test_modeling_tf_roberta.py 10.6 KB
Newer Older
thomwolf's avatar
thomwolf committed
1
2
3
4
5
6
7
8
9
10
11
12
13
14
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
Aymeric Augustin's avatar
Aymeric Augustin committed
15

thomwolf's avatar
thomwolf committed
16
17
18

import unittest

Aymeric Augustin's avatar
Aymeric Augustin committed
19
from transformers import RobertaConfig, is_tf_available
20
from transformers.testing_utils import require_tf, slow
Aymeric Augustin's avatar
Aymeric Augustin committed
21

22
from .test_configuration_common import ConfigTester
23
from .test_modeling_tf_common import TFModelTesterMixin, ids_tensor
thomwolf's avatar
thomwolf committed
24
25
26
27
28


if is_tf_available():
    import tensorflow as tf
    import numpy
29
30
31
32
33
    from transformers.modeling_tf_roberta import (
        TFRobertaModel,
        TFRobertaForMaskedLM,
        TFRobertaForSequenceClassification,
        TFRobertaForTokenClassification,
34
        TFRobertaForQuestionAnswering,
35
        TFRobertaForMultipleChoice,
36
        TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST,
37
    )
thomwolf's avatar
thomwolf committed
38
39


40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
class TFRobertaModelTester:
    def __init__(
        self, parent,
    ):
        self.parent = parent
        self.batch_size = 13
        self.seq_length = 7
        self.is_training = True
        self.use_input_mask = True
        self.use_token_type_ids = True
        self.use_labels = True
        self.vocab_size = 99
        self.hidden_size = 32
        self.num_hidden_layers = 5
        self.num_attention_heads = 4
        self.intermediate_size = 37
        self.hidden_act = "gelu"
        self.hidden_dropout_prob = 0.1
        self.attention_probs_dropout_prob = 0.1
        self.max_position_embeddings = 512
        self.type_vocab_size = 16
        self.type_sequence_label_size = 2
        self.initializer_range = 0.02
        self.num_labels = 3
        self.num_choices = 4
        self.scope = None

    def prepare_config_and_inputs(self):
        input_ids = ids_tensor([self.batch_size, self.seq_length], self.vocab_size)

        input_mask = None
        if self.use_input_mask:
            input_mask = ids_tensor([self.batch_size, self.seq_length], vocab_size=2)

        token_type_ids = None
        if self.use_token_type_ids:
            token_type_ids = ids_tensor([self.batch_size, self.seq_length], self.type_vocab_size)

        sequence_labels = None
        token_labels = None
        choice_labels = None
        if self.use_labels:
            sequence_labels = ids_tensor([self.batch_size], self.type_sequence_label_size)
            token_labels = ids_tensor([self.batch_size, self.seq_length], self.num_labels)
            choice_labels = ids_tensor([self.batch_size], self.num_choices)

        config = RobertaConfig(
            vocab_size=self.vocab_size,
            hidden_size=self.hidden_size,
            num_hidden_layers=self.num_hidden_layers,
            num_attention_heads=self.num_attention_heads,
            intermediate_size=self.intermediate_size,
            hidden_act=self.hidden_act,
            hidden_dropout_prob=self.hidden_dropout_prob,
            attention_probs_dropout_prob=self.attention_probs_dropout_prob,
            max_position_embeddings=self.max_position_embeddings,
            type_vocab_size=self.type_vocab_size,
            initializer_range=self.initializer_range,
Sylvain Gugger's avatar
Sylvain Gugger committed
98
            return_dict=True,
99
100
101
102
103
104
105
106
107
        )

        return config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels

    def create_and_check_roberta_model(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaModel(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
108
        result = model(inputs)
109
110

        inputs = [input_ids, input_mask]
Sylvain Gugger's avatar
Sylvain Gugger committed
111
        result = model(inputs)
112

Sylvain Gugger's avatar
Sylvain Gugger committed
113
        result = model(input_ids)
114
115

        self.parent.assertListEqual(
Sylvain Gugger's avatar
Sylvain Gugger committed
116
            list(result["last_hidden_state"].shape), [self.batch_size, self.seq_length, self.hidden_size]
117
118
119
120
121
122
        )

    def create_and_check_roberta_for_masked_lm(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaForMaskedLM(config=config)
Sylvain Gugger's avatar
Sylvain Gugger committed
123
124
        result = model([input_ids, input_mask, token_type_ids])
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.vocab_size])
125
126
127
128
129
130
131

    def create_and_check_roberta_for_token_classification(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_labels = self.num_labels
        model = TFRobertaForTokenClassification(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
132
        result = model(inputs)
133
134
135
136
137
138
139
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.seq_length, self.num_labels])

    def create_and_check_roberta_for_question_answering(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        model = TFRobertaForQuestionAnswering(config=config)
        inputs = {"input_ids": input_ids, "attention_mask": input_mask, "token_type_ids": token_type_ids}
Sylvain Gugger's avatar
Sylvain Gugger committed
140
        result = model(inputs)
141
142
143
        self.parent.assertListEqual(list(result["start_logits"].shape), [self.batch_size, self.seq_length])
        self.parent.assertListEqual(list(result["end_logits"].shape), [self.batch_size, self.seq_length])

