                vocab_size=self.vocab_size,
thomwolf's avatar
thomwolf committed
124
125
126
127
128
129
130
131
132
                hidden_size=self.hidden_size,
                num_hidden_layers=self.num_hidden_layers,
                num_attention_heads=self.num_attention_heads,
                intermediate_size=self.intermediate_size,
                hidden_act=self.hidden_act,
                hidden_dropout_prob=self.hidden_dropout_prob,
                attention_probs_dropout_prob=self.attention_probs_dropout_prob,
                max_position_embeddings=self.max_position_embeddings,
                type_vocab_size=self.type_vocab_size,
133
134
                initializer_range=self.initializer_range,
            )
thomwolf's avatar
thomwolf committed
135
136
137

            return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

138
139
140
        def create_and_check_roberta_model(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
141
            model = TFRobertaModel(config=config)
142
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
thomwolf's avatar
thomwolf committed
143
144
145
146
147
148
149
150
151
152
153
            sequence_output = model(inputs)[0]

            inputs = [input_ids, input_mask]
            sequence_output = model(inputs)[0]

            sequence_output = model(input_ids)[0]

            result = {
                "sequence_output": sequence_output.numpy(),
            }
            self.parent.assertListEqual(
154
155
                list(result["sequence_output"].shape), [self.batch_size, self.seq_length, self.hidden_size]
            )
thomwolf's avatar
thomwolf committed
156

157
158
159
        def create_and_check_roberta_for_masked_lm(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
thomwolf's avatar
thomwolf committed
160
161
162
163
164
165
            model = TFRobertaForMaskedLM(config=config)
            prediction_scores = model([input_ids, input_mask, token_type_ids])[0]
            result = {
                "prediction_scores": prediction_scores.numpy(),
            }
            self.parent.assertListEqual(
166
167
                list(result["prediction_scores"].shape), [self.batch_size, self.seq_length, self.vocab_size]
            )
thomwolf's avatar
thomwolf committed
168

169
170
171
        def create_and_check_roberta_for_token_classification(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
Matt Maybeno's avatar
Matt Maybeno committed
172
173
            config.num_labels = self.num_labels
            model = TFRobertaForTokenClassification(config=config)
174
175
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            (logits,) = model(inputs)
Matt Maybeno's avatar
Matt Maybeno committed
176
177
178
179
            result = {
                "logits": logits.numpy(),
            }
            self.parent.assertListEqual(
180
181
                list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels]
            )
Matt Maybeno's avatar
Matt Maybeno committed
182

183
184
185
186
187
188
189
190
191
192
193
194
195
        def create_and_check_roberta_for_question_answering(
            self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
        ):
            model = TFRobertaForQuestionAnswering(config=config)
            inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
            start_logits, end_logits = model(inputs)
            result = {
                "start_logits": start_logits.numpy(),
                "end_logits": end_logits.numpy(),
            }
            self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
            self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

thomwolf's avatar
thomwolf committed
196
197
        def prepare_config_and_inputs_for_common(self):
            config_and_inputs = self.prepare_config_and_inputs()
198
199
200
201
202
203
204
205
206
207
            (
                config,
                input_ids,
                token_type_ids,
                input_mask,
                sequence_labels,
                token_labels,
                choice_labels,
            ) = config_and_inputs
            inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
thomwolf's avatar
thomwolf committed
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
            return config, inputs_dict

    def setUp(self):
        self.model_tester = TFRobertaModelTest.TFRobertaModelTester(self)
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_roberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)

Lysandre's avatar
Lysandre committed
225
226
227
228
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)

229
230
231
232
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_question_answering(*config_and_inputs)

233
    @slow
thomwolf's avatar
thomwolf committed
234
235
    def test_model_from_pretrained(self):
        for model_name in list(TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_MAP.keys())[:1]:
236
            model = TFRobertaModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
237
238
239
240
            self.assertIsNotNone(model)


class TFRobertaModelIntegrationTest(unittest.TestCase):
241
    @slow
thomwolf's avatar
thomwolf committed
242
    def test_inference_masked_lm(self):
243
        model = TFRobertaForMaskedLM.from_pretrained("roberta-base")
244

245
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
246
247
        output = model(input_ids)[0]
        expected_shape = [1, 11, 50265]
248
        self.assertEqual(list(output.numpy().shape), expected_shape)
thomwolf's avatar
thomwolf committed
249
250
        # compare the actual values for a slice.
        expected_slice = tf.constant(
251
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
thomwolf's avatar
thomwolf committed
252
        )
253
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
254

255
    @slow
thomwolf's avatar
thomwolf committed
256
    def test_inference_no_head(self):
257
        model = TFRobertaModel.from_pretrained("roberta-base")
258

259
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
260
261
262
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = tf.constant(
263
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
thomwolf's avatar
thomwolf committed
264
        )
265
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
266

267
    @slow
thomwolf's avatar
thomwolf committed
268
    def test_inference_classification_head(self):
269
        model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
270

271
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
272
273
        output = model(input_ids)[0]
        expected_shape = [1, 3]
274
275
        self.assertEqual(list(output.numpy().shape), expected_shape)
        expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
276
        self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))