144
145
146
147
148
149
150
151
152
153
154
155
156
    def create_and_check_roberta_for_multiple_choice(
        self, config, input_ids, token_type_ids, input_mask, sequence_labels, token_labels, choice_labels
    ):
        config.num_choices = self.num_choices
        model = TFRobertaForMultipleChoice(config=config)
        multiple_choice_inputs_ids = tf.tile(tf.expand_dims(input_ids, 1), (1, self.num_choices, 1))
        multiple_choice_input_mask = tf.tile(tf.expand_dims(input_mask, 1), (1, self.num_choices, 1))
        multiple_choice_token_type_ids = tf.tile(tf.expand_dims(token_type_ids, 1), (1, self.num_choices, 1))
        inputs = {
            "input_ids": multiple_choice_inputs_ids,
            "attention_mask": multiple_choice_input_mask,
            "token_type_ids": multiple_choice_token_type_ids,
        }
Sylvain Gugger's avatar
Sylvain Gugger committed
157
        result = model(inputs)
158
159
        self.parent.assertListEqual(list(result["logits"].shape), [self.batch_size, self.num_choices])

160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
    def prepare_config_and_inputs_for_common(self):
        config_and_inputs = self.prepare_config_and_inputs()
        (
            config,
            input_ids,
            token_type_ids,
            input_mask,
            sequence_labels,
            token_labels,
            choice_labels,
        ) = config_and_inputs
        inputs_dict = {"input_ids": input_ids, "token_type_ids": token_type_ids, "attention_mask": input_mask}
        return config, inputs_dict


175
@require_tf
176
class TFRobertaModelTest(TFModelTesterMixin, unittest.TestCase):
thomwolf's avatar
thomwolf committed
177

178
    all_model_classes = (
179
180
181
182
183
184
185
186
187
        (
            TFRobertaModel,
            TFRobertaForMaskedLM,
            TFRobertaForSequenceClassification,
            TFRobertaForTokenClassification,
            TFRobertaForQuestionAnswering,
        )
        if is_tf_available()
        else ()
188
    )
thomwolf's avatar
thomwolf committed
189
190

    def setUp(self):
191
        self.model_tester = TFRobertaModelTester(self)
thomwolf's avatar
thomwolf committed
192
193
194
195
196
197
198
199
200
201
202
203
204
        self.config_tester = ConfigTester(self, config_class=RobertaConfig, hidden_size=37)

    def test_config(self):
        self.config_tester.run_common_tests()

    def test_roberta_model(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_model(*config_and_inputs)

    def test_for_masked_lm(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_masked_lm(*config_and_inputs)

Lysandre's avatar
Lysandre committed
205
206
207
208
    def test_for_token_classification(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_token_classification(*config_and_inputs)

209
210
211
    def test_for_question_answering(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_question_answering(*config_and_inputs)
212
213
214
215

    def test_for_multiple_choice(self):
        config_and_inputs = self.model_tester.prepare_config_and_inputs()
        self.model_tester.create_and_check_roberta_for_multiple_choice(*config_and_inputs)
216

217
    @slow
thomwolf's avatar
thomwolf committed
218
    def test_model_from_pretrained(self):
219
        for model_name in TF_ROBERTA_PRETRAINED_MODEL_ARCHIVE_LIST[:1]:
220
            model = TFRobertaModel.from_pretrained(model_name)
thomwolf's avatar
thomwolf committed
221
222
223
            self.assertIsNotNone(model)


224
@require_tf
thomwolf's avatar
thomwolf committed
225
class TFRobertaModelIntegrationTest(unittest.TestCase):
226
    @slow
thomwolf's avatar
thomwolf committed
227
    def test_inference_masked_lm(self):
228
        model = TFRobertaForMaskedLM.from_pretrained("roberta-base")
229

230
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
231
232
        output = model(input_ids)[0]
        expected_shape = [1, 11, 50265]
233
        self.assertEqual(list(output.numpy().shape), expected_shape)
thomwolf's avatar
thomwolf committed
234
235
        # compare the actual values for a slice.
        expected_slice = tf.constant(
236
            [[[33.8802, -4.3103, 22.7761], [4.6539, -2.8098, 13.6253], [1.8228, -3.6898, 8.8600]]]
thomwolf's avatar
thomwolf committed
237
        )
238
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
239

240
    @slow
thomwolf's avatar
thomwolf committed
241
    def test_inference_no_head(self):
242
        model = TFRobertaModel.from_pretrained("roberta-base")
243

244
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
245
246
247
        output = model(input_ids)[0]
        # compare the actual values for a slice.
        expected_slice = tf.constant(
248
            [[[-0.0231, 0.0782, 0.0074], [-0.1854, 0.0540, -0.0175], [0.0548, 0.0799, 0.1687]]]
thomwolf's avatar
thomwolf committed
249
        )
250
        self.assertTrue(numpy.allclose(output[:, :3, :3].numpy(), expected_slice.numpy(), atol=1e-4))
thomwolf's avatar
thomwolf committed
251

252
    @slow
thomwolf's avatar
thomwolf committed
253
    def test_inference_classification_head(self):
254
        model = TFRobertaForSequenceClassification.from_pretrained("roberta-large-mnli")
255

256
        input_ids = tf.constant([[0, 31414, 232, 328, 740, 1140, 12695, 69, 46078, 1588, 2]])
thomwolf's avatar
thomwolf committed
257
258
        output = model(input_ids)[0]
        expected_shape = [1, 3]
259
260
        self.assertEqual(list(output.numpy().shape), expected_shape)
        expected_tensor = tf.constant([[-0.9469, 0.3913, 0.5118]])
261
        self.assertTrue(numpy.allclose(output.numpy(), expected_tensor.numpy(), atol=1e-4))